低温阀门深冷试验技术研究
- 格式:ppt
- 大小:4.76 MB
- 文档页数:26
低温阀门技术条件及试验为了保证低温阀能在低温下安全可靠地运行,在低温阀的设计和制造方面有一些特殊的考虑和要求。
同样,低温阀的试验与普通阀门也有所不同。
下面就JB/T7749-1995《低温阀门技术条件》和英国BS6364:R1998《低温阀门》的试验方法,试验要求和度验装置作简略的介绍。
1.低温阀门试验(JB/T7749-1995)(1)试验条件低温阀门的低温试验在常温试验合格后进行。
试验前应消除阀门水分和油脂,拧紧螺栓至预定的力矩或拉力,记录其数值。
用符合试验要求的热电偶与阀门连接,试验过程中临测阀体、阀盖的温度。
低温试验冷却介质为液氮与酒精的混合液或液氮,试验介质为氦气。
(2)试验步骤1)低温阀门试验装置见图2-46。
如图所示,将阀门安装在试验容器里,并接好所有接头,保证阀门填料处在容器上部,且温度保持在0度以上。
2)在常温及最大阀门试验压力下,使用氮气做初如检测试验,确保阀门在合适的条件下进行试验。
3)将阀门浸入液氮与酒精的混合液或液氮中冷却至阀门低温工况温度,其水平面盖住阀体与阀盖。
4)在低温工况温度下,按下列步骤进行操作:①在低温工况温度下,浸泡阀门直到各处的温度稳定为止,用热电偶测量保证阀门各处温度的均匀性;②在试验温度下,重复2.11.1(2)-2)的初始检测试验;③在试验温度和阀门的公称压力下,开关阀门5次做低温操作性能试验,配有驱动装置的阀门按上述要求做动作试验;④在最大阀门试验压力下,按阀门的正常流向做阀门密封试验,对于双向密封的阀门应分别进行试验,用流量计测量泄漏量时,其泄漏率应符合表2-23规定;⑤阀门处在开启位置时,关闭阀门出口端的针形阀(见图2-46,并向阀体加压至密封试验压力,保持15min,检查阀门填料处、阀体和阀盖连接处的密封性;⑥阀盖上密封的检查,有上密封的阀门应做上密封试验,试验时阀门全开,两端封闭,向阀内通入氦气至密封试验压力为止,松开填料压盖,检查上密封的密封性。
低温用奥氏体不锈钢阀门零件的深冷处理标题:低温用奥氏体不锈钢阀门零件的深冷处理作者:郎成东金瑛来源:互联网1 概述随着乙烯石化工业的发展,低温和超低温阀门的应用越来越广泛,这些阀门的质量与材料的选用和处理关系极为密切,因此掌握材料在不同的低温状态下的变化规律,确定材料在不同低温条件下的稳定性,才能保证阀门在低温状态下的良好性能。
2 材料的选用在对低温材料进行选择时,必须首先考虑到以下两个方面的要求。
a.材料在使用的低温条件下要有足够的韧性,以防止在低应力下突发脆性断裂。
b.低温下材料的组织稳定性,以保证在使用中不会因变形而影响阀门的密封性。
具有面立方晶格的A体不锈钢没有冷脆转变临界温度,在低温条件下,仍然保持较高的韧性,如0Cr18Ni9和00Cr17Ni12Mo2(304、316L)等奥氏体不锈钢,但这类钢材大部分在室温状态下都处于亚稳定状态,在低温下往往由于M体相变、体积膨胀和应力的作用而引起零件变形,深冷处理就是针对解决这一问题提出的。
3 低温变形及其原因用Cr-Ni奥氏体不锈钢制作的低温阀零件,在低温下会发生变形,有时甚至是严重变形。
例如,将密封件(0Cr18Ni9表面堆焊Co-Cr-W合金)精研,在液氯中浸泡后,用测微计测量,呈现不同类型的变形(表1、图1)。
表1阀门零件在低温下的变形零件在低温下的变形原因有以下2点。
(1)由于马氏体转变和组织应力引起的变形奥氏体不锈钢零件,当冷却至Ms点下在某一温度范围内长时间保温,即会产生不同逆性的马氏体转变,具有体心正方点阵的马氏体是碳在α-Fe中的过饱和固溶体。
体心立方配位小,致密度低,而部分碳原子规则化排列占据体心立方点阵(1/2,1/2,0)(0,0,1/2)位置,使晶格沿C轴方向增长,因而马氏体比奥氏体有更大的比容。
