练习五 矩阵的特征值与特征向量
- 格式:doc
- 大小:148.00 KB
- 文档页数:4
【关键字】学习第五章矩阵的特征值与特征向量一.内容提要1 . 特征值和特征向量定义1 设是数域P上的n阶矩阵,若对于数域P中的数,存在数域P上的非零n维列向量X,使得则称为矩阵A的特征值,称X为矩阵A属于(或对应于)特征值的特征向量注意:1)是方阵;2)特征向量X 是非零列向量;3)方阵与特征值对应的特征向量不唯一4)一个特征向量只能属于一个特征值.2.特征值和特征向量的计算计算矩阵A的特征值与特征向量的步骤为:(1)计算n阶矩阵A的特征多项式|E-A|;(2)求出特征方程|E-A|=0的全部根,它们就是矩阵A的全部特征值;(3)设1 ,2 ,… ,s 是A的全部互异特征值。
对于每一个i,解齐次线性方程组0,求出它的一个根底解系,该根底解系的向量就是A属于特征值i的线性无关的特征向量,方程组的全体非零解向量就是A属于特征值i的全体特征向量.3.特征值和特征向量的性质性质1 (1)若X是矩阵A属于特征值的特征向量,则kX()也是A属于的特征向量;(2)若是矩阵A属于特征值的特征向量,则它们的非零线性组合也是A属于的特征向量;(3)若A是可逆矩阵,是A的一个特征值,则是A—1的一个特征值,是A*的一个特征值;(4)设是n阶矩阵A的一个特征值,f(x)= amxm + am-1xm-1 + … + a1x + a0为一个多项式,则是f(A)的一个特征值。
性质2(1)(2)性质3 n阶矩阵A和它的转置矩阵有相同的特征值性质4 n阶矩阵A 不同的特征值所对应的特征向量线性无关4. 相似矩阵定义2 设A、B为n阶矩阵,若存在可逆矩阵P,使得B=P―1AP则称A与B相似。
记作A∽B. 并称P为相似变换矩阵.矩阵的相似关系是等价关系,满足:1°反身性:A∽A.2°对称性:若A∽B,则B∽A.3°传递性:若A∽B,B∽C则A∽C.5.矩阵相似的性质:设A、B为n阶矩阵,若A∽B,则(1) ; (2) ;(3)A 、B 有相同的迹和特征多项式,相同的特征值;(4) A ,B 或者都可逆或者都不可逆. 当A ,B 都可逆时,∽;(5)设f (x )= amxm + am-1xm-1 + … + a1x + a0 为一个多项式,则 f (A )∽ f (B ) ; 6.n 阶矩阵A 相似对角化的条件(1)n 阶矩阵A 与对角矩阵Λ相似的充分必要条件是A 有n 个线性无关的特征向量. (2)n 阶矩阵A 与对角阵相似的充要条件是A 的每个k 重特征值恰好对应有k 个线性无关的特征向量.注(1)与单位矩阵相似的 n 阶矩阵只有单位阵 E 本身,与数量矩阵 kE 相似的 n 阶方阵只有数量矩阵 kE 本身(2)有相同特征多项式的矩阵不一定相似。
特征值与特征向量练习题特征值和特征向量是线性代数中重要的概念,它们在解决实际问题中有着广泛的应用。
下面是一些关于特征值和特征向量的练习题。
1、设矩阵A的元素如下:2 -3 41 -1 10 1 -2矩阵B为A的平方,求B的特征值和特征向量。
2、设矩阵A的元素如下:1 2 34 5 67 8 9矩阵B为A的平方,求B的特征值和特征向量。
3、设矩阵A的元素如下:2 1 00 2 10 0 2矩阵B为A的平方,求B的特征值和特征向量。
4、设矩阵A的元素如下:csharp1 0 00 2 -10 -1 2矩阵B为A的平方,求B的特征值和特征向量。
5、设矩阵A的元素如下:lua1 0 0 00 2 -1 -10 -1 2 -10 -1 -1 2矩阵B为A的平方,求B的特征值和特征向量。
特征值与特征向量特征值和特征向量是线性代数中两个非常重要的概念,它们在许多数学领域中都有广泛的应用,包括解决线性方程组、研究矩阵的性质、以及在机器学习和数据科学中等。
一、特征值特征值是矩阵的一个重要属性,它可以通过对矩阵进行特定的数学操作来得到。
对于一个给定的矩阵A,如果存在一个非零向量v,使得Av = λv对某个标量λ成立,那么我们就说λ是A的特征值,v是对应于特征值λ的特征向量。
特征值的性质可以通过矩阵的特征多项式来研究。
特征多项式f(x) = |xI - A|,其中I是单位矩阵,A是给定的矩阵。
特征多项式的根就是矩阵的特征值。
二、特征向量特征向量是矩阵对应于特征值的向量。
它与特征值有密切的关系,并且在解决线性代数问题中发挥着重要的作用。
设A是n阶方阵,如果存在非零向量v,使得Av = λv对某个标量λ成立,那么我们就说λ是A的特征值,v是对应于特征值λ的特征向量。
特别地,如果λ是矩阵A的特征值,那么对于任何使得|xI - A|= 0成立的x,我们都有(xI - A)v = xv - Av = (x - λ)v,这表明v 也是对应于x的特征向量。
第五章 矩阵的特征值与特征向量内容提要一、基本概念1.A 是一个n 阶方阵,如果存在一个数λ和一个n 维非零列向量α,使得λαα=A 成立,则称λ为矩阵A 的特征值,非零列向量α称为矩阵A 的属于特征值λ的特征向量.2.A 为n 阶方阵,λ为未知量,则矩阵⎪⎪⎪⎪⎭⎫⎝⎛---------=-nn n n n n a a a a a a a a a A E λλλλ212222111211称为矩阵A 的特征矩阵;其行列式A E f -=λλ)(为λ的n 次多项式,称为矩阵A 的特征多项式;0=-A E λ称为矩阵A 的特征方程.3.n 阶方阵A 的主对角线上的元素的和称为A 的迹,记作)(A t r ,即)(A t r nn a a a +++= 2211.4.对于n 阶方阵A 和B ,若存在n 阶可逆方阵P ,使B AP P =-1成立,则称A 与B 相似,记为B A ~.满足: (1)自身性 即A A ~;(2)对称性 若B A ~,则A B ~;(3)传递性 若B A ~,C B ~,则C A ~. 5.若矩阵A 与对角阵相似,则称A 可对角化.6.实矩阵A =n m ij a ⨯)(,如果0≥ij a ,),,2,1;,,2,1(n j m i ==,称A 为非负矩阵;如果ij a >0,),,2,1;,,2,1(n j m i ==,称A 为正矩阵.7.如果n 阶方阵A =n m ij a ⨯)(,可以经过一系列相同的行和列互换,化为 ⎪⎭⎫⎝⎛221211A OA A , 其中11A ,22A 为子方阵(不一定同阶),则称A 为可分解矩阵,否则称A 为不可分解的矩阵.8.若n λλλ,,,21 为n 阶方阵A 的特征值,则称=)(A P |}|,,||,|max{|21n λλλ 为A 的最大特征值(或为A 的谱半径). 二、几个结果1.特征值和特征向量的基本性质(1)n 阶矩阵A 与它的转置矩阵T A 有相同的特征值(但特征向量一般不同);(2)属于A 的不同特征值的特征向量必定线性无关(但属于相同特征值的特征向量不一定必相关);(3)属于同一特征值的特征向量的线性组合仍是属于该特征值的特征向量;(4)设n λλλ,,,21 为n 阶方阵A 的特征值,则有①nn n a a a ++=+++221121λλλ,即A 的特征值的和等于矩阵A 的主对角线的元素的和; ②||21A n =λλλ .推论 若矩阵A 可逆⇔矩阵A 的特征值全不为零.(5)若λ为矩阵A 的特征值,α是A 的属于λ的特征向量,则①λk 是kA 的特征值(k 为任意常数); ②m λ是m A 的特征值(m 为正整数);③当A 可逆时,1-λ是1-A 的特征值,λA是*A 的特征值;④)(0λP 是)(A P 的特征值,其中)(x P 为任一多项式.注意 α仍是矩阵kA 、m A 、1-A 、*A 、)(A P 对应于特征值λk 、m λ、1-λ、λA、)(0λP 的特征向量.)6(*若A 为实对称矩阵,则A 的所有特征值均为实数,且属于不同特征值的特征向量彼此正交. 2.相似矩阵的性质若A ~B ,则(1)B A =,)()(B r A r =,)()(B t A t r r =;(2)T A ~T B ,1-A ~1-B ,m A ~m B ,kA ~kB ,)(A P ~)(B P ;(3)||||B E A E -=-λλ,即相似矩阵有相同的特征多项式,因而也有相同的特征值,但特征向量不一定相同.3.矩阵可对角化的条件(1)n 阶方阵A 可对角化的充分必要条件是A 有n 个线性无关的特征向量;(2)n 阶方阵A 有n 个不同的特征值,则A 一定可对角化;)3(*实对称矩阵必可对角化,且存在正交矩阵P (1-=P P T ),使Λ=-AP P 1.例题解析例1 设矩阵⎪⎪⎪⎭⎫ ⎝⎛--=011102124A ,则A 的对应于特征值2=λ的特征向量α为( ).(A )T )0,0,0( (B )T )0,1,1(- (C )T )2,1,1( (D )T )1,0,1(解 根据定义,只需验证选项中的向量α是否满足αα2=A )0(≠α,显然,零向量不是矩阵A 的特征向量,应排除(A ). 对于(B ),因为⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--=0112022011011102124αA , 所以,=α()T 0,1,1-是A 的对应于2=λ的特征向量,应选(B ).例2 设A 为n 阶矩阵,下述结论中正确的是( ). (A )矩阵A 有n 个不同的特征根(B )矩阵A 与T A 有相同的特征值和特征向量(C )矩阵A 的特征向量21,αα的线性组合2211ααc c +仍是A 的特征向量 (D )矩阵A 对应于不同特征值的特征向量线性无关解 对于选项(A ),矩阵A 有n 个特征根(在复数范围内),但这些特征根中可能有重根,故(A )错.对于选项(B ),A 与T A 有相同的特征值,但是,对应的特征向量不一定相同,故(B )错.对于选项(C ),未说明21,αα对应的特征值.如果21,αα是对应于A 的同一特征值λ的特征向量,则当21,c c 不全为零时,2211ααc c +仍是A 的对应于特征值λ的特征向量;如果21,αα是对应于A 的不同特征值21,λλ的特征向量,则2211ααc c +不是A 的特征向量(0,021≠≠c c 为任意常数).关于这一结论的证明,见例8.对于选项(D )是矩阵特征值、特征向量的性质.综上分析,应选(D ).例3 如果n 阶矩阵A 任意一行的n 个元素之和都是a ,则A 有一个特征值( ). (A )a (B )a - (C )0 (D )1-a解 在||A E -λ中,把第二列到第n 列都加到第一列上,则第一列有公因子αλ-,提出后可知αλ-是||A E -λ的因子,所以a 是A 的一个特征值.应选(A ).例4 设矩阵⎪⎪⎭⎫⎝⎛---=2221A ,则下面各矩阵中非奇异矩阵是( ).(A )A E +-2 (B )A E - (C )A E -2 (D )A E --3 解 矩阵A 的特征多项式为 )2)(3(2221-+=+-=-λλλλλA E ,故A 的特征值为31-=λ,22=λ.因为 02)1()2(22=--=--=+-A E A E A E ,即选项(A )是奇异矩阵,而1不是A 的特征值,必有0||≠-A E ,应选(B ). 例5 已知三阶方阵A 的三个特征值为1,-2,3,则=||A ,1-A 的特征值为 ,T A 的特征值为 ,*A 的特征值为 ,E A A ++22的特征值为 .解 因为6||321-==λλλA ,由||||T A E A E -=-λλ,知A 与T A 有相同的特征值,故T A 的特征值为1,2-,3.若设X 为A 属于λ的一个特征向量,则有XAX λ=,于是有XX A λ11=-,X AX A A X A λ==-1*,X X A kkλ=,从而推得1-A的特征值为λ1,*A 的特征值为λ||A .矩阵多项式)(A f 的特征值为)(λf ,从而可写出各自具体内容.应填6-;31,21,1-;3,2,1-;2,3,6--;16,1,4.