方林锋 2013小升初 精选追及问题1 慈溪 实验 新世纪 育才 小升初
- 格式:doc
- 大小:32.50 KB
- 文档页数:3
小升初数学专题(追及问题)教学目标;1、学生能够理解,掌握题目所表达的现实问题,理清哪些为已知量,哪些为未知量, 已知量与未知量之间的联系,题目中所要求的问题。
2、利用路程、时间、速度三者之间的关系,借助示意图列方程,解以现实为背景的 应用题。
3、学生能够画“追及”问题的图。
充分发挥学生主体作用,学生在轻松愉快的气氛中掌握知识。
复习检查:此版块适用于除首课之外的课程设计,授课教师可灵活采用各种方式对学生上节课所学知识掌握情况进行效果检查。
如:放置需要学生作答的笔试题目或需要口头作答的提问。
1、小张步行从甲村到乙村去,小李骑自行车以每小时15千米的速度从乙村到甲村去,他们同时出发,1小时后在途中相遇,他们分别继续前行,小李到达甲村后立即返回,在第一次相遇后40分钟,小李追上小张,他们又继续前行,当小李到达乙村后又立即返回,问追上后小李再行多少千米他与小张再次相遇?解析:从开始到第三次相遇用的时间为1×3=3(小时) 第二次到第三次相遇所用的时间是小时分钟小时小时3114013=-- 追上后小李与小张再次相遇所行的路程:2031115=⨯(千米)2、甲、乙两辆汽车同时从东、西两地相向出发,甲车的速度56千米/时,乙车速度48千米/时,两车离中点32千米处相遇。
求东西两地间距是多少千米? ()84856232=-÷⨯(小时) ()83248568=+⨯(千米)3、两列火车从两城同时相对开出,一列车的速度是40千米/时,另一列的速度是45千米/时,在途中先后各停车2次,每次15分钟,经过4小时两车相遇,两城相距多少千米?30215=⨯(分钟)=0.5(小时) 5.35.04=-(小时)()5.29745405.3=+⨯(千米)4、甲、乙两车从相距675千米的两地相对出发,甲每小时行45千米,乙每小时行60千米,甲先行1小时后,乙才出发,再经过几小时两车才能相遇?()()6÷⨯-(小时)+4560451675=根据这节课预设的教学目标设计题目,检测学生对相关知识点的掌握情况,精准定位学生的问题所在,以确定后面的针对性讲解的重点。
小升初数学综合素质训练(三)第三讲:行程问题(一)解决较复杂的行程问题,必须掌握和灵活运用下列基本数量关系:1. 速度×时间=路程路程÷速度=时间路程÷时间=速度2. 速度和×相遇时间=路程路程÷速度和=相遇时间路程÷相遇时间=速度和路程÷相遇时间-甲速=乙速3. 追及路程÷速度差=追及时间4. 顺水速度=船的静水速度+水流速逆水速度=船的静水速度-水流速1、甲、乙两辆旅游车同时从东、西两个景点出发,相向而行,20分钟相遇。
相遇后,甲车继续行驶15分钟到达西面景点,乙车每分钟行2400米。
东、西两个景点之间的公路长多少米?2、甲、乙两车同时从A、B两地出发相向而行,在距A地42千米处相遇,相遇后继续行驶,到达B、A两地后立即沿原路原速返回。
在距B地30千米处相遇。
A、B两地之间的公路长多少千米?3、小明坐在公共汽车上看到姐姐向相反的方向走,90秒后小明下车向姐姐追去。
如果他的速度比姐姐快1倍,汽车速度是小明步行的5倍。
小明多长时间追上姐姐?4、小红小刚在周长为600米的场地玩。
两人从同一点出发,同向而行30分后又走到一起,背向而行4分相遇。
两人每份各走多少米?【小红速度快】5、甲、乙二人沿着铁路相向而行,速度相同,一列火车从身边开过用了8秒,离甲后5分又遇乙,从乙身边开过只用了7秒,问从乙与火车相遇开始,再过几分甲乙二人相遇?6、欣欣每天早上步行上学,如果每分走60米,则要迟到5分;如果每份走75米,则可提前2分到校。
