高考物理备考:电磁感应中的“微元法”
- 格式:docx
- 大小:216.99 KB
- 文档页数:14
高考物理物理解题方法:微元法压轴题知识归纳总结附答案一、高中物理解题方法:微元法1.如图所示,某个力F=10 N作用在半径为R=1 m的转盘的边缘上,力F的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力F做的总功为()A.0 B.20π J C.10 J D.10π J【答案】B【解析】本题中力F的大小不变,但方向时刻都在变化,属于变力做功问题,可以考虑把圆周分割为很多的小段来研究.当各小段的弧长足够小时,可以认为力的方向与弧长代表的位移方向一致,故所求的总功为W=F·Δs1+F·Δs2+F·Δs3+…=F(Δs1+Δs2+Δs3+…)=F·2πR=20πJ,选项B符合题意.故答案为B.【点睛】本题应注意,力虽然是变力,但是由于力一直与速度方向相同,故可以直接由W=FL求出.2.超强台风“利奇马”在2019年8月10日凌晨在浙江省温岭市沿海登陆,登陆时中心附近最大风力16级,对固定建筑物破坏程度非常大。
假设某一建筑物垂直风速方向的受力面积为s,风速大小为v,空气吹到建筑物上后速度瞬间减为零,空气密度为ρ,则风力F 与风速大小v关系式为( )A.F =ρsv B.F =ρsv2C.F =ρsv3D.F=12ρsv2【答案】B【解析】【分析】【详解】设t时间内吹到建筑物上的空气质量为m,则有:m=ρsvt根据动量定理有:-Ft=0-mv=0-ρsv2t 得:F=ρsv2 A.F =ρsv,与结论不相符,选项A错误;B.F =ρsv2,与结论相符,选项B正确;C.F =ρsv3,与结论不相符,选项C错误;D .F =12ρsv 2,与结论不相符,选项D 错误; 故选B 。
3.2019年8月11日超强台风“利奇马”登陆青岛,导致部分高层建筑顶部的广告牌损毁。
台风“利奇马”登陆时的最大风力为11级,最大风速为30m/s 。
某高层建筑顶部广告牌的尺寸为:高5m 、宽20m ,空气密度31.2kg/m ρ=,空气吹到广告牌上后速度瞬间减为0,则该广告牌受到的最大风力约为( ) A .33.610N ⨯ B .51.110N ⨯C .41.010N ⨯D .49.010N ⨯【答案】B 【解析】 【分析】 【详解】 广告牌的面积S =5×20m 2=100m 2设t 时间内吹到广告牌上的空气质量为m ,则有m =ρSvt根据动量定理有-Ft =0-mv =0-ρSv 2t得251.110N F Sv ρ≈⨯=故选B 。
电磁感应中的“微元法”和“牛顿第四定律”江苏省特级教师 江苏省丰县中学 戴儒京所谓:“微元法”所谓“微元法”,又叫“微小变量法”,是解物理题的一种方法。
1.什么情况下用微元法解题?在变力作用下做变变速运动(非匀变速运动)时,可考虑用微元法解题。
2. 关于微元法。
在时间t ∆很短或位移x ∆很小时,非匀变速运动可以看作匀变速运动,运动图象中的梯形可以看作矩形,所以x t v ∆=∆,s x l t lv ∆=∆=∆。
微元法体现了微分思想。
3. 关于求和∑。
许多小的梯形加起来为大的梯形,即∑∆=∆S s ,(注意:前面的s 为小写,后面的S 为大写),并且0v v v -=∆∑,当末速度0=v 时,有∑=∆0v v ,或初速度00=v 时,有∑=∆v v ,这个求和的方法体现了积分思想。
4. 无论物理规律用牛顿定律,还是动量定理或动能定理,都可以用微元法. 如果既可以用动量定理也可以用动能定理解。
对于使用老教科书的地区,这两种解法用哪一种都行,但对于使用课程标准教科书的地区就不同了,因为课程标准教科书把动量的内容移到了选修3-5,如果不选修3-5,则不能用动量定理解,只能用动能定理解。
微元法解题,体现了微分和积分的思想,考查学生学习的潜能和独创能力。
电磁感应中的微元法一些以“电磁感应”为题材的题目。