例6 设A 是三阶方阵,并且0322=+=+=-E A E A E A ,则E A 32-* = .解 由0322=+=+=-E A E A E A ,可得A 的特征值分别为23,2,1--,所以 3)23()2(1=-⋅-⋅=A ,于是E A E A A E A 36323211-=-=---*的特征值分别为7,6,3--,故 126)7()6(332=-⨯-⨯=-*E A ,应填126.例7 设4阶方阵A 满足条件03=+A E ,E AA T 2=,0<A ,其中E 是4阶单位阵,则方阵A 的伴随矩阵*A 的一个特征值为_______.解 由0)3(3=--=+E A E A ,得A 的一个特征值3-=λ.又由条件有 16224===E E AA T , 162===A A A AA T T .因为0<A ,所以4-=A ,且知A 可逆.设A 的属于特征值3-=λ的特征向量为α,则αααααα3133111-=⇒-=⇒-=---A A A A A ,又因为0≠A ,所以11,31-*-=-=AA A A A A αα,故αα34=*A ,可知*A 的特征值为34.应填34.例8 设21,λλ是n 阶矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,试证:2211ααc c +(01≠c ,02≠c ,任意常数)不是A 的特征向量. 证 反证法.设2211ααc c +为A 的对应于特征值λ的特征向量,于是 )()(22112211ααλααc c c c A +=+又由已知,有111αλα=A ,)0(1≠α,222αλα=A ,)0(2≠α.代入上式左边,得 22211122112211)(αλαλααααc c A c A c c c A +=+=+, 因此)(2211222111ααλαλαλc c c c +=+, 所以0)()(222111=-+-αλλαλλc c . 因21λλ≠,所以向量21,αα线性无关,故 0)(11=-λλc , 0)(22=-λλc , 其中21,c c 是不等于零的任意常数.由此可得λλ=1,λλ=2,即21λλ=,与已知条件矛盾!所以2211ααc c +不是A 的特征向量.例9 求矩阵⎪⎪⎪⎭⎫⎝⎛-=110020112A 的特征值和特征向量. 解 A 的特征多项式)1()2(110201122--=-----=-λλλλλλA E ,所以,A 的特征值为11=λ,232==λλ.对于11=λ,解齐次线性方程组O X A E =-)(,因⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛----=-000010101010010111)(A E ,由此可得同解方程组 ⎩⎨⎧==+00231x x x ,取3x 为自由未知量,令13=x ,得方程组的基础解系T -=)1,0,1(1α.于是A 的对应于特征值11=λ的全部特征向量为11αc (01≠c ,为任意常数).对于232==λλ,解齐次线性方程组0)2(=-X A E , 因⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛--=-000000110110000110)2(A E , 由此可得同解方程组 032=+x x . 取自由未知量⎪⎪⎭⎫⎝⎛31x x 分别为⎪⎭⎫ ⎝⎛01,⎪⎭⎫⎝⎛10可得方程组的基础解系TT-==)1,1,0(,)0,0,1(32αα于是,A 的对应于232==λλ的全部特征向量为3322ααc c +(32,c c 为不全为零的任意常数).注 1.求特征值、特征向量的基本方法:(1)计算矩阵A 的特征多项式()A E f -=λλ;(2)求出特征方程()0=-=A E f λλ的全部根,即A 的全部特征值; (3)对每一个特征值0λ,求出O X A E =-)(0λ的一个基础解系r n -ηηη,,,21 , 则A 的属于0λ的全部特征向量为r n r n k k k --+++ηηη 2211,其中r n k k k -,,,21 为不全为零的常数.2.这类计算题中,方程组()O X A E =-λ的系数矩阵常常出现零列(如此题中)2(A E -的第一列).应注意:凡是零列所对应的变量应取作自由未知量.例如,在本题中求O X A E =-)2(的基础解系时,取31,x x 为自由未知量.例10 ⎪⎪⎪⎭⎫⎝⎛-----=122212221A ,(1)求A 的特征值;(2)求1-+A E 的特征值. 解 A 的特征多项式12122212221r r A E ++-+---+=-λλλλ12211221+-----+λλλλ)5()1(2+-=λλ.所以,A 的特征值为1,1,5-.由特征值性质可知,1-A 的特征值为1,1,51-,于是1-+A E 的特征值为2,2,54.例11 设⎪⎪⎪⎭⎫⎝⎛=0011100y xA 有三个线性无关的特征向量,求x 和y 应满足的条件.解 A 的特征多项式为λλλλ0111-----=-y xA E )1()1(2+-=λλ,所以,A 的特征值为 121=,λ,13-=λ. 只要121=,λ有两个线性无关的特征向量即可,即矩阵A E -⋅1的秩等于1. 因为A E -⋅1⎪⎪⎪⎭⎫⎝⎛----=1010101y x⎪⎪⎪⎭⎫⎝⎛---→00000101x y ,只要满足0=+y x 即可.例12 设向量TK )1,,1(=α是矩阵⎪⎪⎪⎭⎫ ⎝⎛=211121112A 的逆矩阵1-A 的特征向量,试求常数K 的值.分析 用特征值、特征向量的定义讨论.解 设λ是α所属的特征值,则λαα=-1A ,αλαA =,.即⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛1121112111211K Kλ, 由此,得方程组 ⎩⎨⎧=+=+KK K )22(1)3(λλ,其解为11=λ,21-=K ;412=λ,12=K .于是,当2-=K 或1时,α是1-A 的特征向量.例13 设矩阵⎪⎪⎪⎭⎝--=a c b A 0135,其行列式1-=A ,又A 的伴随矩阵 *A 有一个特征值0λ,属于0λ的一个特征向量为T )1,1,1(--=α,求c b a ,,和0λ的值.解 由题设知E E A AA -==*,αλα0=*A . 于是有αλααααA A A E AA 0)(==-=-=**. 即有0λ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛---11111101351a c b c a . 得⎪⎩⎪⎨⎧-=--=--=++-1)1( 1)2(1)1(000a c b c a λλλ.由此解得 10=λ,3-=b ,c a =.再代入1-=A 得2==c a .例14 设A 为n 阶方阵,任一非零的n 维向量都是A 的特征向量,试证明:⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλ00A , 即A 为数量矩阵.证 设),,2,1,(n j i a ij ⋅⋅⋅=是A 的第i 行、第j 列元素,因单位坐标向量,1εn εε,,2⋅⋅⋅也是A 的特征向量,设n λλλ,,,21 是对应的特征值,则有 i i A λεε= ),,1(n i ⋅⋅⋅=即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=001i niiii i a a a A λε, ),,1(n i ⋅⋅⋅=.故 i ii a λ=,0=ji a (i j ≠).这样⎪⎪⎪⎪⎭ ⎝=n A λλ02 . 因为0≠+j i εε (i j ≠),也是A 的特征向量,设λ为对应的特征值,则由j i j i j i A λελεεελεε+=+=+)()(, j j i i j i j i A A A ελελεεεε+=+=+)(,有 0)()(=-+-j j i i ελλελλ.因j i εε,线性无关,故λλλ==j i .于是可得⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλ0 A . 例15 设B A ,均为n 阶方阵,试证AB 与BA 有相同的特征值.证 如果矩阵AB 是不可逆的,则0=AB ,所以 0==⋅=⋅=AB B A A B BA . 由此可得0)1(0=-=-AB AB E n , 0)1(0=-=-BA BA E n .即AB 与BA 都有特征值0.当AB 不可逆,且00≠λ为AB 的任一非零特征值时,需证0λ也是BA 的特征值.实际上,设AB 的对应于0λ的特征向量为)0(≠αα,则 αλα0=AB . 在上式两边左乘B ,得)()(0αλαB B BA =.令αηB =,则有ηλη0=BA ,只需证明0≠η.假设0==αηB ,于是0==αηAB A .这与00≠=αλαAB 矛盾.因此0≠η.即0λ是BA 的一个特征值,对应的特征向量为αB .由0λ的任意性可知,AB 的任一非零特征值都是BA 的特征值.类似可证BA 的任一非零特征值也是AB 的特征值.当矩阵AB 可逆时,AB 的任一特征值不等于零.类似于上面的证明可得AB 与BA 有相同的特征值.例16 设B A ,为n 阶矩阵,且A 与B 相似,E 为n 阶单位矩阵,则( ). (A )B E A E -=-λλ(B )A 与B 有相同的特征值和特征向量 (C )A 与B 都相似于一个对角阵(D )对任意常数t ,A tE -与B tE -相似解 由A 与B 相似,则存在可逆阵P ,使得 B AP P =-1,从而 B tE AP P P tP P A tE P -=-=----111)(, 即A tE -与B tE -相似.应选(D ).例17 设矩阵⎪⎪⎪⎭⎫⎝⎛=300020002A ,则下述矩阵中与A 相似的矩阵是( ). (A )⎪⎪⎪⎭⎫⎝⎛=3001200121A(B )⎪⎪⎪⎭⎫⎝⎛=3000200122A (C )⎪⎪⎪⎭⎫⎝⎛=3000201023A(D )⎪⎪⎪⎭⎫⎝⎛=3110210024A 解 因矩阵A 已是对角形矩阵,而各选项中矩阵与A 有相同的特征值,故只需判断各选项中的矩阵可否对角化.对于选项(A ),特征多项式)3()2(21--=-λλλA E ,其特征值为221==λλ,33=λ.考察方程组O X A E =-)2(1,其系数矩阵⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫⎝⎛---=-000100010100100010)2(1A E , 于是2)2(1=-A E r .方程组O X A E =-)2(1的基础解系中仅含1个向量,而=1λ22=λ是二重特征值,故矩阵1A 不能对角化,即1A 不与A 相似.对于选项(B )与(D ),用类似方法可判断矩阵42,A A 不可对角化,故42,A A 不与A 相似.对于选项(C ),矩阵3A 的特征多项式)3()2(23--=-λλλA E ,其特征值为221==λλ,33=λ.考虑方程组O X A E =-)2(3,其系数矩阵⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫⎝⎛-=-000000100100000100)2(3A E ,故1)2(3=-A E r ,方程组O X A E =-)2(3的基础解系中恰恰含两个向量,故3A 可对角化.应选(C ).注 矩阵A 对角化的步骤:(1)求出A 的特征值:1λ,2λ, n λ,对于每一个特征值i λ,求出齐次线性方程组O X A E i =-)(λ的一个基础解系,若基础解系中所含向量的个数等于i λ的重数,则A 可对角化,否则A 不可对角化;(2)以A 的n 个线性无关的特征向量:n ααα,,,21 为列构造可逆矩阵=P),,,(21n ααα ,则有对角阵Λ=diag(n λλλ,,,21 )=AP P 1-.