图2是在室温下,奥氏体和马氏体的比容随含碳量的变化,可见即使含碳量为0.08%的钢,其马氏体的比容比奥氏体的比容约增大4%。
超低温工况下的阀门密封性研究摘要:本论文研究了超低温工况下阀门的密封性能。
超低温环境对阀门密封性能提出了更高的要求,因为低温会导致材料收缩、硬化和变脆,从而增加了泄漏的风险。
本研究通过实验和数值模拟相结合的方法,对不同材料、结构和密封方式的阀门进行了测试和分析。
结果显示,在超低温环境下,采用特殊材料和密封结构可以显著提高阀门的密封性能。
此外,优化密封间隙和使用低温密封剂也可以有效减少泄漏。
本研究对超低温工况下阀门的密封性能提供了重要参考,有助于提高阀门在低温工况下的可靠性和安全性。
关键词:超低温;阀门密封性;数值模拟引言本论文旨在研究材料老化对物体性能的影响。
随着时间的推移,材料会受到环境因素和使用条件的影响,导致性能的逐渐下降。
了解材料老化的机理和特征对于延长材料寿命、提高产品可靠性至关重要。
本文将回顾老化过程中的不同机制,包括化学反应、疲劳损伤和热氧化等。
此外,还将介绍常见的老化测试方法和评估指标。
通过深入研究材料老化的影响,我们可以为设计更耐久、可靠的材料和产品提供指导和建议。
1.超低温工况下阀门密封性能的影响因素1.1超低温环境对材料性质的影响超低温环境对材料性质有着显著的影响。
低温会导致材料的收缩和变形,由于分子振动减小,材料的线膨胀系数降低,使得材料变得更加脆弱。
低温会导致材料的硬化,使得材料的强度和韧性降低,容易发生断裂和破损。
低温还会影响材料的导电性、导热性和摩擦性能,从而影响材料的功能和应用。
在超低温环境下,材料的抗拉强度、冲击韧性和耐蚀性都会受到较大挑战。
因此,在超低温工况下选择合适的材料非常重要,以确保材料的性能稳定性和可靠性。
1.2超低温环境对阀门结构的影响超低温环境对阀门结构有着重要的影响。
低温会导致阀门材料的收缩和变形,可能导致密封面间隙增大,从而增加泄漏的风险。
低温环境下材料的脆性增加,使得阀门零部件容易发生断裂和破损。
低温还会影响阀门的润滑性能,使得阀门操作不灵活或卡阻。
低温阀的设计与试验一、低温阀门的材料选用1、低温阀门的主体材料1)主体材料选用应考虑的因素从金相考虑,金属材料中除了具有面心立方晶格的奥氏体钢、铜、铝等以外,一般的钢材在低温状态下会出现低温脆性,从而降低阀门的强度和使用寿命。
表1规定了几类材料的最低使用温度。
表1铝在低温下不会出现低温脆性,但铝及铝合金的硬度不高,铝密封面的耐磨、耐擦伤性能差,所以仅在低压和小口径的低温阀门中使用。
2)阀体、阀盖、阀座、阀瓣(闸板)材料的选用温度高于-100℃时选用铁素体钢,温度低于-100℃选用奥氏体钢,低压及小口径阀门可选用铜和铝等材料。
3)阀杆及紧固件的材料选用温度高于-100℃时,阀杆和螺栓材料采用Ni、Cr-Mo等合金钢,经适当的热处理,以提高抗拉强度和防止螺纹咬伤等。
温度高于-100℃时,采用奥氏体不锈耐酸钢。
18-8耐酸钢硬度低,会造成阀杆与填料相互擦伤,至使填料处泄露。
所以阀杆表面必须镀硬铬(厚度0.04-0.06mm),或进行氮化和镀镍磷处理,以提高表面硬度。
为防止螺母与螺栓咬死,螺母一般采用Mo钢或Ni钢,同时在螺纹表面涂二硫化钼。
2、低温阀垫片、填料的选用随着温度降低,氟塑料收缩量很大,会使密封性能下降,容易引起泄露。
石棉填料无法避免渗透性泄露,橡胶对液化天然气有泡胀性,在低温下不可采用。
在低温阀门设计中,一方面由结构设计来保证使填料处于接近环境温度下工作。
另一方面在选择填料是要考虑填料的低温特性。
低温阀中一般采用浸渍聚四氟乙烯的石棉填料。
柔性石墨对气体、液体均不渗透,较低的紧固压力就可达到密封,它还有自润滑性。
柔性石墨的使用温度范围为-200-870℃。
低温阀门也可采用无填料的波纹管密封结构。
低温阀门用垫片必须在常温、低温及温度变化下具有可靠的密封性和复原性。