可以用微元法解,因为在电磁感应中,如导体切割磁感线运动,产生感应电动势为B L v E =,感应电流为R BLvI =,受安培力为v RL B B I L F 22==,因为是变力问题,所以可以用微元法.1.只受安培力的情况例1. 如图所示,宽度为L 的光滑金属导轨一端封闭,电阻不计,足够长,水平部分有竖直向上、磁感应强度为B 的匀强磁场中。
质量为m 、电阻为r 的导体棒从高度为h 的斜轨上从静止开始滑下,由于在磁场中受安培力的作用,在水平导轨上滑行的距离为S 而停下。
(1) 求导体棒刚滑到水平面时的速度0v ;(2) 写出导体棒在水平导轨上滑行的速度v 与在水平导轨上滑行的距离x 的函数关系,并画出x v -关系草图。
【高考专题】微元法【定义】“微元法”通俗地说就是把研究对象分为无限多个无限小的部分,取出有代表性的极小的一部分进行分析处理,再从局部到全体综合起来加以考虑的科学思维方法。
部分情况说明:变力做功(如:弹簧弹力做功)、变速导线切割磁感线的安培力做功、非规则运动求解位移…(利用图像分析过程与积分)【作用】(1)变力做功——>恒力做功:—>0t ∆,这个极短时间内,变力F 可以看作恒力 2211()22k F s E m v v mv mv v ∆=∆=+∆-=∆(忽略高阶无穷小) 电磁感应中:v RL B BIL F 22==,变力做功,用微元法 (2)变力冲量——>恒力冲量()F t I m v v mv m v ∆=∆=+∆-=∆0vv v -=∆∑,当末速度0=v 时,有∑=∆0v v (3)变加速运动——>匀加速运动 —>v=F v F a t m t m∆==∆∆∆;x t v ∆=∆ (4)“化曲为直”(5)“化整为零”【解题步骤】整体→微元→整体例:以一定初速度在光滑水平平行导轨上运动的金属棒,组成闭合回路电阻R ,导轨间距L ,磁感应强度竖直向上,垂直导轨平面,大小B ,最终运动距离S ,金属棒质量m ,求初速度。
一、从整体出发,分析整个过程取一个整体过程作为对象:运动2m 这个过程,二、微元(取整体中非常小的一部分处理)(1)确定研究对象(金属棒)(2)取“微元”(Δs )①几何体微元;②物理微元:线速度微元、角速度微元、面积微元、质量微元,时间微元,位移微元,做功微元,电流微元等运动学:一般取时间微元(△t )、位移微元(△S )(3)对“微元进行处理”(动能定理/动量定理)1)列关系式①数学方法:微分、积分、数列等②物理方法:牛顿运动定律、动能定理、动量定理…2)化简①消元,化简1)中的关系式222222111111()222222F s m v v mv mv mv v m v mv mv v m v ∆=+∆-=+∆+∆-=∆+∆ ②省掉高阶无穷小量:即两阶以上无穷小,如2v ∆,t v ∆∆等F s mv v ∆=∆(其中的高阶无穷小212m v ∆省掉)三、回归到整体选取整个过程作为对象,对上一步微元中的等式两边求和。
电磁感应中微元法的应用技巧及实例无锡市第六高级中学 曹钱建摘要:微元法是电磁学中极其重要的一种研究方法,电磁学中无时无刻都在利用微元法处理问题,使复杂问题简化和纯化,从而确定变量为常量达到理想化的效果。
间题中的信息进行提炼加工,突出主要因素,忽略次要因素,恰当处理,构建新的物理模型,从而更好地应用微元法,学好电磁感应这部分内容。
关键词:微元法;电磁感应;高考新课标物理教材中涉及到微分的思想,相应的派生出大量的相关问题。
而微元法与电磁感应相结合的问题更是常考点也是难点,本文将就此类问题的解决提供一套简便实用的方法,及部分经典实例。
电磁感应问题中的动生电动势模型中,金属杆在达到稳定之前的过程是一个变加速过程(其中涉及到的v 、E 、I 、安F 、a 都是变量),常规的原理、公式都无法直接使用,使得很多学生遇到此类问题都觉得无从下手,但此类问题却在近两年各地模拟卷和江苏高考卷中,作为压轴题出现。