注意顺序:i α为属于i λ的特征向量.例18 三阶矩阵A 的特征值为1,2-,3,矩阵A A B 22-=,求: (1)B 的特征值;(2)B 是否可对角化,若可以,试写出其相似对角形矩阵; (3)行列式E A B 2-和的值.解 设λ为A 的任一特征值,对应的一个特征向量为α,则 λαα=A , )0(≠α. 所以αλαλα22==A A ,αλλλααλαα)2(2)2(222-=-=-=A A B ,即,对应于A 的一个特征值λ,B 对应的特征值为λλ22-.由此可知当A 的特征值为1,2-,3时,B 的特征值为1-,8,3.因为B 有三个不同的特征值,所以B 可与一对角阵相似,其相似对角形矩阵为⎪⎪⎪⎭⎫⎝⎛-300080001. 于是 2438)1(-=⨯⨯-=B ,63)2(1-=⨯-⨯=A .又因为)2(E A A B -=,所以46242=--==-AB E A .例19 设⎪⎪⎭⎫⎝⎛=3212A ,求100A .分析 直接求100A 计算量过大,可设法利用对角矩阵进行计算. 解 A 的特征多项式)4)(1(2212--=----=-λλλλλA E ,故A 的特征值为11=λ,42=λ.当11=λ时,可求出一个基础解系:T )1,1(1-=α. 当42=λ时,可求出一个基础解系:T )2,1(2=α.令⎪⎪⎭⎫ ⎝⎛-=2111P ,则⎪⎪⎭⎫⎝⎛-=-3/13/13/13/21P ,此时⎪⎪⎭⎫⎝⎛=-40011AP P , 即有 14001-⎪⎪⎭⎫ ⎝⎛=P P A 因此⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=-3/13/13/13/24001211140011001100100PP A ⎪⎪⎭⎫ ⎝⎛⨯+⨯+-+-+=100100100100421422414231. 例20 若三阶方阵A 的特征值为61=λ,32=λ,33=λ,其相应的特征向量为T )1,1,1(1=α,T )1,0,1(2-=α,T )1,2,1(3-=α,求矩阵A ,5A . 解 因为可逆矩阵⎪⎪⎪⎭⎫⎝⎛--=111201111P , 则Λ=⎪⎪⎪⎭⎫⎝⎛=-3000300061AP P . 故A =1300030006-⎪⎪⎪⎭⎫⎝⎛P P =⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--6/13/16/12/102/13/13/13/130030006111201111=⎪⎪⎪⎭⎫⎝⎛411141114. 因A ~Λ,故5A ~5Λ,即有 1555555555332336336⨯=⨯⨯==Λ=A .*例21 若三阶实对称矩阵A 的特征值为1,4,2-,且对于11=λ和42=λ的特征向量分别为T )2,1,2(1-=α,T )1,2,2(2-=α,求矩阵A ,5A .解 设23-=λ的特征向量为T c b a ),,(3=α,由于实对称矩阵的特征向量是相互正交的,故有0),(21=αα,0),(32=αα,即 ⎩⎨⎧=+-=-+022022c b a c b a ,解之可得 2c a =,c b =,c c =.令2=c ,即有1=a ,2=b .故T )2,2,1(3=α. 取⎪⎪⎪⎭⎫⎝⎛--==212221122),,(321αααP . 则⎪⎪⎪⎭⎫⎝⎛--=-221122212911P. 由于⎪⎪⎪⎭⎫⎝⎛-=-2411AP P , 所以1241-⎪⎪⎪⎭⎫⎝⎛-=P P A ⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=22112221291241212221122 ⎪⎪⎪⎭⎫ ⎝⎛----=020212022. 此时由A ~⎪⎪⎪⎭⎫⎝⎛-=Λ241, 故5A ~⎪⎪⎪⎭⎫⎝⎛-=Λ555)2(41. 因此1555)2(41-⎪⎪⎪⎭⎫⎝⎛-=P P A⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛--=221122212913210241212221122⎪⎪⎪⎭⎫⎝⎛----=9002178198021783969415819804158406891⎪⎪⎪⎭⎫⎝⎛----=100242220242441462220462452. *例22 设矩阵⎪⎪⎪⎪⎭⎫⎝⎛=2110000010010y A . (1)已知A 的一个特征值为3,试求y ; (2)求矩阵,使)()(AP AP T 为对角阵.解 (1)由31=λ,代入特征方程0=-A E λ,得11130000310013-----y ()02811133113=-=-----=y y .所以2=y .(2)由)()(AP AP T P A P AAP P T T 2==,问题转化为2A 的对角化问题. 由于⎪⎪⎪⎪⎭⎫ ⎝⎛=5445112A ,只要将⎪⎪⎭⎫ ⎝⎛=54451A 对角化即可,由0910544521=+-=----=-λλλλλA E ,得11=λ,92=λ.求得相应特征向量为 ⎪⎭⎫⎝⎛-=111α, ⎪⎭⎫⎝⎛=112α.单位化⎪⎪⎭⎫⎝⎛-=11211β, ⎪⎪⎭⎫ ⎝⎛=11212β. 即⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=2121212111P 使⎪⎪⎪⎪⎭⎫⎝⎛=9111)()(AP AP T .注 由正交矩阵P 将实对称矩阵A 化为对角阵的步骤:(1)求出实对称阵A 的全部特征值:1λ,2λ, ,n λ;(2)对于每一个特征值i λ,求出齐次线性方程组0)(=-X A E i λ的一个基础解系;(3)利用施密特正交化法将基础解系正交化、单位化,求出属于i λ的一个标准正交组;(4)将所有正交化、单位化后的n 个特征向量作为列向量构成矩阵P ,则P 为所求正交矩阵,并可得对角阵AP P 1-=),,,(diag 21n λλλ .例23 设n 阶方阵A 有n 个互不相同的特征值,证明:A 的特征向量也是B 的特征向量的充分必要条件是B A ,可交换.证 必要性因为A 有n 个互不相同的特征值,故A 可对角化.即存在可逆阵P ,使11Λ=-AP P .由于A 的特征向量也是B 的特征向量,故对同样的P ,有21Λ=-BP P .于是1211211))((---ΛΛ=ΛΛ=P P P P P P AB ,1121112))((---ΛΛ=ΛΛ=P P P P P P BA . 而1221ΛΛ=ΛΛ,所以,BA AB =. 充分性设λαα=A ,0≠α.两边左乘B ,利用BA AB =,有 )()()(αλααB B A A B ==.若0≠αB ,由上式可知αB 也是A 的属于特征值λ的特征向量.由于A 的特征值两两不同,故属于特征值λ的线性无关的特征向量只有一个,因此α与αB 应成比例,即μαα=B ,即α为B 的特征向量;若0=αB ,则αα0=B )0(≠α,故α仍为B 的特征向量. 总之,A 的特征向量也是B 的特征向量.例24 已知矩阵A 与C 相似,矩阵B 与D 相似,证明分块矩阵 ⎪⎭⎫⎝⎛B OO A 与⎪⎭⎫⎝⎛D OO C 相似. 证 由条件知,存在可逆矩阵Q P ,使得 AP P C 1-=, BQ Q D 1-=. 取⎪⎭⎫⎝⎛=Q OO P X ,则X 可逆,且⎪⎪⎭⎫⎝⎛=---111Q O O P X.这时 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---Q OO P B OO AQ O O P X B OO A X111⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=--D OO C BQ Q OOAPP 11, 即⎪⎭⎫⎝⎛B O O A 与⎪⎭⎫⎝⎛D O O C相似. 例25 设 矩阵⎪⎪⎭⎫ ⎝⎛=d c b aA 为二阶实矩阵,且0>bc ,证明A 可与一对角矩阵相似.证 因A 的特征多项式 dcbaA E ----=-λλλ)()(2bc ad d a -++-=λλ,其判别式04)()(4)(22>+-=--+=∆bc d a bc ad d a 所以A 必有两个不同的特征值,故A 必可与一对角阵相似.练习题一.是非题1.( )A 是n 阶方阵,若有数λ与n 维列向量α满足λαα=A ,则λ是A 的特征值,α是A 的属于λ的特征向量.2.( )若21,αα是A 的分别属于21,λλ的特征向量,则21,αα一定线性无关.3.( )若21,αα是两个线性无关的特征向量,则它们一定是分别属于不同特征值的特征向量.4.( )若1α是A 的属于1λ的特征向量,则1αK 也是A 的属于1λ的特征向量.5.( )A 与T A 有相同的特征值和相同的特征向量.6.( )A 与T A 有相同的特征多项式.7.( )方程O X A E =-)(0λ的每一个解向量都是对应于特征值0λ的特征向量.8.( )若21,αα为方程O X A E =-)(0λ的一个基础解系,则2211ααc c +(,1c 2c 为非零常数)是A 的属于特征值0λ的全部特征向量.9.( )设21,αα为A 的二个特征向量,则2211ααc c +(21,c c 不全为零)也是A 的特征向量.10.( )若矩阵A ,B 有相同的特征多项式,则A ~B .11.( )若A ~B ,则存在唯一的可逆阵P ,使B AP P =-1. 12.( )若A ~B ,则A 与B 有相同的特征值. 13.( )若A ~B ,则A 与B 有相同的特征向量. 14.( )若A ~B ,则B E A E -=-T λλ.15.( )若A ~B ,则)(A E -λ~)(B E -λ.16.( )若矩阵A 有三重的特征值,则A 一定不能对角化. 17.( )若n 阶矩阵A 可对角化,则A 有n 个特征值.18.( )若n 阶矩阵A 可对角化,则A 有n 个线性无关的特征向量. 19.( )若n 阶矩阵A 可对角化,则T A 有n 个相异的特征值. 20.( )若n 阶矩阵A 可对角化,则A 有n 个不同的特征向量. 二.填空题1.设三阶矩阵A 的特征值为1-,1,2,则1-A 的特征值为 ,*A 的特征值为 ,)3(A E +的特征值为 .2.设三阶方阵A 有三个特征值1λ,2λ,3λ,如果36=A ,21=λ,32=λ则=3λ .3.已知矩阵⎪⎪⎪⎭⎫⎝⎛-=160420125A , 则A 的三个特征值的和是 ,积是 .4.已知三阶方阵A 有三个特征值1-,1,2,22)(2+-=x x x f ,则)(A f 的特征值是 ,=)(A f .5.设三阶矩阵O A =,则A 的全部特征向量为 .6.设A 为n 阶方阵,O AX =有非零解,则A 必有一个特征值是 .7.若A ~E ,则=A .8.若⎪⎪⎭⎫ ⎝⎛-x 123122与⎪⎪⎭⎫⎝⎛4321相似,则=x .9.若⎪⎪⎭⎫⎝⎛x y 3122与⎪⎪⎭⎫ ⎝⎛4321相似,则=x ,=y .10.设二阶实对称矩阵A 的特征值为1,2;对应于特征值1的特征向量为T-=)1,1(1α,则A 的对应于特征值2的特征向量=2α . 三.单项选择题1.设A 为n 阶方阵,以下结论中成立的是( ).(A )若A 可逆,则矩阵A 的属于特征值λ的特征向量也是矩阵1-A 的属于特征值λ1的特征向量(B )A 的特征向量即为方程O X A E =-)(λ的全部解 (C )A 的特征向量的线性组合仍为特征向量 (D )A 与T A 有相同的特征向量2.可逆矩阵A 与矩阵( )有相同的特征值. (A )T A (B )1-A (C )2A (D )E A +3.设⎪⎪⎪⎭⎫⎝⎛---=53342111a A ,且A的特征值为61=λ,232==λλ如果A 有三个线性无关的特征向量,则a 为( ).(A )2 (B )2- (C )4 (D )4- 4.