求欣欣到校的路程。
7、下午放学,弟弟以每分钟40米的速度步行回家,5分钟后,哥哥以60米的速度步行回家,哥哥出发后,经过几分钟追上弟弟?(假设哥哥追上弟弟时仍未到家)8、甲、乙两人分别从A、B两地出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,则6分钟可以相遇,又已知乙每分钟行50米,求A、B两地的距离。
追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。
这类应用题就叫做追及问题。
【数量关系】★追及时间=追及路程÷(快速-慢速)★追及路程=(快速-慢速)×追及时间02解题思路和方法简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。
1某警官发现前方100米处有一匪徒,匪徒正以每秒2米的速度逃跑。
警官赶紧以每秒3米的速度追,()秒后警官可以追上这个匪徒。
解:1、从警官追开始到追上匪徒,这就是一个追及过程。
根据公式:路程差÷速度差=追及时间。
2、路程差为100米,警官每秒比匪徒多跑3-2=1(米),即速度差为1米/秒。
所以追及的时间为100÷1=100(秒)。
2甲乙二人同时从400米的环形跑道的起跑线出发,甲每秒跑6米,乙每秒跑8米,同向出发。
那么甲乙二人出发后()秒第一次相遇?解:1、由题可知,甲乙同时出发后,乙领先,甲落后,那么两人第一次相遇时,乙从后方追上甲。
所以,乙的路程=甲的路程+一周跑道长度,即追及路程为400米。
2、由追及时间=总路程÷速度差可得:经过400÷(8-6)=200(秒)两人第一次相遇。
3小轿车、面包车和大客车的速度分别为60千米/时、48千米/时和42千米/时,小轿车和大客车从甲地、面包车从乙地同时相向出发,面包车遇到小轿车后30分钟又遇到大客车。
那么甲、乙两地相距多远?解:1、根据题意,将较复杂的综合问题分解为若干个单一问题。
首先是小轿车和面包车的相遇问题;其次是面包车和大客车的相遇问题;然后是小轿车与大客车的追及问题。
最后通过大客车与面包车共行甲、乙两地的一个单程,由相遇问题可求出甲、乙两地距离。
2、画线段图,图上半部分是小轿车和面包车相遇时三车所走的路程。
对应法解题-练习1.两个仓库共储存粮食1024吨,甲仓存粮是乙仓存粮的3倍,甲、乙两仓各存粮多少吨?没有看,这本故2.张华看一本故事书,每天看30页,3天后还剩全书的58事书一共有多少页?还要多5.5千克,乙正好买了其3.甲乙两人合买一筐西瓜,甲买了其中的25中的一半,这筐西瓜共有多少千克?,再拿出7个黄球,剩4.有红黄两种颜色的小球共140个,拿出红球的14下的红球和黄球同样多,原来红球和黄球各有多少个?5.学校第一次买了3个水瓶和20个茶杯,共用去了134元;第二次又买了同样的3个水瓶和16个茶杯,共用去118元。
水瓶和茶杯的单价各是多少元?6.甲筐的苹果比乙筐多30斤,丙筐的苹果是甲筐的2倍,丙筐比乙筐的3倍多10斤。
三筐各有多少苹果?7.打退敌人一次进攻后,班长清点手榴弹发现:如每人分5颗,还剩8颗;如每人分6颗则差4颗。
这个班共有多少名战士?还有多少颗手榴弹?8.56名少先队员参加学校劳动,其中37的打扫礼堂,剩下的队员中,38的人打扫操场;第二次剩下的队员中,14的人打扫教室,其余的负责打扫空地。
问打扫空地的同学有多少人?9.甲、乙两车分别从A、B同时出发,相向而行。
第一次两车在距B地64公里处相遇,相遇后仍以原速继续行驶,到达对方站后原路返回,两车在距离A地48公里处第二次相遇。
两次相遇地点间的距离是多少公里?10.买5个排球和3个篮球需付100元,而买2个排球和3个蓝球只需会67元。