其实这时可以采取“微元法”,即将所研究的变加速物理过程,分割成许多微小的单元,从而将非理想物理模型变成理想物理模型;将变加速运动过程变成匀加速运动过程,然后选择微小的单元,利用下面介绍的方法进行分析和讨论,可用一种比较简单且相对固定的模式解决此类问题。
例1、如图甲所示,光滑绝缘 水平面上一矩形金属线圈 abcd 的质量为m 、电阻为R 、ad 边长度为L ,其右侧是有左右边界的匀强磁场,磁场方向垂直纸面向外,磁感应强度大小为B ,ab 边长度与有界磁场区域宽度相等,在t =0时刻线圈以初速度v 0进入磁场,在t=T 时刻线圈刚好全部进入磁场且速度为v l ,此时对线圈施加一沿运动方向的变力F ,使线圈在t =2T 时刻线圈全部离开该磁场区,若上述过程中线圈的v —t 图象如图乙所示,整个图象关于t=T 轴对称.(1)求t=0时刻线圈的电功率;(2)线圈进入磁场的过程中产生的焦耳热和穿过磁场过程中外力F 所做的功分别为多少?(3)若线圈的面积为S ,请运用牛顿第二运动定律和电磁学规律证明:在线圈进入磁场过程中m RLS B v v 210=- 解:t =0时,E=BLv 0 线圈电功率Rv L B R E P 20222==(2)线圈进入磁场的过程中动能转化为焦耳热 21202121mv mv Q -= 外力做功一是增加动能,二是克服安培力做功 2120mv mv W F -=(3)根据微元法思想,将时间分为若干等分,每一等分可看成匀变速,利用牛顿第二定律分析可得:Bv v 乙m Rv L B m BLI a 22==: 等式两边同时乘以t ∆可得:t Lv mRL B t v mR L B t a ∆=∆=∆222 因为时间t ∆极短,则a 可认为恒定不变,所以t a ∆等于此极短时间内的速度改变量v ∆,同理v 也可认为恒定不变,所以t v ∆等于此极短时间内的位移x ∆。
专题7 感应电荷量的应用1.安培力的冲量大小感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BIL。
方法1 微元法由于感应电流通常变化,所以安培力为变力,求时间t内安培力的冲量必须用微元法,在极短时间∆t内认为安培力为定值,则安培力冲量大小为I i=BI i L∆t = BLq i,求和可得全过程安培力冲量大小为I = BL∆q,其中∆q为此过程流过导体棒任意截面的电荷量。
方法2 平均电流法设此过程电流对时间的平均值为I,则∆q=It,所以安培力冲量通用表达式为:BILt BL q=∆,即感应电荷量与时间和安培力的冲量相联系。
2.感应电荷量在前面利用平均感应电流I=ER与和平均感应电动势E nt∆Φ=解得感应电荷量q=I t = nR∆Φ。
如果是由于导体棒切割产生的感应电荷量,则B S BLxq n nR R∆==,其中x为导体棒运动的距离,即感应电荷量与空间距离相联系。
3.感应电荷量的时空联系感应电荷量连接空间距离和安培力的冲量,因此在非匀变速运动中,如果题目求导体棒的位移,通常用感应电荷量和动量定理求解。
在分析电磁感应问题中,往往求解物体的初速度v0、末速度v、时间t、位移x、电荷量q 这5个物理量的时候,通常采用安培力的冲量,按此模型处理方法进行处理。
4.实例分析以2022年6月浙江选考19题第3问为例,如图1所示,用于推动模型飞机的动子(图中未画出)与线圈绝缘并固定,线圈带动动子,可在水平导轨上无摩擦滑动。
线圈位于导轨间的辐向磁场中,其所在处的磁感应强度大小均为B 。
开关S 与1接通,恒流源与线圈连接,动子从静止开始推动飞机加速,飞机达到起飞速度时与动子脱离;此时S 掷向2接通定值电阻R 0,同时施加回撤力F ,在F 和磁场力作用下,动子恰好返回初始位置停下。
若动子从静止开始至返回过程的v -t 图如图2所示,在t 1至t 3时间内F =(800-10v )N ,加速度不变恒为a =160m/s 2,t 3时撤去F 。