与n 阶单位矩阵E 相似的矩阵是( ). (A )数量矩阵)1(≠K KE(B )对角矩阵Λ(主对角元素不为1) (C )E(D )任意n 阶可逆矩阵5.设B A ,均为n 阶矩阵,并且A ~B ,则下述结论中不正确的是( ). (A )A 与B 有相同的特征值和特征向量 (B )B A = (C ))()(B r A r = (D )1-A ~1-B6.已知矩阵A 相似于对角矩阵Λ,其中⎪⎪⎪⎭⎫ ⎝⎛=Λ300020001,则下列各矩阵中是可逆矩阵的为( ).(A )A E + (B )A E - (C )A E -2 (D )A E -37.设A ,B 为n 阶矩阵,且A 可逆,A ~B ,则下列结论中正确的是( ). (A )A 与B 有相同的特征向量 (B )A ,B 都相似于一个对角矩阵 (C )AB ~BA (D )BA AB = *8.下列矩阵中,不是正交矩阵的为( ).(A )⎪⎪⎭⎫ ⎝⎛1001(B )⎪⎪⎭⎫⎝⎛-θθθθcos sin sin cos (C )⎪⎪⎪⎪⎭⎫⎝⎛-23212123(D )⎪⎪⎪⎪⎭⎫⎝⎛-122221 四.计算题1.求矩阵A 的特征值和特征向量(1)⎪⎪⎪⎭⎫⎝⎛=122212221A ;(2)⎪⎪⎪⎭⎫⎝⎛----=101410213A ;(3)⎪⎪⎪⎪⎪⎭⎫⎝⎛=a a a A;(4)⎪⎪⎪⎭⎫ ⎝⎛---=031302120A .2.判断下列矩阵是否与对角矩阵相似,如果可与对角矩阵相似,试求出可逆矩阵P ,使AP P 1-为对角矩阵.(1)⎪⎪⎪⎭⎫ ⎝⎛---=6123020663A ; (2)⎪⎪⎪⎭⎫⎝⎛----=022242111A ; (3)⎪⎪⎪⎭⎫ ⎝⎛------=266157113A . 3*.设⎪⎪⎪⎭⎫⎝⎛-=124222421A ,求正交矩阵Q ,使得AQ Q 1-为对角形矩阵.4.设B AP P =-1,其中⎪⎪⎪⎭⎫ ⎝⎛-=100000001B ,⎪⎪⎪⎭⎫⎝⎛-=112012001P ,求A 和5A .5.设三阶矩阵A 的特征值为1,2,3,对应的特征向量分别为T =)1,1,1(1α,T=)1,0,1(2α,T =)1,1,0(3α,试求矩阵A .6*.设三阶实对称矩阵A 的特征值是1,2,3;属于特征值2,1的特征向量分别为T )1,1,1(1--=α,T )1,2,1(2--=α.(1)求属于特征值3的特征向量;(2)求矩阵A .7*.设三阶实对称矩阵A 的特征值11-=λ,132==λλ,A 的对应于1λ的特征向量为T =)1,1,0(1α,求A .8*.设二阶实对称矩阵A 的一个特征值为1,A 的对应于特征值1的特征向量为T )1,1(-.如果2-=A ,求:(1)A 的另一特征值和对应的特征向量; (2)正交矩阵AQ Q Q 1,-使为对角矩阵; (3)矩阵A . 五.证明题1.设0λ是n 阶矩阵A 的一个特征值,试证:(1)220A 是λ的特征值; (2)0λ-k 是矩阵A kE -的特征值 (k 为常数); (3)如果A 可逆,则11-A是λ的特征值;(4)如果A 可逆,则*AA是λ的特征值.2.若n 阶矩阵A 满足A A =2,则称A 为幂等矩阵.试证:幂等矩阵的特征值只能是1或零.3.设1λ,2λ为A 的两个不同的特征值,且21,αα分别是属于21,λλ的特征向量.试证21,αα线性无关.4.设2=λ是非奇异矩阵A 的一个特征值,则矩阵12)31(-A 有一特征值等于43.5*.设A 为正交矩阵,若1-=A ,试证明A 一定有特征值1-.6*.设A 为正交阵,试证明:A 的实特征向量所对应的特征值的绝对值等于1.7.设A ,B 均为n 阶矩阵,A ~B ,试证:k A ~k B (k 为正整数).8*.设A ,B 为两个实对称矩阵,证明:存在正交矩阵Q ,使B AQ Q =-1的充分必要条件是A ,B 具有相同的特征值.。
第五章 矩阵的特征值与特征向量 习题1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎪⎭⎫ ⎝⎛=931421111) , ,(321a a a ;(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a . 2. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 3. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎪⎭⎫ ⎝⎛----201335212; (2)⎪⎪⎪⎭⎫ ⎝⎛633312321.4. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同.5. 设λ≠0是m 阶矩阵A m ⨯n B n ⨯m 的特征值, 证明λ也是n 阶矩阵BA 的特征值.6. 已知3阶矩阵A 的特征值为1, 2, 3, 求|A 3-5A 2+7A |.7. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |.8. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=50413102x A 可相似对角化, 求x .9. 已知p =(1, 1, -1)T 是矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值;(2)问A 能不能相似对角化?并说明理由.10. 试求一个正交的相似变换矩阵, 将对称阵⎪⎪⎪⎭⎫ ⎝⎛----020212022化为对角阵.11. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭⎫ ⎝⎛-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.12. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A .13. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .14. 设⎪⎪⎪⎭⎫ ⎝⎛-=340430241A , 求A 100.。
第5章 特征值与特征向量5.1 特征值与特征向量练习5.11. 证明特征值与特征向量的性质3.设01()mm z a a z a z ϕ=+++ 是一个多项式. 又设0λ是矩阵A 的一个特征值, α是其对应的一个特征向量, 则00100()mm a a a ϕλλλ=+++ 是矩阵多项式01()m m A a E a A a A ϕ=+++ 的一个特征值, α仍是其对应的一个特征向量.证 由0A αλα=得01()m m A a a A a A ϕαααα=+++()()01000m m a a a λλαϕλα=+++=再由定义得证.2. 求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=122113221A的全部特征值与特征向量.解 由()()2()33A f E A λλλλ=-=-+得A 的特征值为3,3321-===λλλ(二重).当31=λ时,解齐次方程组()03=-x A E 得基础解系T )1,1,1(1=α所以,属于31=λ的全部特征向量为11αk (01≠k ).当332-==λλ时,解齐次方程组()03=--x A E 得基础解系T )1,2,1(2-=α所以,332-==λλ的全部特征向量为22αk (02≠k ).3. 求平面旋转矩阵cos sin sin cos G θθθθ⎡⎤=⎢⎥-⎣⎦的特征值.解 由()2cos sin 2cos 1sin cos f E G λθθλλλθλθλθ--=-==-+-得矩阵G 的两个特征值为1cos λθθ=+,2cos λθθ=-4. 已知[]T1,1,1α=-是矩阵2125312a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦A的一个特征向量. 试确定b a ,的值及特征向量α所对应的特征值.解 设α所对应的特征值为λ,则由λαα=A , 即0)(=-αλA E ,得21212120531530121120a ab b λλλλλλ---++=⎛⎫⎛⎫⎧⎪ ⎪⎪---=⇔-+-+=⎨ ⎪⎪⎪ ⎪⎪-+----=⎝⎭⎝⎭⎩0 解之得1,0,3-==-=λb a .5. 设3阶矩阵A 的三个特征值为3,2,1321===λλλ, 与之对应的特征向量分别为[][][]T T T1232,1,1,2,1,2,3,0,1ααα=-=-=求矩阵A .解 由假设123123[,,][,2,3]A αααααα=矩阵],,[321ααα可逆,所以1123123[,2,3][,,]A αααααα-=249143120153143164--⎡⎤⎡⎤⎢⎥⎢⎥=---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=320361182636. 设3阶矩阵A 的特征值为1,1,2-, 求行列式*1A A A --+. 解 记A 的特征值为1231,1,2λλλ==-=,则1232A λλλ==-,112A A A *--==-A*111123A A A A A A A A -----+=--+=-+故*1A A A --+的特征值为13,(1,2,3)i i i i μλλ-=-+=,计算得12312,2,2μμμ=-==所以*11232A A A μμμ--+==-7. 设2A A =, 证明A 的特征值只能是0或1. 解 设λ是A 的特征值,则2()ϕ=-A A A 有特征值2()(1)ϕλλλλλ=-=-由于()ϕ=A O ,故其特征值全为零,所以()(1)0ϕλλλ=-=,从而0=λ或1=λ.8. (1)证明一个特征向量只能对应于一个特征值;(2)设21,λλ为矩阵阵A 的两个不同的特征值, 对应的特征向量分别为1ξ和2ξ, 证明2211ξξk k +(0,021≠≠k k )不是A 的特征向量.证 (1)设A 的对应于特征向量α的特征值有1λ和2λ,即12,A A αλααλα==由此推出12()0λλα-=,由于0α≠,因此12λλ=.(2)(反证)假设2211ξξk k +是A 的特征向量,对应的特征值为μ,即()()11221122A k k k k ξξμξξ+=+由222111,ξλξξλξ==A A ,得()11221122111222A k k k A k A k k ξξξξλξλξ+=+=+()1122k k μξξ=+移项()()1112220k k λμξλμξ-+-=因{}12,ξξ线性无关,所以1122()0,()0k k λμλμ-=-=由0,021≠≠k k 得12λλμ==,这与21λλ≠矛盾.5.2 方阵的对角化练习5.21. 证明相似矩阵的性质1~7.性质1 相似关系是一种等价关系. 即具有: (1)自反性:~A A ;(2)对称性:~~A B B A ⇒; (3)传递性:~,~~A B B C A C ⇒. 证(1)由1E AE A -=,得~A A(2)设1P AP B -=,则1111()A PBPP BP ----==,~B A(3)设111122,P AP B P BP C --==,则112112P P AP P C --=,11212()()PP A P P C -=,~A C . 性质2 设B A ~, 又01()mm x a a x a x ϕ=+++ , 则()~()A B ϕϕ; 证 设1P AP B -=,则()112012()m m P A P P a E a A a A a A P ϕ--=++++1121012m m a E a P AP a P A P a P A P ---=++++ ()()2111012()mm a E a P AP a P AP a P AP B ϕ---=++++=性质3 设B A ~, 又A 可逆, 则B 可逆且11~--B A;证 设1P AP B -=,由于B 是可逆矩阵的乘积,所以B 可逆. 