问每只排球和篮球各多少元?11.妈妈带了一笔钱,去市场买水果,若买橙子15千克,差4元,若买橘子20千克,则多20元。
两种水果每千克的价格相差2.1元。
两种水果的单价分别是多少元?12.少先队员参加植树,准备栽的苹果树苗是梨树苗的2倍,如果每人栽3棵梨树苗,则多3棵,每人栽7棵苹果树苗,则少6棵,参加植树的少先队员有多少人?苹果树苗和梨树苗分别有多少棵?。
数学专项复习小升初典型奥数之追及问题在小升初的数学学习中,追及问题是一个较为常见且重要的知识点。
对于同学们来说,理解和掌握追及问题不仅能够提升数学思维能力,还能为今后的学习打下坚实的基础。
追及问题,简单来说,就是两个物体在同一直线上运动,一个速度快,一个速度慢,速度快的在后面追赶速度慢的。
它的核心在于找到两者的速度差以及初始的距离差,从而计算出追及所需的时间。
我们先来看一个简单的例子。
甲、乙两人分别从 A、B 两地同时出发,同向而行。
甲的速度是每小时5 千米,乙的速度是每小时3 千米,A、B 两地相距 8 千米。
问甲多长时间能追上乙?在这个问题中,甲的速度比乙快,每小时快 2 千米(5 3 = 2),这就是速度差。
而 A、B 两地的距离 8 千米就是初始的距离差。
因为甲每小时能追上乙 2 千米,所以追上乙所需的时间就是距离差除以速度差,即 8÷2 = 4 小时。
接下来,我们再看一个稍微复杂一点的例子。
一辆汽车以每小时 60 千米的速度行驶,在它后面 10 千米处有一辆摩托车以每小时 80 千米的速度追赶。
问摩托车多长时间能追上汽车?这里,汽车和摩托车的速度差是每小时 20 千米(80 60 = 20),初始的距离差是 10 千米。
那么追及时间就是 10÷20 = 05 小时。
通过这两个例子,我们可以总结出追及问题的基本公式:追及时间=距离差÷速度差。
在解决追及问题时,关键是要理清题目中的各种数量关系。
首先要明确谁在追谁,速度分别是多少,以及初始的距离差是多少。
有时候题目中的条件可能不会直接给出,需要我们通过分析和计算来得出。
比如,有这样一道题:小明和小红在操场上跑步,小明跑一圈需要4 分钟,小红跑一圈需要 6 分钟。
如果两人同时同地同向出发,多少分钟后小明能比小红多跑一圈?这道题看起来和前面的例子不太一样,但其实也是追及问题。
小明跑一圈的速度可以看作 1/4,小红跑一圈的速度可以看作 1/6,他们的速度差就是 1/4 1/6 = 1/12。
小升初行程问题—追及问题结合行程问题基本公式,可以理解追及问题相关公式:追及时间=路程差÷速度差;路程差=追及时间×速度差;速度差=路程差÷追及时间。
1、两辆汽车都从重庆出发到某地,货车每小时行60千米,15小时可到达。
客车每小时行50千米,如果客车想与货车同时到达某地,它要比货车提前开出几小时?2、小屹、小维两人同时从A地到B地,小维出发3小时后小屹才出发,小屹走了5小时后,已超过小维2千米,已知小屹每小时比小维多行4千米。
小屹、小维两人每小时各行多少千米?3、猎犬发现在离它9米远有一只奔跑的兔子,立刻追赶,猎犬的步子大,它跑5步的路程,兔要跑9步,但兔子的动作快,猎犬跑2步的时间,兔子跑3 步,猎犬至少跑多少米才能追上兔子?4、小屹、小维两人相距150米,小屹在前,小维在后,小屹每分钟走60米,小维每分钟走75米,两人同时向南出发,几分钟后小维追上小屹?5、两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车?6、学校环形跑道长400米,小屹骑自行车平均每分钟骑300米,小维跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?7、小屹和小维两人同时在一个学校上学,小维以每分钟80米的速度先去学校,3分钟后,小屹骑车以毎分钟200米的速度也向学校骑去,那么小屹几分钟追上小维?8、在学校环形跑道上练习长跑,小屹每分钟跑250米,小维每分钟跑200 