运动的合成与分解的规律有2L =v 0t ,L =12a t 2,粒子在O 点速度沿y 轴方向的分量v y =a t ,根据数学关系有t a n α=v yv 0,所以t a n α=1,即α=45ʎ,粒子到达O 点时的速度大小为v =v 0c o s 45ʎ=2v 0.(2)粒子在电场中运动时,根据牛顿第二定律可得其加速度为a =q E m .粒子在磁场中做匀速圆周运动,由洛伦兹力提供向心力,有q v B =mv2R,根据数学关系有R =2L ,可以得出E B=v 02.处理粒子在磁场中做匀速圆周运动的习题时要能准确找到粒子的圆心和半径,并画出其运动轨迹.3㊀电场㊁磁场和重力场共存三个场共存的情况下,如果粒子做匀速圆周运动,重力和电场力一定平衡.㊀㊀图5例3㊀如图5,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,3个带正电的微粒a ㊁b ㊁c 电荷量相等,质量分别为m a ㊁m b ㊁m c .在该区域内,若a 做匀速圆周运动,b 向右做匀速直线运动,c 向左做匀速直线运动,则下面结论正确的是(㊀㊀).A.m a >m b >m c ㊀㊀B .m b >m a >m cC .m c >m a >m b ㊀㊀D.m c >m b >m a因为a 在该区域内做匀速圆周运动,所以a所受重力和电场力平衡,即m a g =qE ,b ㊁c 分别在纸面内向右和向左做匀速直线运动,有m b g =q E +B q v ,m c g +B q v =qE ,所以有m b >m a >m c ,故选项B 正确.在匀强磁场㊁匀强电场和重力场组成的复合场中,粒子所受重力和电场力是恒力,粒子所受洛伦兹力方向随速度方向变化而变化.总之,带电粒子在复合场中的运动问题涉及的知识较多,需要学生灵活运用力学㊁运动学㊁功能关系及电磁学等知识来解决,同时还要注意挖掘隐含条件,多做练习㊁多总结,做到熟练掌握.(作者单位:山东省青岛市即墨区第四中学)Җ㊀山东㊀宋致堂㊀㊀微元法 是从整体中取某一特定的微小部分作为研究对象从而认识整体的一种思维方法,它是物理学研究连续变量的一种常用方法.通俗地讲, 微元法 就是把研究对象分为无限多个微小的 元过程 ,这些具有代表性的 元 ,可以是一小段线段圆弧(线元)㊁一小段时间(时间元)㊁一小块面积(面积元)或一小部分质量(质量元)等,每个微元中变量可以看作不变,再对这些微小积累量求和,就可以得到物理量的总变化量.用该方法可以使一些复杂的物理过程简单化,用我们熟悉的物理规律迅速地解决问题.下面通过具体实例进一步阐述微元思想的应用,提升微元解题技巧.1㊀微元法 在变力做功中的应用例1㊀如图1所示,某个力F =1N作用于半径㊀㊀图1R =1m 的圆形转盘的边缘上,力F 的大小保持恒定不变,但方向始终与作用点的切线方向保持一致,则转动一周,这个力F 做的功是多少?由于力F 的方向与作㊀㊀图2用点处的速度方向时刻保持一致,因此力F 做功不为零.此力的大小恒定,方向时刻与速度方向一定,则可以考虑把圆周划分为很多 微元 来研究.当各小段的弧长Δs 足够小时,F 的方向几乎与该小段的位移重合,如图2所示,在这一小段里,力F 可看作恒力且方向与位移方向一致,则F 做的总功W =F Δs 1+F Δs 2+F Δs 3+ +F Δs n =F (Δs 1+Δs 2+Δs 3+ +Δs n )=F 2πR =2πJ .本题解法等效于将本是曲线的圆周拉直,即化曲为直 .在这里,力F 所做的功相当于力和物体运动路程的乘积.此思想方法适用于力F 大小恒定且与速度v 夹角不变的情况,其表达式为W =F s c o s θ,式中s 为路程,θ为力F 与速度v 的夹角.