常采用聚四氟乙烯和耐酸钢带绕制的缠绕式垫片,优先选用柔性石墨和耐酸钢带绕制的缠绕式垫片(-200℃)。
二、低温阀门的特殊结构1)阀体应能充分承受温度变化而引起的膨胀、收缩,且阀座部位的结构不会因温度变化而产生永久变形。
低温与超导第35卷 第2期低温技术C r y o g e n i c s C r y o .&S u p e r c o n d .V o l .35 N o .2收稿日期:2006-11-22作者简介:刘厚君(1978-),男,工程师,主管设计师,主要进行航天飞行器动力系统设计。
低温阀门启闭密封试验研究刘厚君,祁伟,张亮,樊宏湍(上海宇航系统工程研究所,上海201108)摘要:为了研究低温阀门的启闭密封的特性,对常温和低温下不同密封比压的密封结构进行了启闭密封特性试验,通过试验结果的分析得出了密封比压与泄漏率的关系曲线,并与H .T .洛马宁柯曲线进行了对比,得出了试验工况下密封比压计算修正系数,为低温密封结构设计提供依据。
关键词:低温阀门;启闭密封;漏率;密封比压S e a l i n g c h a r a c t e r i s t i c s e x p e r i m e n t a l r e s e a r c ho f c r y o g e n i c v a l v e sL i uH o u j u n ,Q i We i ,Z h a n g L i a n g ,F a n H o n g t u a n(A e r o s p a c e S y s t e m E n g i n e e r i n g S h a n g h a i ,S h a n g h a i 201108,C h i n a )A b s t r a c t :T h i s p a p e r s t u d i e s t h e o p e n -c l o s es e a l i n g c h a r a c t e r i s t i c s o f c r y o g e n i c v a l v e s i nd i f f e r e n t h e r m e t i c a l p r e s s u r e .T h el e a k a g e r a t e a n d h e r m e t i c a l p r e s s u r e a r e r e c o r d e d a n da n a l y z e d .C o m p a r e d w i t h t h e t h e o r i z e d r e s u l t s o f H .T .P o m a t e h k o ,e x p e r i m e n t a l c o e f f i c i e n t s o f h e r m e t i c a l p r e s s u r e a r e s i m u l a t e da n dc a nb e u s e di nc r y o g e n i c s e a l s t r u c t u r e d e s i g n i n g .K e y w o r d s :C r y o g e n i c v a l v e ,O p e n -c l o s es e a l i n g ,L e a k a g e r a t e ,H e r m e t i c a l p r e s s u r e1 引言随着低温推进剂在运载火箭中的不断应用,对阀门的研制提出了更高的要求。
低温阀门密封性能的研究与分析文章阐述了低温对于阀门的一些零件的干扰,以材料使用和结构设计等层次的内容来论述了应对方法和要关注的具体内容。