且()111PAP B ---=,111P A P B ---=,11~--B A性质4 设B A ~, 则()()A B f E A E B f λλλλ=-=-=;证 见正文.性质5 设B A ~, 则A 与B 的特征值相同; 证 由性质4即得证.性质6 设B A ~, 则B A =;证 由行列式等于所有特征值的乘积以及性质5即得证. 性质7 设B A ~, 则tr()tr()A B =.证 由迹等于所有特征值之和以及性质5即得证. 2. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x A 10100002,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=12yB 已知A 与B 相似,求y x ,. 解 由tr tr A B =和B A =得22122x y y +=+-⎧⎨-=-⎩解和0,1x y ==.3. 设3222-⎡⎤=⎢⎥-⎣⎦A ,(1)求可逆矩阵P 使得1-P AP 为对角矩阵; (2)计算106()f A A E =--A .解(1)易求得A 的特征值为1,2-,对应的特征向量分别为(1,2),(2,1)TT. 令1221P ⎛⎫= ⎪⎝⎭,则11232121121222123P AP D ---⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭(2)1061()()f A P D D E P -=--1061211112121(2)(2)1213⎡⎤-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1211121279640121959216403213---⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭4. 设101121002A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦(1)求可逆矩阵P , 使1P AP -为对角矩阵; (2)计算k A ;(3)设向量0(5,3,3)Tα=, 计算0kA α. 解 (1)按对角化的方法易求得()132110,,011100P ααα⎛⎫ ⎪== ⎪ ⎪⎝⎭,1001101111P -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭和1212Λ-⎛⎫⎪== ⎪ ⎪⎝⎭P AP(2)由1Λ-=P AP 1Λ-⇒=A P P所以1111()()()k k ΛΛΛΛ----==A P P P P P P P P11020011021011110112221100211102kk kk k k k ⎛⎫⎛⎫-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=-=-- ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭(3)(方法1)先按(2)先计算k A ,再计算kA α.k A αT (322,22,32)k k k =⨯++⨯.(方法2)先求α在基231,,ααα下的分解,然后再求αkA . 解α=Px 得1,2,3121===x x x所以α在基底231,,ααα下的分解为23123αααα++=则23123ααααk k k k A A A A ++=22331123αλαλαλk kk ++=23121223αααk k k +⨯+⨯=T (322,22,32)k k k =⨯++⨯5. 已知方阵1114335A x y -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦与对角矩阵相似, 且2=λ是A 的二重特征值.(1)求x 与y 的值.(2)求可逆矩阵P 使AP P 1-为对角矩阵. 解 (1)111111222333000E A x y x y --⎛⎫⎛⎫ ⎪ ⎪-=---→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭(2)12,2r E A x y -=⇒==-(2)求另一个特征值3λ2332426A λλ==⨯⇒=解()20E A x -=得基础解系(见下面P 的前两列),解()60E A x -=得基础解系(见下面P 的第三列).111102013P ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,1226P AP -⎛⎫⎪= ⎪ ⎪⎝⎭6. 设矩阵3221423A kk -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦(1)确定k 的值使A 可对角化.(2)当A 可对角化时, 求可逆矩阵P , 使AP P 1-为对角矩阵. 解 (1)求A 的特征值232211)(1)423E A k k λλλλλλ---=+-=+--+(-1231,1λλλ==-=A 可对角化()10r E A k ⇔--=⇔=(2)方法同前111200021P ⎛⎫⎪=- ⎪ ⎪⎝⎭, 1111P AP --⎛⎫ ⎪=- ⎪ ⎪⎝⎭习题五1. 设23A A E O -+=,证明A 的特征值只能是1或2. 证 设λ是A 的特征值,则2()3A A E ϕ=-+A 有特征值2()31(1)(2)ϕλλλλλ=-+=--由于()ϕ=A O ,故()ϕA 的特征值全为零,所以()(1)(2)0ϕλλλ=--=从而1λ=或2λ=.2. 设n 阶矩阵A 的各行元素之和都等于1,证明1λ=矩阵A 的特征值. 提求:(1,1,,1)Tα= ,A αα=. 证 设(1,1,,1)T α= ,A αα=.3. 证明n ()2n ≥阶Householder 矩阵2T H E uu =-(其中,1n T u R u u ∈=)有1n -个特征值1, 有一个特征值1-.提示:方程组0Tu x =有1n -个线性无关的解向量记为(1,2,,1)i i n α=- , 直接验证i i H αα=. 又Hu u =-.证 方程组0Tu x =有1n -个线性无关的解向量记为(1,2,,1)i i n α=- ,即0,(1,2,,1)T i u i n α==-于是()()22,(1,2,,1)T T i i i i i H E uu u u i n ααααα=-=-==-上式说明H 有1n -个特征值1. 又()()22T T Hu E uu u u u u u u =-=-=-上式说明H 有一个特征值1-. 综上,H 的特征值为111,1n n λλλ-==== .4. 设A 是n m ⨯矩阵, B 是m n ⨯矩阵, 证明AB 与BA 有相同的非零特征值. 特别地,如果m n =, 则AB 与BA 的特征值完全相同.证法1 由m n m n λλλ--=-E AB E BA (设m n ≥)立即得证.证法2 设λ是AB 的一个非零特征值,对应的特征向量为α,即λαα=)(AB用B 左乘上式得)())((αλαB B BA =只要再证明0≠αB ,上式说明λ也是BA 的特征值. 如果0=αB ,将其代入式λαα=)(AB 得左边()==AB α0,右边λ=≠α0(0,λ≠≠α0)矛盾. 因此0≠αB .同理,BA 的非零特征值也是AB 的特征值.5. 设A 与B 都是n 阶矩阵,()λϕ是B 的特征多项式,证明()A ϕ可逆的充要条件是矩阵A 和B 没有公共的特征值.证 设n λλλ,,,21 为B 的特征值,则()()()()n λλλλλλλϕ---= 21从而()()()12()n A A E A E A E ϕλλλ=---于是12()n A A E A E A E ϕλλλ=---因此()0||≠A ϕ⇔0||≠-A E i λ(n i ,,2,1 =)⇔n λλλ,,,21 不是A 的特征值⇔A 与B 没有公共的特征值.6. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=11322002a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b B 21 已知A 与B 相似. (1) 求b a ,;(2) 求可逆矩阵P ,使B AP P =-1.提示:A 与B 有相同的特征多项式,比较两个特征多项式的系数. 解 (1)分别求得A 与B 的特征多项式32()(tr )(4)A f E A A a A λλλλλ=-=-+---B E f B -=λλ)(32(tr )(2)B b B λλλ=-+--由)()(λλB A f f =得tr tr A B =,B A =,42a b --=-即2=-b a ,42a b --=-解得2,0-==b a(2) 由于A 与B 相似,所以A 的特征值与B 的特征值相同,就是B 的对角元2,2,1321-==-=λλλ再求出对应于这些特征值的特征向量分别为T T T )1,0,1(,)1,1,0(,)1,2,0(321-==-=ααα令[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==111012100,,321αααP则有B AP P =-1.7. 设A 是3阶方阵,x 是3维列向量,矩阵2,,P x Ax A x ⎡⎤=⎣⎦可逆,且x A Ax x A 2323-=求矩阵1B P AP -=.解()()2322,,,,32AP Ax A x A x Ax A x Ax A x ==-()2000000,,103103012012x Ax A x P ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭1000103012P AP B -⎛⎫ ⎪== ⎪ ⎪-⎝⎭8. 设A 是3阶矩阵,12,αα为A 的分别属于特征值1,1-的特征向量,向量3α满足323A ααα=+.(1)证明123,,ααα线性无关. (2)令[]123,,P ααα=,求1P AP -. 解(1)设1122330k k k ααα++=两边左乘A()11223230k k k αααα-+++=上面两式相减113220k k αα-=12,αα线性无关,130k k ==,代入前面式子20k =. 说明123,,ααα线性无关.(2)()()1231223,,,,AP A A A ααααααα==-+()123100100,,011011001001P ααα--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1100011001P AP --⎛⎫⎪= ⎪ ⎪⎝⎭9. 设212122221A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求1098()65A A A A ϕ=-+解 A 的特征值为1231,1,5λλλ=-==,对应的特征向量分别为1231111,1,1201ααα--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦令123111[,,]111201P ααα--⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦,则111213306222P ---⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦1115P AP D --⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦从而()109810981()6565A A A A P D D D P ϕ-=-+=-+11222402240448P P --⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦10. 