如物体在地面上滑动时,滑动摩擦力做功可表示为W =F f s c o s 180ʎ=-F f s ,式中F f 大小不变,s 为物体运动04的路程.2㊀微元法 在运动的合成与分解中的应用例2㊀如图3所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C 点,再绕过B㊁D,B C 段水平,当以恒定水平速度v 拉绳的自由端时,A 沿水平面前进,求当跨过B 的两段绳子的夹角为α时,A 的运动速度.图3图求物体A 的瞬时速度,可先假设物体A 在极短时间Δt 内,由G 运动到H ,然后求G H 段的平均速度,当时间Δt 趋近于无穷短时,G H 段的平均速度便为物体在G 点的瞬时速度.设经过Δt 时间物体A 由G 运动到H ,如图4所示,使D E =D B ᶄ,则绳子的自由端运动的距离为Δx =B E +B B ᶄ,当Δt 趋近于零时,角θ趋近于零,则可以认为B ᶄE ʅBD ,那么,Δx =B B ᶄc o s α+B B ᶄ=B B ᶄ(1+c o s α).当Δx 趋近于零时,v A =B B ᶄΔt ,v =Δx Δt =BB ᶄΔt(1+c o s α),因此v =v A (1+c o s α).所以A 的运动速度为v A =v1+c o s α.本题关键是用微元思想选取极短时间Δt ,在极短时间内物体和绳自由端的运动均可看作匀速直线运动,然后找出Δt 时间内两位移的关系,即可求出结果,同时要注意理解瞬时速度和极限思想.3㊀微元法 在动量定理中的应用例3㊀如图5所示,高压采煤水枪出水口的截面积为S ,水的射速为v ,射到煤层上后,水的速度为零,若水的密度为ρ.图图6如图6所示,取极短时间Δt ,则Δt 时间内冲到煤层上的水的体积ΔV =S v Δt ,这些水的质量Δm =ρS v Δt .规定初速度方向为正方向,由动量定理得-F Δt =Δm (0-v ),即F =ρS v 2,由牛顿第三定律得,水对煤层的冲力大小F ᶄ=F =ρS v 2.所取的时间Δt 足够短,液体柱长度Δl 很短,相应的质量Δm 也很小,即在水流中取很小一段水柱为研究对象,如图6所示,其水柱质量Δm 与Δt 有关,冲量I 也与Δt 有关,故可消去Δt 求得结果.4㊀微元法 在电磁感应中的应用例4㊀如图7所示,水平放置的导体电阻为R ,R与两根光滑的平行金属导轨相连,导轨间距为l ,其间有垂直导轨平面的㊁磁感应强度为B 的匀强磁场.导轨上有一质量为m 的导体棒a b 以初速度v 0向右运动.求:(1)导体棒在整个运动过程中的位移x ;(2)导体棒整个运动过程中通过闭合回路的电荷量.㊀㊀图7(1)设导体棒整个运动过程中的位移为x ,导体棒速度为v 时,回路中感应电流为i ,则i =B l vR,F 安=B i l =B 2l 2vR,由牛顿第二定律得B 2l 2v R =m a ,极短时间Δt 内有B 2l2R v Δt =m a Δt =m Δv ,则B 2l2R ðv Δt =m ðΔv ,即B 2l 2R x =m v 0,得x =m v 0RB 2l2.(2)设整个过程中通过导体棒某一截面的电荷量为q ,导体棒速度为v 时,回路中感应电流为i ,由牛顿第二定律得B i l =m a ,在极短时间Δt 内,有B i lΔt =m a Δt =m Δv ,则B l ði Δt =m ðΔv ,即B l q =mv 0,解得q =m v 0B l.该题两次运用了 微元法 ,很好地体现了化变为恒 的重要思想.微元法 解题可归纳为以下3个步骤:1)选取微元;2)列微元方程;3)累积求和.在不涉及累积求和时,可只用前两步骤,如上面的例2和例3.总之, 微元法 是分析㊁解决物理问题中的常用方法,也是高考提倡的处理问题的数学方法,是高考的热点.运用这一方法不仅丰富了处理问题的手段,拓展了学生的思维,还为后续学习奠定了方法基础.(作者单位:山东省滕州市第一中学)14。
微元法巧解电磁感应问题
百度文库是百度发布的供网友在线分享文档的平台。
百度文库的文档由百度用户上传,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。