标签:阀门;低温阀门;密封性能1 低温对于密封性的干扰1.1 非金属密封副在常温下工作的球阀和蝶阀等一般均采用金属对非金属材料密封副。
因为此类材料本身的弹性非常的高,其获取密封需要的比压不是很大,所以它的密封性较好。
不过在低温的背景之中,因为它比金属材质的膨胀性要高,此时就导致它在低温的时候收缩性和金属等材质的有着较高的差异,进而使得密封比变弱,不能够实现密封的意义。
很多的非金属的物质在较低的气温之中会失去其自身的韧性,进而导致冷流等特征。
比如橡胶,当其气温比玻璃化的气温要低的话,其就不具有弹性了,此时就会变成玻璃态的,不具有密封特征了。
另外橡胶在LNG 介质中存在泡胀性,也无法用于LNG阀门。
因此目前在设计低温阀门时,一般温度低于-70℃时不再采用非金属密封副材料,或将非金属材料通过特殊工艺加工成金属与非金属复合结构型式。
1.2 金属密封副当处在低温模式之中的时候,金屬物质的强度以及硬度等增高了,它的塑性以及韧性等变弱,此时就会发生一定的冷脆问题,进而干扰到阀门的安全性。
为了避免这种问题发生,在设计的时候,如果其气温超过了-100℃采用铁素体不锈钢材料,而温度低于-100℃时,阀体、阀盖、阀杆、密封座等大多采用具有面心立方晶格的奥氏体不锈钢、铜及铜合金、铝及铝合金等。
不过因为铝等的硬度太低,密封面不具有抗摩擦性,因此很少使用。
通常使用奥氏体材料,它们不具有上述的冷脆温度,就算是在低温的状态之中还可以维持非常好的韧性。
不过,此类材料在使用的时候也面对着很多的不利现象。
由于此类物质一般在常温之中时处在一种不是很稳定的模式之中的,如果气温下降到一定的数值之下的话,材料中的奥氏体会转变成马氏体。
对于体心立方晶格的马氏体致密度低于面心立方晶格的奥氏体,且由于部分碳原子规则化排列占据体心立方点阵位置,使晶格沿C轴方向增长,从而体积发生变化引起内部应力的增加,使原本经研磨后达到密封要求的密封面产生翘曲变形,造成密封失效。
低温阀门技术条件及试验低温阀门技术条件及试验为了保证低温阀能在低温下安全可靠地运行,在低温阀的设计和制造方面有一些特殊的考虑和要求。
同样,低温阀的试验与普通阀门也有所不同。
下面就JB/T7749-1995《低温阀门技术条件》和英国BS6364:R1998《低温阀门》的试验方法,试验要求和度验装置作简略的介绍。
1.低温阀门试验(JB/T7749-1995)(1)试验条件低温阀门的低温试验在常温试验合格后进行。
试验前应消除阀门水分和油脂,拧紧螺栓至预定的力矩或拉力,记录其数值。
用符合试验要求的热电偶与阀门连接,试验过程中临测阀体、阀盖的温度。
低温试验冷却介质为液氮与酒精的混合液或液氮,试验介质为氦气。
(2)试验步骤1)低温阀门试验装置见图2-46。
如图所示,将阀门安装在试验容器里,并接好所有接头,保证阀门填料处在容器上部,且温度保持在0度以上。
2)在常温及最大阀门试验压力下,使用氮气做初如检测试验,确保阀门在合适的条件下进行试验。
3)将阀门浸入液氮与酒精的混合液或液氮中冷却至阀门低温工况温度,其水平面盖住阀体与阀盖。
4)在低温工况温度下,按下列步骤进行操作:①在低温工况温度下,浸泡阀门直到各处的温度稳定为止,用热电偶测量保证阀门各处温度的均匀性;②在试验温度下,重复2.11.1(2)-2)的初始检测试验;③在试验温度和阀门的公称压力下,开关阀门5次做低温操作性能试验,配有驱动装置的阀门按上述要求做动作试验;④在最大阀门试验压力下,按阀门的正常流向做阀门密封试验,对于双向密封的阀门应分别进行试验,用流量计测量泄漏量时,其泄漏率应符合表2-23规定;⑤阀门处在开启位置时,关闭阀门出口端的针形阀(见图2-46,并向阀体加压至密封试验压力,保持15min,检查阀门填料处、阀体和阀盖连接处的密封性;⑥阀盖上密封的检查,有上密封的阀门应做上密封试验,试验时阀门全开,两端封闭,向阀内通入氦气至密封试验压力为止,松开填料压盖,检查上密封的密封性。