米,两人同时同地同向出发,経过45分钟小屹追上小维,如果两人同时同地反向出发,经过多少分钟两人相遇?9、姐妹两人在同一小学上学,小维以每分钟50米的速度从家走向学校,小屹比小维晚10分仲出发,为了不迟到,她以每分钟150米的速度从家跑步上学,结果两人却同时到达学校,求家到学校的距离有多远?10、龟兔进行10000米跑步比赛.兔每分钟跑400米,龟毎分钟跑80米,兔子毎跑5分钟休息25分钟,谁先到达终点?11、在周长400米的圆形跑道一条直径的两端,小屹、小维两人分別以毎分钟60米和50米的速度,同时同向出发,沿圆周行驶,问2小时内,小屹追上小维多少次?12、甲乙两地相距48千米,其中一部分是上坡路,其余是下坡路,小屹骑自行车从甲地到乙地后沿原路返回。
六年级下小升初典型奥数之追及问题在小学六年级的数学学习中,奥数里的追及问题常常让同学们感到有些头疼,但其实只要我们掌握了其中的关键思路和方法,追及问题也能变得简单易懂。
首先,我们来了解一下什么是追及问题。
追及问题通常是指两个物体在同一直线上运动,速度快的在后面追赶速度慢的,两者之间的距离不断缩小,直到追上为止。
在解决追及问题时,关键是要找出两者的速度差以及初始的距离差。
举个简单的例子:小明和小红在操场上跑步,小明的速度是每分钟200 米,小红的速度是每分钟 150 米,两人同时同地出发,小明在小红后面 500 米,那么小明多久能追上小红?我们先来分析一下,小明每分钟比小红多跑 200 150 = 50 米,这就是速度差。
而一开始小明和小红相距 500 米,这就是距离差。
要求小明追上小红的时间,就是用距离差除以速度差,即 500 ÷ 50 = 10 分钟。
再来看一个稍微复杂一点的例子:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度是每小时 8 千米,乙的速度是每小时 6 千米,经过 4 小时两人相遇。
相遇后甲继续前行,乙在原地停留 1 小时后开始追赶甲,问乙多久能追上甲?首先,我们来算出 A、B 两地的距离。
根据相遇问题的公式,距离=速度和 ×时间,即(8 + 6)× 4 = 56 千米。
相遇后,甲又走了 1 小时,也就是 8 千米,此时甲距离 B 地 56 +8 = 64 千米,乙距离 B 地 56 千米。
接下来,乙开始追赶甲,速度差为 8 6 = 2 千米/小时,距离差为64 56 = 8 千米。
所以乙追上甲的时间为 8 ÷ 2 = 4 小时。
在解决追及问题时,我们还常常会遇到一些需要转换思路的情况。
比如下面这个例子:一辆汽车和一辆摩托车同时从甲地开往乙地,汽车每小时行 60 千米,摩托车每小时行 40 千米,汽车到达乙地后立即返回,在途中与摩托车相遇,已知两地相距 200 千米,求相遇时摩托车行驶了多少千米?这道题我们不能直接用追及问题的思路来解决,而是要先求出汽车和摩托车一共行驶的路程,因为它们相遇时,一共走了两个全程,即200 × 2 = 400 千米。
追及问题【知识精讲+典型例题+高频真题+答案解析】编者的话:同学们,恭喜你已经开启了奥数思维拓展的求知之旅,相信你已经正确规划了自己的学习任务,本套资料为小升初思维拓展、分班考、择校考而设计,针对小升初的高频知识点进行全面精讲,易错点逐个分解,强化练习高频易错真题,答案解析非常通俗易懂,可助你轻松掌握、理解、运用该知识点解决问题!目录导航资料说明第一部分:知识精讲:把握知识要点,掌握方法技巧,理解数学本质,提升数学思维。