网友可以在线阅读和下载这些文档。
百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。
百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。
当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt 文件格式。
本文档仅用于百度文库的上传使用。
2019年高考物理备考:电磁感应中的“微元法”1走近微元法微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。
用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。
在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学思想或物理方法处理,进而使问题求解。
使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。
“微元法”,又叫“微小变量法”,是解物理题的一种常用方法。
2如何用微元法1.什么情况下用微元法解题?在变力求功,变力求冲量,变化电流求电量等等情况下,可考虑用微元法解题。
2. 关于微元法。
一般是以时间和位移为自变量,在时间t ∆很短或位移x ∆很小时,此元过程内的变量可以认为是定值。
比如非匀变速运动求位移时在时间t ∆很短时可以看作匀速运动,在求速度的变化量时在时间t ∆很短时可以看作匀变速运动。
运动图象中的梯形可以看作很多的小矩形,所以,s x t v ∆=∆=∆。
微元法体现了微分的思想。
3. 关于求和∑。
许多小的梯形加起来为大的梯形,即∑∆=∆S s ,(注意:前面的s 为小写,后面的S 为大写),比如0v v v -=∆∑,当末速度0=v 时,有∑-=∆0v v ,或初速度00=v 时,有∑=∆v v ,这个求和的方法体现了积分思想。
4.物理量有三种可能的变化情况①不变(大小以及方向)。
可以直接求解,比如恒力的功,恒力的冲量,恒定电流的电量和焦耳热。
②线性变化(方向不变,大小线性变化)。
比如力随位移线性变化可用平均力来求功,力随时间线性变化可用平均力来求冲量,电流随时间线性变化可用平均电流来求电量。
电流的平方随时间线性变化可用平方的平均值来求焦耳热。
③非线性变化。
可以考虑用微元法。
值得注意微元法不是万能的,有时反而会误入歧途,微元法解题,本质上是用现了微分和积分的思想,是一种直接的求解方法,很多时候物理量的非线性变化可以间接求解,比如动能定理求变力的功,动量定理求变力的冲量,能量方程求焦耳热等等。
当然微元法是一种很重要的物理方法,在教学过程中有意识的不断渗透微元法,可以培育和加强学生分析问题处理物理问题的能力。
电磁感应中的微元法一些以“电磁感应”为题材的题目。
可以用微元法解,因为在电磁感应中,如导体切割磁感线运动,产生动生电动势为BLv E =,感应电流为RBLvI =,受安培力为v RL B BIL F 22==,因为是变力问题,所以可以考虑用微元法。
1.只受安培力的情况如图所示,宽度为L 的光滑金属导轨一端封闭,电阻不计,足够长,水平部分有竖直向上、磁感应强度为B 的匀强磁场中。
质量为m 、电阻为r 的导体棒从高度为h 的斜轨上从静止开始滑下,由于在磁场中受安培力的作用,在水平导轨上滑行的距离为S 而停下。
(1) 求导体棒刚滑到水平面时的速度0v ;(2) 写出导体棒在水平导轨上滑行的速度v 与在水平导轨上滑行的距离x 的函数关系,并画出x v -关系草图。
(3)求出导体棒在水平导轨上滑行的距离分别为S/4、S/2时的速度1v 、2v ;x 0 S/4 S/2 S解:(1)根据机械能守恒定律,有2021mv mgh =,得gh v 20=。