设,(2),0,0nR n αβαβ∈≥≠≠, TA αβ=. 证明当0Tβα≠时, A 可对角化;当0T βα=时, A 不可对角化.证 设0Tβα≠. 由ααβααβα)()(T T A ==知A 有特征值01≠=αβλT,对应的特征向量αξ=1.再设齐次方程组0=x T β的1-n 个线性无关解为n ξξ,,2 ,则T T ()()0i i i i ====A ξαβξαβξξ0说明A 有特征值02===n λλ ,对应的特征向量为n ξξ,,2 .综上,A 的n 个特征值为01≠=αβλT,02===n λλ ,对应的特征向量为n ξξξ,,,21 (它们线性无关). 因此,A 可对角化. 相应的对角矩阵为T diag(0,,0,)βα设0Tβα=. 由2()()()T T T T A αβαβαβαβ===OA 的特征值全是零(n 重). 但属于0λ=的线性无关的特征向量个数为()()1T n r A n r n n αβ-=-=-<所以A 不可对角化.11.求解微分方程组11212122d 51,(0)11d 62d 11,(0)0d 44x x x x t x x x x t⎧=--=⎪⎪⎨⎪=--=⎪⎩ 解 写成矩阵形式5/61/2,1/41/4dxAx A dt --⎛⎫== ⎪--⎝⎭ 1321,131/12P P AP D --⎛⎫⎛⎫=== ⎪ ⎪--⎝⎭⎝⎭1y P x -=,dyDy dt =,3(0)1y ⎛⎫= ⎪⎝⎭1121122,t ty c e y c e--==由初值定出常数123,1c c ==1233213t t e x Py e --⎛⎫⎛⎫⎪== ⎪ ⎪-⎝⎭⎝⎭/121/1229e 2e 3e 3e t t t t x x ----⎧=+⎨=-⎩12.在某国,每年有比例为p 的农村居民移居城镇,有比例为q 的城镇居民移居农村. 假设该国总人口不变,且上述人口迁移的规律也不变. 把n 年后的农村人口和城镇人口占总人口的比例依次记为n x 和n y (1n n x y +=).(1)求关系式11n n n n x x A y y ++⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦中的矩阵A ;(2)设目前农村人口与城镇人口相等,即000.50.5x y ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,求n n x y ⎡⎤⎢⎥⎣⎦. 解 (1)11pq A p q -⎡⎤=⎢⎥-⎣⎦(2)由()()[]1(1)(1)1pqE A p q pqλλλλλ-+--==------+得A 的特征值为121,1p q r λλ==--=再求得对应的特征向量为121,1q p αα-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦令11q P p -⎡⎤=⎢⎥⎣⎦,则1121P AP r λλ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦ 于是11A P P r -⎡⎤=⎢⎥⎣⎦11111111n n n q A P P r p r p q p q --⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦⎣⎦⎣⎦1nn nn q pr q qr p q p pr p qr ⎡⎤+-=⎢⎥+-+⎣⎦000.510.5n n n n n n n x x q pr q qr A y y p q p prp qr ⎡⎤⎡⎤⎡⎤+-⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+-+⎣⎦⎣⎦⎣⎦⎣⎦2()12()2()n n q p q r p q p q p r ⎡⎤+-=⎢⎥++-⎣⎦。
第五章 矩阵的特征值和特征向量习题一 矩阵的特征值和特征向量一、填空题1.A 为n 阶方阵,Ax =0有非零解,则A 必有一特征值为________.2.若l 0为A 的特征值,则A k(k 为正整数)有特征值为________.3.若a 为A 的特征向量,则________为P -1AP 的特征向量. 4.n 阶矩阵A 与_____________有相同的特征值. 二、计算题1.设A =⎪⎪⎪⎭⎫ ⎝⎛-----122212221 (1) 试求矩阵A 的特征值;(2) 利用(1)的结果,求矩阵E +A -1的特征值,其中E 是三阶单位矩阵.2.求矩阵A =⎪⎪⎪⎭⎫ ⎝⎛----632223221的实特征值及对应的特征向量.三、证明题1.设A 满足A 2-3A +2E =0,证明其特征值只能取值1或2.2.若n 阶矩阵A ,存在自然数m ,使得0=mA ,则A 的特征值是0.3.如果A 可逆,λ是A 的特征值,则1-λ是1-A 的特征值.4.证明:)()(),()()(A kTr kA Tr B Tr A Tr B A Tr =+=+.习题二相似矩阵和矩阵可对角化一、填空题1.若A~kE,则A=________.2.若n阶方阵A与B相似,且A2=A,则B2=________..3.已知A=⎪⎪⎪⎭⎫⎝⎛----533242111,B=⎪⎪⎪⎭⎫⎝⎛22λ且A~B,则l=________.4.A可对角化当且仅当.5.n阶矩阵A有n个互不相同的特征值是A可对角化的___________.6.判别矩阵A可对角化的方法是.二、 1.设A=[a ij]为三角矩阵,且对角线元素互不相等.试指出A是否有与它相似的对角矩阵,并说明理由.2.矩阵A=⎪⎪⎪⎭⎫⎝⎛--3142112能否对角化?若能,求可逆矩阵P,使P-1AP为对角矩阵.三、判别下列矩阵是否可对角化⎪⎪⎪⎭⎫ ⎝⎛=001010100A ⎪⎪⎪⎭⎫ ⎝⎛---=031302120B四、矩阵A =⎪⎪⎪⎭⎫ ⎝⎛-11322002x 和B =⎪⎪⎪⎭⎫ ⎝⎛-y 00020001是相似矩阵. 求x 与y ;习题三 实对称矩阵的对角化 一、求正交矩阵T ,使AT T 1-为对角矩阵.① ⎪⎪⎪⎭⎫ ⎝⎛----=342432220A ②⎪⎪⎪⎭⎫ ⎝⎛----=120222023B③⎪⎪⎪⎪⎪⎭⎫⎝⎛----=411141141114C二、设实对称矩阵A=⎪⎪⎪⎭⎫⎝⎛-124222421,求可逆矩阵Q,使Q-1AQ为对角矩阵.三、已知三阶方阵A的特征值为1,-1,2,设矩阵B=A3-5A2试求:(1) 矩阵B的特征值及与其相似的对角阵;(2) 行列式|B|和|A-5E|.四、设A=⎪⎪⎪⎭⎫⎝⎛2121313,求(1) A的所有特征值与特征向量;(2) 判断A能否对角化,若能对角化,则求出可逆矩阵P,使A化为对角形矩阵;(3) 计算A m.综合复习题一、空题与选择题1.矩阵________20222002⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛与.2.设),(,F M T A n ∈其中T 可逆,则k AT T k _(__________)(1=-为非负整数), ][)(_,__________)(1x F x f AT T f ∈=- .(][x F 表示数域F 的全体多项式,)(F M n 表示全体n 阶矩阵) 3.相似矩阵有________秩,有相同秩的矩阵_________相似.4.设⎪⎪⎪⎭⎫ ⎝⎛=411205123A 的三个特征值为321,,λλλ则 .________.____________321321==++λλλλλλ 5.设)(x f 是方阵A 的特征多项式,则_______;)(=A f若B A ~,则)(B f = _________.6.下面四个命题中原命题和逆命题都正确的是( ) (A )相似矩阵有相同的特征多项式;(B )设σ是数域F 上向量空间的一个线性变换.A 是σ关于V 的一个基的矩阵,如果λ是σ的特征根,那么λ是A 的特征根;(C )n 维向量空间的一个线性变换关于V 的两个基的矩阵是相似矩阵; (D )设)(F M A n ∈,若)(x f A 在数域F 内有单根,则A 可对角化. 7.下列三个矩阵中⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=a a a A a a a A a a a A 001001,001000,000000321 ① 21~A A ; ② 31~A A ; ③ 32~A A ;④ 321,,A A A 中两两都不相似.(A )① 正确; (B) ②正确; (C) ③ 正确 ; (D) ④ 正确. 8.设A 是n 阶矩阵,那么① 在复数域C 上A 一定与某一对角矩阵相似; ② 在C 上A 一定与某一上三角矩阵相似;③ 在C 上A 一定与某一下三角矩阵相似.(A )① 正确; (B) ②,③正确; (C) ①, ② 正确 ; (D) ①,②,③正确. 9.下列矩阵中,不可对角化的仅是(A)⎪⎪⎭⎫ ⎝⎛--0280; (B) ⎪⎪⎭⎫ ⎝⎛1111; (C) ⎪⎪⎭⎫ ⎝⎛---1101; (D)⎪⎪⎭⎫ ⎝⎛-3210. 10.设,0),(,,≠∈T F M T B A n 且B A ,在F 上均可对角化,则① B A + 可对角化; ②AB 可对角化; ③AT T1-可对角化;④ T B T m1-可对角化. *N m ∈(*N 表示全体正整数) (A ),②正确; ( B) ③,④正确; (C) ①,②,③,④正确 ; (D) ① 正确. 二、计算与证明题1.求下列矩阵的全部特征值与特征向量(1)⎪⎪⎪⎭⎫ ⎝⎛-=200210311A (2)⎪⎪⎪⎭⎫ ⎝⎛=624232426A (3)⎪⎪⎪⎭⎫ ⎝⎛=633312321A (4)⎪⎪⎪⎭⎫ ⎝⎛--=201034011A2.找出1题中可对角化的矩阵A ,并求可逆矩阵X 使AX X 1-为对角矩阵.3.求正交矩阵T 使AT T1-为对角矩阵(1) ⎪⎪⎪⎭⎫ ⎝⎛----=542452222A (2)⎪⎪⎪⎭⎫⎝⎛----=342432220A (3) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=1333313333133331A (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=1101111001111011A 4.试证:矩阵A 可逆的充分必要条件是:它的特征值都不等于零.5.设n 阶可逆矩阵A 的特征值是n λλλ,,,21 ,证明:1-A 的特征值为11211,,,---n λλλ . 6.如果任一个n 维非零向量都是n 阶矩阵A 的特征向量,试证明A 是一个数量矩阵.7.A 是一个n 阶实对称矩阵,试证:如果0λ是A 的k 重特征值,则矩阵A E -0λ的秩等于k n -. 自测题一、填空题1.若A 为n 阶矩阵,0=AX 有非零解,则A 必有一特征值为__________. 2.若0λ是A 特征值,则kA (k 为正整数)有特征值为____________.3.若α为A 的特征向量,则AP P 1-的特征向量为_____________.4.若n 阶矩阵A 有n 个属于特征值λ的线性无关的特征向量,则A =__________.5.已知三阶矩阵A 的三个特征值为1,2,3,则1_____;-=A A 的特征值为___________.6.n 阶零矩阵的全部特征向量是___________.7.若kE A ~,则=A ______________.8.