第二部分:典型例题:选题典型、高频易错、考试母题,具有理解一题,掌握一类的优势。
第三部分:高频真题:精选近两年统考真题,助您学习有方向,做好题,达到事半功倍的效果。
第四部分:答案解析:重点、难点题精细化解析,犹如名师讲解,可以轻松理解。
第一部分知识精讲知识清单+方法技巧第二部分典型例题例题1:羚羊每秒跑22米,猎豹每秒跑31米。
一只猎豹正快速追赶奔跑中的羚羊,当距离羚羊150米时,再过20秒能追上吗?【答案】能。
【分析】根据追及路程=速度差×追及时间,求出20秒豹子追及的路程,再与150米比较大小即可。
【解答】解:(31﹣22)×20=9×20=180(米)150<180答:当距离羚羊150米时,再过20秒能追上。
【点评】本题主要考查公式的应用:追及路程=速度差×追及时间。
例题2:甲乙两人沿着400米的环形跑道跑步,他们同时从同一地点出发,同向而行。
甲的速度是190米/分,乙的速度是150米/分。
经过多少分钟甲第一次追上乙?【答案】10分钟。
差,代入数值计算即可。
【解答】解:400÷(190﹣150)=400÷40=10(分钟)答:经过10分钟甲第一次追上乙。
【点评】本题主要考查了追及问题,明确追及问题的追及距离是本题解题的关键。
例题3:两辆车从甲地开往乙地,快车每小时行80千米,慢车每小时行60千米。
如果慢车比快车早出发2小时,当快车追上慢车时,快车行了多少千米?【答案】480千米。
追击问题1、基本关系式:速度差×追及时间=路程差;路程差÷速度差=追及时间;路程差÷追及时间=速度差。
2、追及问题一般是后追前,后者速度一定比前者速度快例1①甲乙二人同地同方向出发,甲每小时走7千米,乙每小时走5千米。
乙先走2小时后,甲才开始走,甲追上乙需要几小时?②甲乙二人同地同方向出发,甲每小时比乙快2千米。
乙先走2小时后,甲才开始走,5小时后追上乙,求甲乙的速度分别是多少?③甲乙二人同地同方向出发,甲每小时比乙快2千米,乙每小时5千米。
乙先出发一段时间后,甲才开始走,5小时后追上乙,求乙比甲提前几小时出发?练一练1)小伟和小华从学校到电影院看电影,小伟以每分60米的速度向影院走去,5分后小华以每分80米的速度向影院走去,结果两人同时到达影院。
学校到影院的路程是多少米?2)小聪和小明从学校到相距2400米的电影院去看电影。
小聪每分行60米,他出发后10分小明才出发,结果俩人同时到达影院,小明每分行多少米?3) 甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。
问:两人每秒各跑多少米?例2上午9时有一列货车以每小时49千米的速度从甲城开往乙城,上午11时,又有一列客车以每小时67千米的速度从甲城开往乙城,为了安全,列车间的距离不应小于8千米,那么货车最晚在什么时候停车,让客车开过去?做一做:1)西窗剪烛老师和肖雪皓从相距80米的两地同时同向行走, 肖雪皓在前面每分走50米, 西窗剪烛老师在后面每分走70米,两分后西窗剪烛老师和肖雪皓还相隔多少米?2)有甲,乙两匹马在相距60米的地方同时出发,甲马在前,乙马在后.如果甲马每秒跑10米,乙马每秒跑12米,则当两马相距80米的时候需要多少秒?3)甲乙两人以每分60米的速度同时,同地,同向步行出发.走15分后,甲返回原地取东西,而乙继续前进.甲取东西用去5分钟时间,然后改骑自行车以每分360米的速度去追乙,骑车多少分才能追上?例3小张从家到公园,原打算每分钟走50米。
第十九讲追及问题【知识概述】追及问题也是行程问题中的一类。
这类问题的特点是:两个物体同时向同一方向运动,出发的地点不同(或者从同一地点不同时出发,向同一方向运动),慢者在前,快者在后,因而快者离慢者越来越近,最后终于追上。