①(2)设导体棒在水平导轨上滑行的速度为v 时,受到的安培力为v RL B BIL f 22-==,安培力的方向与速度v 方向相反。
用微元法,安培力是变力,设在一段很短的时间t ∆内,速度变化很小,可以认为没有变化,于是安培力可以看做恒力。
根据牛顿第二定律,加速度为v mRL B m f a 22-== 很短的时间t ∆内速度的变化为t v mRL B at v ∆⋅-==∆22 而x tv ∆=∆,那么在时间t 内速度的变化为∑∆⋅-=∆t v mRL B V )(22 因为x t v ∑=∆,所以x mRL B V ⋅-=∆)(22 于是速度x mR L B v V v v ⋅-=∆+=2200 ② 可以发现速度随位移是线性减小的!2.既受安培力又受重力的情况如图所示,竖直平面内有一边长为L 、质量为m 、电阻为R 的正方形线框在竖直向下的匀强重力场和水平方向的磁场组成的复合场中以初速度0v 水平抛出,磁场方向与线框平面垂直,磁场的磁感应强度随竖直向下的z 轴按kz B B +=0的规律均匀增大,已知重力加速度为g ,求: (1) 线框竖直方向速度为1v 时,线框中瞬时电流的大小;(2) 线框在复合场中运动的最大电功率; (3) 若线框从开始抛出到瞬时速度大小到达2v 所经历的时间为t ,那么,线框在时间t 内的总位移大小为多少?解:(1)因在竖直方向两边的磁感应强度大小不同,所以产生感应电流为12112)(v RkL R Lv B B R e i =-== (2)当安培力等于重力时竖直速度最大,功率也就最大R v L k R v L B B IL B B mg mm 42221212)()(=-=-=所以42L k mgR v m =4222Lk Rg m mgv P m m ==(3)线框受重力和安培力两个力其中重力mg 为恒力,安培力Rv L k R v L B B f zz 422212)(=-=为变力。
我们把线框的运动分解为在重力作用下的运动和在安培力作用下的运动。
在重力作用下,在时间t 内增加的速度为gt v =∆1)(,求在安培力作用下在时间t 内增加的速度为2)(v ∆用微元法,设在微小时间t ∆内,变力可以看做恒力,变加速运动可以看做匀加速运动,加速度为mR v L k a z42-=则在t ∆内速度的增加为t mRv L k v z∆-=∆42,而z t v z ∆=∆ 所以在时间t 内由于安培力的作用而增加的速度(因为增加量为负,所以实际是减小)为:∑∆-=∆z mRL k v 422)(所以:z mRL k v ⋅-=∆422)( 再根据运动的合成,时间t 内总的增加的速度为:z mRL k gt v v ⋅-=∆+∆4221)()( 从宏观看速度的增加为:2022v v -于是:202242v v z mRL k gt -=⋅-得到线框在时间t 内的竖直位移大小为422022)(Lk v v gt mR z --=。
考虑水平方向的匀速运动,于是线框在时间t 内的总位移大小为202)(t v z S += 再将z 代入就可以了。
先研究分运动,再研究合运动!可以看出:所谓微元法是数学上的微积分理念在解物理题中的应用.3.重力和安培力不在一条直线上的情况如图所示,间距为L 的两条足够长的平行金属导轨与水平面的夹角为θ,导轨光滑且电阻忽略不计.场强为B 的条形匀强磁场方向与导轨平面垂直,磁场区域的宽度为d 1,间距为d 2.两根质量均为m 、有效电阻均为R 的导体棒a 和b 放在导轨上,并与导轨垂直.(设重力加速度为g )⑴若a 进入第2个磁场区域时,b 以与a 同样的速度进入第1个磁场区域,求b 穿过第1个磁场区域过程中增加的动能△E k ;⑵若a 进入第2个磁场区域时,b 恰好离开第1个磁场区域;此后a 离开第2个磁场区域时,b 又恰好进入第2个磁场区域.且a .b 在任意一个磁场区域或无磁场区域的运动时间均相等.