若n 阶矩阵A 与B 相似,且A A =2,则=2B ___________.9.已知⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----=20002000,533242111λB A 且B A ~,则._______=λ10.三阶矩阵A 的三个互异特征值为321,,λλλ,它们对应的特征列向量分别为,,,321ααα则矩阵(,,,321ααα)的秩为__________.二、选择题1.设l =2是非奇异矩阵A 的特征值,则矩阵12)31(-A 有一特征值等于( ).(a ) 34 (b ) 43 (c ) 21 (d ) 412.若n 阶矩阵A 的任意一行中n 个元素的和都是a ,则A 的一个特征值为( ).(a ) a (b ) –a (c ) 0 (d ) a -13.设A 是n 阶矩阵,l 1,l 2是A 的特征值,a 1,a 2是A 的分别对应于l 1,l 2的特征向量,则( ).(a ) l 1=l 2时,a 1,a 2一定成比例 (b ) l 1=l 2时,a 1,a 2一定不成比例 (c ) l 1≠l 2时,a 1,a 2一定成比例 (d ) l 1≠l 2时,a 1,a 2一定不成比例4.设n 阶矩阵A 与B 相似,则( )(a ) lE -A =lE -B (b ) |lE -A |=|lE -B |(c ) |lE -A |~lE -B (d ) A 与B 都相似于一个对角矩阵D5.n 阶方阵A 具有n 个特征值是A 与对角矩阵相似的( )(a ) 充分必要条件 (b ) 充分而非必要条件 (c ) 必要而非充分条件 (d ) 既非充分也非必要条件6.矩阵A =⎪⎪⎪⎭⎫⎝⎛300030000与下列哪个矩阵相似( ) (a ) ⎪⎪⎪⎭⎫ ⎝⎛000030300 (b ) ⎪⎪⎪⎭⎫ ⎝⎛300130010 (c ) ⎪⎪⎪⎭⎫ ⎝⎛300000003 (d ) ⎪⎪⎪⎭⎫ ⎝⎛030300010 7.n 阶矩阵与对角矩阵相似的充分必要条件是( ).(a ) A 有n 个不全相同的特征值 (b ) A T有n 个不全相同的特征值 (c ) A 有n 个不相同的特征值 (d ) A 有n 个线性无关的特征向量8.n 阶方阵A 与某对角矩阵相似,则( ).(a ) 方阵A 的秩等于n (b ) 方阵A 有n 个不同的特征值(c ) 方阵A 一定是对称矩阵 (d ) 方阵A 有n 个线性无关的特征向量9.l 1,l 2是n 阶矩阵A 的特征值,X 1,X 2是相应于l 1,l 2的特征向量,对于不全为零的常数c 1,c 2:( )(a ) 当l 1≠l 2时,则c 1X 1+ c 2X 2必为A 特征向量(b ) 当l 1≠l 2时,则X 1,X 2是A 相应于l 1,l 2唯一的两个线性无关的特征向量(c ) 当l 1=l 2时,则c 1X 1+ c 2X 2必为A 特征向量(d ) 当l 1=l 2时,则X 1,X 2必为A 相应于l 1,l 2的线性无关的特征向量 10.设n 阶矩阵A 为满秩矩阵,则A ( )(a ) 必有n 个线性无关的特征值 (b ) 必有n 个线性无关的特征向量 (c ) 必相似于一满秩的对角矩阵 (d ) 特征值必不为零 三、计算题1.设⎪⎪⎪⎭⎫ ⎝⎛-----=122212221A (1) 试求矩阵A 的特征值;(2)利用(1)的结果,求1-+A E 的特征值.2.求矩阵⎪⎪⎪⎭⎫ ⎝⎛----=632223221A 的特征值及特征向量. 3.设实对称矩阵⎪⎪⎪⎭⎫⎝⎛-=124222421A ,求可逆矩阵Q 使AQ Q 1-为对角矩阵. 4.设A 为n 阶实矩阵,满足0,<=A E AA T ,试求A 的伴随矩阵*A 的一个特征值.5.已知三阶矩阵A 的特征值为1,1-,2,矩阵235A A B -=,试求 (1) 矩阵B 的特征值和与B 相似的对角矩阵;(2) 行列式B 和E A 5-.6.设⎪⎪⎪⎭⎫ ⎝⎛=201021313A ,求 (1)A 的所有特征值与特征向量;(2)判别A 能否对角化,若能对角化,则求出可逆矩阵P ,使AP P 1-为对角矩阵; (3)计算mA .四、证明题1.若n 阶矩阵A 满足A A =2,则A 的特征值仅能是0或1.2.若n 阶矩阵A 满足I A =2,则A 的特征值仅能是1或1-.3.设A 满足0232=+-E A A ,证明:A 的特征值只能是1或2.4.设A 是实数域上奇数阶方阵,且0>A ,证明:A 有正特征值.5.设][)(),(x F x f F M A n ∈∈,A 在F 上可对角化,证明:)(A f 在F 上可对角化.二次型习题一 二次型及表示方法一、填空题1.二次型f(x1,x2,x3,x4)=x12+2x22+3x32+4x1x2+2x2x3________.2. 矩阵A =⎪⎪⎪⎭⎫ ⎝⎛--314122421对应的二次型是________. 3.),(21x x q =⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-21211222)(x x x x 的矩阵为__________. 4.二次型),,,(21n x x x q 经过__________的线性替换总可以化为标准形2222211nn y c y c y c +++ .5.n 阶对称矩阵同时实行行和列的初等变换总可化为_______矩阵.二、写出下列各二次型的矩阵1.23322231212138232x x x x x x x x x ++-+-2.243231212x x x x x x x ++-三、写出下列对称矩阵所对应的二次型1.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------=012320113113221233121A2.⎪⎪⎪⎭⎫ ⎝⎛=011121110B四、对于对称矩阵A 与B ,求出可逆矩阵C ,使BAC C T=⎪⎪⎪⎭⎫ ⎝⎛=011121110A ⎪⎪⎪⎭⎫ ⎝⎛=011101112B习题二 化二次型为标准型一、用配方法化下列二次型为标准型.1.31212322214245x x x x x x x -+-+2. 32312164x x x x x x +-二、用初等变化的方法求一奇异矩阵C ,使AC C T为对角矩阵.⎪⎪⎪⎭⎫ ⎝⎛=310102021A三、用初等变换法将二次型f (x 1,x 2,x 3,x 4)=x 12+x 22+x 32+x 42+2x 1x 2+2x 2x 3+2x 3x 4化为规范形,并求所作的非退化变换矩阵,且用矩阵验算结果.四、求一正交矩阵P ,使AP P T为对角矩阵.⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=1132112332112311A四、试用配方法将二次型f (x 1,x 2,x 3)=x 12+x 22+3x 32+4x 1x 2+2x 1x 3+2x 2x 3化为标准形(平方和)和规范形.习题三 正定二次型一、填空题1.实二次型f (x 1,x 2,x 3)=x 12-x 22+3x 32的秩为________,正惯性指数为________,负惯性指数为________.2.设n 阶实对称矩阵A 的特征值分别为1,2,…,n ,则当t ________时,tE -A 为正定矩阵.3. 若n 阶实对称矩阵A 的秩为r (<n )且A 2=A ,则是________矩阵(正定、半正定,…),正惯性指数为________.4.____二次型),,,(21n x x x q 成为正定的,如果对于任意一组),,,(21n c c c ______ 都有),,,(21n c c c q _________.5. 5. 对称矩阵A 正定当且仅当A 与_________矩阵合同.6.实对称矩阵A 正定当且仅当A 的一切顺序主子式__________或者A 的一切主子式 ______________.7. 7. 对称矩阵的特征根都是_____________. 二、计算题:1.求α的值,使二次型为正定.(1)3231212322214225x x x x x ax x x x +-+++(2)3231212322212245x x x x x x ax x x --+++2.设矩阵A =⎪⎪⎪⎭⎫⎝⎛101020101,矩阵B =(kE +A )2,其中k 为实数,E 为单位矩阵.求对角矩阵L ,使B 与L 相似,并求k 为何值时,B 为正定矩阵.(1) (1)3.设A 1~A 1和B 1~B 2.试证⎪⎪⎭⎫ ⎝⎛11B A ~⎪⎪⎭⎫⎝⎛22B A判断三元二次型f = x 12+5x 22+x 32+4x 1x 2-4x 2x 3的正定性.三、证明题:1.A 是n 阶实对称矩阵,AB +B TA 是正定矩阵,证明A 可逆.2.设A 是n 阶正定矩阵,证明|A +2E |>2n.3.令A =⎪⎪⎭⎫ ⎝⎛21A OO A , B =⎪⎪⎭⎫⎝⎛21B O O B ,如果1A 与1B 合同,2A 与2B 合同,则A 与B 合同.4.证明:实二次型),,,(21n x x x q 负定的充分必要条件是它的矩阵A 的奇数阶顺序主子式全小于零,偶数阶顺序主子式全大于零.自测题一、填空题1.二次型322123222143212432,,,(x x x x x x x x x x x f ++++=)_______. 2.矩阵⎪⎪⎪⎭⎫ ⎝⎛--=314122421A 对应的二次型是_____________________. 3.二次型),,(321x x x f =31212322212224x x x tx x x x ++++是正定的,那么t 应满足不等式_________.4.二次型),,(321x x x f =2322213x x x +-的秩为__________.正惯性指数为__________,负惯性指数为__________.5.设n 阶实对称矩阵A 的特征值分别为n ,,2,1 ,则当t =______时,A tE 为正定矩阵.6.若n 阶实对称矩阵A 的秩为)(n r <且A A =2,则是_______矩阵,正惯性指数为___________.7.二次型的规范形由_____________唯一确定;复二次型的规范形由____唯一确定.8.实对称矩阵A 正定的充分必要条件是它的特征值___________.9.若A 是实对称矩阵且可逆,则将Ax x f T =化为y A y f T 1-= 的线性变换为_____________.10.设A 为n 阶实对称矩阵,那么TAA 是_______(对称、非对称、对角).二、选择题i. i. 1.设A ,B 均为n 阶方阵,x =(x 1,x 2,…,x n )T ,且X T AX = X TBX ,当( )时,A =B .(a ) 秩(A )=秩(B ) (b ) A T=A (c ) B T=B (d ) A T=A 且B T=Bii.ii.2.实二次型f (x 1,x 2,x 3,x 4)= X T AX 为正定的充分必要条件是( ).(a ) |A |>0 (b ) 存在n 阶可逆矩阵C ,使A =C TC(c ) 负惯性指数为零 (d ) 对于某一x =(x 1,x 2,…,x n )T≠0,有X TAX >0.iii.iii.3.实二次型f (x 1,x 2,x 3,x 4)= x 12+2x 1x 2+tx 22+3x 32,当t =( )时,其秩为2.(a ) 0 (b ) 1 (c ) 2 (d ) 3iv.iv.4.设A ,B 为同阶可逆矩阵,则( )(a ) AB =BA(b ) 存在可逆矩阵P ,使P -1AP =B (c ) 存在可逆矩阵C ,使C TAC =B (d ) 存在可逆矩阵P 和Q ,使PAQ =Bv. v.5.设A 为正定矩阵,则下列矩阵不一定是正定的是( )(a ) A T (b )A -1(c ) A +E (d ) A -Evi.vi. 6.