解答这类问题时,要理解速度差的含义(即单位时间内快者追上慢者的路程,也就是快者速度减去慢者速度)。
要解决追及问题,要掌握以下几个基本公式:路程差=速度差×追及时间追及时间=路程差÷速度差速度差=路程差÷追及时间快者速度=速度差+慢者速度慢者速度=快者速度-速度差【典型例题】例1 甲、乙两人在相距16千米的A、B两地同时出发,同向而行。
甲步行每小时行4千米,乙骑车在后,每小时速度是甲的3倍,几小时后乙能追上甲?【学大名师】此题是两人同向运动问题,乙追甲,利用追及问题的关系式,就可以解决问题。
解:16÷(3×4-4)=2(小时)答:2小时后乙能追上甲。
例2 名士小学一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?【学大名师】当甲、乙同时同地出发后,距离渐渐拉大再缩小,最终甲又追上乙,这时甲比乙要多跑1圈,即甲乙的距离差为400米,而甲乙两人的速度已经知道,用环形跑道长除以速度差就是要求的时间。
解:甲乙的速度差:300-250=50(米)甲追上乙所用的时间: 400÷50=8(分钟)答:经过8分钟两人相遇。
例3 甲、乙两人分别从A 、B 两地同时出发,相向而行,4小时可以相遇。
如果两人每小时都少行1.8千米,那么要6小时才能相遇,问AB 两地的距离?【学大名师】按原速行走,4小时相遇,如果每小时都减少1.8千米,就要6小时,多用了2小时,假如两人减速后先行4小时,则不可能相遇,这时两人应该相距(1.8×2×4)千米,这段路两人再共行2小时,这样就可以求出减速后的速度和,再乘以减速后的时间,就可以求出两地路程。
追及问题
1、在300米长的环形跑道上,甲乙两人同时同地同向跑步,甲每秒跑5米,乙每秒跑4.4米,两人起跑后的第一次相遇点在起跑线前面多少米?
2、甲乙两地相距600千米,一列客车和一列货车同时由甲地开往乙地,客车比货车早到2.5小时,客车到达乙地时,货车行驶了全程的4/5,问货车行驶全程要多少时间
3、小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。
小明:280米/分;小芳:220米/分。
8分后,小明追上小芳。
这个池塘的一周有多少米?
4、小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小
强骑自行车的速度?
5、某养鱼塘有一个圆形养鱼池,周长500米,甲乙两个管理员同时相背而行,5分钟相遇一次,如果同向而行,50分钟相遇一次,甲比乙走得快,问甲乙两个管理员每分钟各走多少米?
6、甲乙丙3条船同时同地同向出发,环绕周长36千米的小岛巡逻,甲乙丙3条小船的速度分别为14千米、10千米、8千米。
出发后,经过多少小时3条船同时相遇?
7、甲乙两匹马在相距50米的地方同时出发,出发时甲马在前乙马在后,如果甲马每秒跑10米,乙马每秒跑12米。
问:何时两马相距70米?何时两马相距20米?
8、甲乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时甲在乙后面,出发后6分钟甲第一次超过乙,22分钟甲第二次超过乙。
假设两人的速度保持不变,问:出发时甲在乙后面多少米?
9、龟兔赛跑,全程2000米,龟每分钟爬25米,兔每分钟跑320米.兔自以为速度快,在途中睡了一觉,结果龟到终点时,兔离终点还有400米,兔在途中睡了几分钟?
10、学校组织军训,甲乙丙三人步行从学校到军训驻地。
甲乙两人早晨6点一起从学校出发,甲每小时走5千米,乙每小时行4千米,丙上午8点才从学校出发,下午6点甲丙同时到达军训驻地。
问:丙在何时追上乙的?。