求b 穿过第2个磁场区域过程中,两导体棒产生的总焦耳热Q ; ⑶对于第⑵问所述的运动情况,求a 穿出第k 个磁场区域时的速率v .解:⑴因为a 和b 产生的感应电动势大小相等,按回路方向相反,所以感应电流为0,所以a 和b 均不受安培力作用,由机械能守恒得1sin k E mgd θ∆= (电动势抵消)⑵设导体棒刚进入无磁场区时的速度为1v ,刚离开无磁场区时的速度为2v ,即导体棒刚进入磁场区时的速度为2v ,刚离开磁场区时的速度为1v ,由能量守恒得:在磁场区域有:222112121sin mv mv W mgd -=+θ (动能定理) ① W Q -= (功能关系) ②在无磁场区域:2221211sin 22m m mgd θ=+v v ( 机械能守恒) ③解得:12()sin Q mg d d θ=+ (3)设导体棒在无磁场区域和有磁场区域的运动时间都为t , 在无磁场区域有:21sin gt θ-=v v ④且平均速度:1222d t +=v v ⑤ 在有磁场区域,对a 棒:sin Fmg BIl θ=-且:2Bl I R=v解得: Rvl B F 2m gsin 22-=θ ⑥因为速度v 是变量,用微元法根据牛顿第二定律, 在一段很短的时间t ∆内 t mF v ∆=∆ 则有:22sin 2B l g t mR θ⎡⎤∆=-∆⎢⎥⎣⎦∑∑v v 因为导体棒刚进入磁场区时的速度为2v ,刚离开磁场区时的速度为1v , 所以:∑-=∆21v v v, 1d t v =∆∑,t t =∆∑代入上式有:122212sin d mR l B gt v v -=-θ ⑦ 联立④⑤⑦式,得mR d l B d l B mgRd v 8sin 412212221-=θ(原答案此处一笔带过,实际上这一步比较麻烦,以下给出详细的求解过程:④代入⑦得:θsin 4122mgR d l B t =, ⑧⑧代入⑤得:122221sin 8d l B R mgd v v θ=+ ⑨⑦+⑨得:mR d l B d l B mgRd v 8sin 412212221-=θ。
a .b 在任意一个磁场区域或无磁场区域的运动时间均相等, 所以a 穿出任一个磁场区域时的速率v 就等于1v .所以mR d l B d l B mgRd v 8sin 41221222-=θ(注意:由于a .b 在任意一个磁场区域或无磁场区域的运动时间均相等,所以a 穿出任一个磁场区域时的速率v 都相等,所以所谓“第K 个磁场区”,对本题解题没有特别意义。
)周期性的问题, 搞清楚物理量应该有的特征很重要!练习题1如图所示,空间等间距分布着水平方向的条形匀强磁场,竖直方向磁场区域足够长,磁感应强度B=1T,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为d=0.5m ,现有一边长l=0.2m 、质量m=0.1kg 、电阻R=0.1Ω的正方形线框MNOP以v 0=7m/s 的初速从左侧磁场边缘水平进入磁场,求(1)线框MN边刚进入磁场时受到安培力的大小F。
(2)线框从开始进入磁场到竖直下落的过程中产生的焦耳热Q。
(3)线框能穿过的完整条形磁场区域的个数n 。
解:(1)线框MN边刚进入磁场时,感应电动势 V Blv E 4.10==,感应电流 A R E I 14==,受到安培力的大小N BIl F 8.2==(2)水平方向速度为0,J mv Q 45.22120== (3)用“微元法”解线框在进入和穿出条形磁场时的任一时刻,感应电动势 0Blv E =,感应电流R E I =,受到安培力的大小 BIl F =,得Rv l B F 22=在t t ∆→时间内,由牛顿定律:v t mF ∆=∆- 求和,∑∑∆=∆-v t v mRl B )(22, 022v x mR l B -=⋅- 解得: m lB R mv x 75.1220== 线框能穿过的完整条形磁场区域的个数375.44.075.1==n ,取整数为4。