设A 是一个三阶实矩阵,如果对任一三维列向量X ,都有X T AX =0,那么( ).(a ) |A |=0 (b ) |A |>0 (c ) |A |<0 (d ) 以上都不是vii. vii. 7.n 阶实对称矩阵A 为正定矩阵的充分必要条件是( ).(a ) 所有k 阶子式为正(k =1,2,…,n ) (b ) A 的所有特征值非负(c ) A -1为正定矩阵 (d ) 秩(A )=nviii. viii. 8.设A ,B 都是n 阶实对称矩阵,且都正定,那么AB 是( )(a ) 实对称矩阵 (b ) 正定矩阵 (c ) 可逆矩阵 (d ) 正交矩阵ix.ix.9.下列矩阵为正定的是( ).(a ) ⎪⎪⎪⎭⎫ ⎝⎛200032021 (b ) ⎪⎪⎪⎭⎫ ⎝⎛200042021 (c ) ⎪⎪⎪⎭⎫ ⎝⎛---200052021 (d ) ⎪⎪⎪⎭⎫ ⎝⎛520210002 x. x. 10.设A 、B 是n 阶正定矩阵,则( )是正定矩阵.(a) A*+B* (b) A*-B* (c) A*B* (d) k1A*+k2B*三、对二次型32212221442x x x x x x f --+=分别作下列两个非退化线性替换.(1) ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛321321*********y y y x x x(2)⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛32132121001101121y y y x x x四、试用配方法将二次型3231212322213212243),,(x x x x x x x x x x x x f +++++=化为标准形(平方和)和规范形.五、用初等变换法将二次型43322142322214321222),,,(x x x x x x x x x x x x x x f -+++++= 化为标准形,求所作的非退化矩阵,并用矩阵验算结果.六、已知二次型)0(2332),,(32232221321>+++==a x ax x x x x x x f ,通过正交变换化成标准形23222152y y y f ++=,求参数a 及所用正交变换矩阵.七、设矩阵⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,矩阵2)(A kE B +=,其中k 为实数,E 为单位矩阵,求对角矩阵A ,使B 与A 相似,并求k 为何值时,B 为正定矩阵.八、设1A 与2A 相似,1B 与2B 相似.试证⎪⎪⎭⎫⎝⎛11B A 与⎪⎪⎭⎫⎝⎛22B A .九、判断三元二次型3221232221445x x x x x x x f -+++=的正定性. 十、A 是n 阶实对称矩阵,A B AB T+是正定矩阵,证明:A 可逆.十一、设A 是n 阶正定矩阵,证明:nE A 22>+.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
练习五 矩阵的特征值与特征向量
一、选择题
1.设A 为n 阶可逆矩阵,λ是A 的一个特征值,则A 的伴随矩阵A *的特征值之一是( )。
(A )λ-1|A|n ; (B )λ-1|A| ; (C )λ|A|; (D )λ|A|n
2.设λ=2是非奇异矩阵A 的一个特征值,则矩阵1231-⎪⎭
⎫ ⎝⎛A 有一个特征值等于( )。
(A )34; (B )43; (C )21; (D )4
1 3.设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵,已知n 维列向量α是A 的属于特征值λ的特征向量,则矩阵(P -1AP )T 属于特征值λ的特征向量是( )。
(A )P -1α; (B )P T α; (C )P α; (D )(P -1)T α;
4.n 阶矩阵A 具有n 个不同的特征值是A 与对角矩阵相似的( )。
(A )充分必要条件;
(B )必要而非充分条件; (C )充分而非必要条件; (D )既非充分也非必要条件
5.设A ,B 为n 阶矩阵,且A 与B 相似,E 为n 阶单位矩阵,则有( )。
(A )λE-A=λE-B ;
(B )A 与B 有相同的特征值和特征向量;
(C )A 与B 都相似于同一个对角矩阵;
(D )对任意常数t ,tE-A 与tE-B 相似。
6.设矩阵⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=001010100B ,已知A ~B ,则秩(A-2E )与秩(A-E )之和等于( )。
(A )2;
(B )3; (C )4; (D )5
二、填空题: 1.矩阵⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡=1111111111111111A 的非零特征值是___________。
2.设A 为n 阶矩阵,|A|≠0,A *为A 的伴随矩阵,E 为n 阶单位矩阵,若A 有特征值λ,则(A *)2+E 必有特征值___________。
3.设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________。
4.矩阵⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-----222222220的非零特征值是_________________。
5.已知三阶可逆方阵A 的特征值是1,1,-5,则E+A -1的特征值是
____________________。
(其中E 为三阶单位矩阵)
三、设矩阵⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---=a c b c a A 01351,且|A|=-1,又A 的伴随矩阵A *有一个特征值λ0,属于λ0的一个特征向量为T )1,1,1(--=α,求c b a ,,和λ0的值。
四、设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=11b α是矩阵A *的一个特征向量,λ是α对应的特征值,其中A *是A 的伴随矩阵,试求,b a ,和λ的值。
五、设⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=0011100y x A 有三个线性无关的特征向量,求y x 和应满足的条件。
六、设三阶矩阵A 满足)3,2,1(==i i A i i αα,其中列向量T )2,2,1(1=α,T )1,2,2(2-=α,T )2,1,2(3--=α,试求矩阵A 。
七、已知T )1,1,1(-=ξ是矩阵⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---=2135212b a A 的一个特征向量。
(1)试确定参数b a ,及特征向量ξ所对应的特征值;
(2)问A 能否相似于对角矩阵?并说明理由。
八、设矩阵A 与B 相似,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=a A 33242111,⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=b B 00020002 (1)求b a ,的值;
(2)求可逆矩阵P ,使P -1AP=B
九、设矩阵⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---=3241223k k A ,问k 为何值时,存在可逆矩阵P ,使得P -1AP 为对角矩阵?并求出P 和相应的对角矩阵。
十、设矩阵⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---=5334111y x A ,已知A 有3个线性无关的特征向量,λ=2是A 的二重特征值,试求可逆矩阵P ,使得P -1AP 为对角形矩阵。
十一、若矩阵⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角矩阵∧,试确定常数a 的值,并求可逆矩阵P ,使P -1AP=∧。
十二、设三阶实对称矩阵A 的特征值是1,2,3;矩阵A 的属于特征值1,2的特征向量分别是T )1,1,1(1--=α,T
)1,2,1(2--=α。
(1)求A 的属于特征值3的特征向量3α;
(2)求矩阵A 十三、设矩阵⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=111111a a a A ,T )2,1,1(-=β,已知线性方程组β=AX 有解但不唯一。
试求(1)a 的值;
(2)正交矩阵Q ,使Q T AQ 为对角矩阵。
十四、设实对称矩阵⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--=a a a A 111111,求可逆矩阵P ,使P -1AP 为对角形矩阵,并计算行列式|A-E|的值。
《线性代数》练习五参考答案
一、1.(B )
2.(B )
3.(B )
4.(C )
5.(D )
6.(C ) 二、1. 4; 2. 1||2+⎪⎭⎫ ⎝⎛λA ; 3. n,0,0,…,0(n-1个);4. 4; 5. 2,2,54 三、1,2,3,20==-==λc b a
四、,21,2-===b b a 或当4,2;11=-===λλ时当时b b 五、0=+y x 六、⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢
⎢⎣⎡----=23232
32350320
37A 七、(1)1,0,30-==-=λb a ;(2)A 不能相似对角化。
八、(1)6,5==b a (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=310201111P 九、0=k ;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=101120011P ;∧=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111 十、2,2-==y x ;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=310201111P ;=-AP P 1∧=⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡622 十一、0=a ;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=010202101P ;=-AP P 1∧=⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-266 十二、(1)T k )1,0,1(3=α,(k 为非零常数);(2)⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--=13252102521361A 十三、(1)2-=a ;
(2)⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡--=6131216231061312
1Q 十四、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110101111P )3(||2-=-a a E A。