二年级数学奥数讲座仔细审题
- 格式:doc
- 大小:109.00 KB
- 文档页数:8
小学二年级上册奥数知识点专家讲座第1课《速算与巧算》练习及答案小学二年级上册奥数知识点专家讲座第1课《速算与巧算》练习及答案一、“凑整”先算 1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.。
小学二年级上册奥数知识点精讲第1课《速算与巧算》练习及答案一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:和=中间数x个数(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:和=(首数+末数)X个数的一般(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.习题一1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5二年级奥数上册:第一讲速算与巧算习题解答。
第五讲数字谜在这一节课中,教材内容中主要是通过不同的符号,汉字或字母来组成各种不同的竖式数字谜,让学生根据竖式的结构来计算这些未知的数字.弄清楚加减法各部分之间的数量关系是我们学习数字谜的基础.解答数字谜的关键是找准突破口.通过这节课的学习,要使学生掌握解答竖式数字谜的一般技巧.先要观察数字的特点,然后找出“关键位置”认真分析,一般可以引导学生从各个不同的数位进行考虑.解答完题目以后,教师还要培养学生验算的好习惯.小红在家做计算题,不小心碰倒了墨水瓶,把这两道题弄得残缺不全.认真观察一下,你能将墨迹破坏的数字找回来吗?【教学安排】 开课的时候,可用这道题来做引题,在学完例1后,可做为巩固练习来做.我们经常会看到一些残缺不全的算式,要求我们在方格内填上合适的数字,使算式成立.我们也经常看到在一个算式里面有很多的汉字或字母,要我们猜猜它们代表几,像这样的问题都是数字谜问题.在填数字时,要认真分析数字的特点,充分运用加、减法之间的关系,巧妙地安排每一个数,很快就能求出方格里应填的数字.今天这节课我们就一起来解答数字谜问题.动手动脑巧填方框里面的数例1在“庆元旦”晚会上,主持人小丽出了这样两道题目:1119761606请大家想一想,被纸片盖住的是什么数字?【分析】 (1) 先填个位,已知6+口的个位为1,所以口=5,且个位向十位进1.再填十位,由于个位向十位进1,十位上数□+7+1的个位数为1,所以十位数□应填3,且十位向百位进1.最后填百位,由十位进1,可知百位□填1.2()我们可以从位数入手.被减数是一个三位数,减数是一个两位数,差是一个一位数,应能推出它的被减数应尽可能的小,减数应尽可能大.再从个位入手,可知,被减数的个位是2,且个位向十位借1,而差的百位、十位上均无数字,说明被减数的百位是1,而减数十位上的数字是9.当然此题也可反着想:□6+6=□0□,也可推出答案.1531119761620619由上面的解题过程可以看到,解这种题应按三个步骤分析思考:(1)审题 审题就是找出算式中数字之间的关系和特征,挖掘题目中的隐含条件,它是确定各空格内应该填什么数字的主要依据.(2)选择解题突破口 在审题的基础上,认真思考找出算式中容易填出或关键性的空格,做为解题的突破口.这一步是填空格的关键.(3)确定各空格填什么数字 从突破口开始,依据竖式的已知条件,逐个填出各空格中的数字. 例2 用0123456789、、、、、、、、、这十个数字组成下面的加法算式,每个数字只许用一次,现已写出3个数字,请把这个算式补齐.好有意思的题目呀!【分析】 解题关键:由算式知,和的千位数字只能是百位上数字之和向前进的数,因此把确定千位数字做为突破口(1)填千位:据上分析,千位上只能填1.(2)确定百位:为了能使百位向千位进l ,所以第一个加数的百位可能是9或7.(因为8已用过) 试验:若百位上填9,则和的百位只可能是1或2,而1和2都已用过,因此百位上不能填9,只能填7.则和的百位为0,且元旦快乐842十位向百位进1.(3)确定剩下的4个空格:现在只剩下四个数字没有用,它们是96、、5、3.试验:若第二个加数的个位填5,和的个位为9,剩下的数字63、不能满足十位上的要求. 若第二个加数的个位填9,和的个位为3,剩下的数字5、6正好满足十位上的要求,即第一个加数的十位填6,和的十位填5.此题的答案为842178453201976例3在下面算式的空格内,各填入一个合适的数字,使算式成立.819【分析】 解题关键:这是一道四位数减去三位数差为两位数的减法,所以选择被减数的千位做为解题突破口.又由于个位上已知两个数字,因此先从个位入手填.①填个位 由于个位这一列只有一个待定的数,减数的个位应为9,且个位向十位借1.②填千位 四位数减去三位数差为两位数,所以被减数的千位数字是1,且百位向千位借1.③填百位 由于差是两位数,所以被减数的百位数字为0,十位也向百位借1.这样百位向千位借1当10,十位又向百位借1,还剩9,990-=,因此减数的百位应填9.④填十位 由于十位向百位借1,所以被减数的十位数字不得超过减数的十位数字,即被减数的十位数字是0或1,那么差的十位数字为8或9.此题有两个答案.899080119999810119[拓展] 把数字15~分别填写在下面算式中的口里.9876 984532176984532176[分析] 这题限制了所需要填的五个数字,且个位这一列只有一个空格,因此把确定个位数字做为解题突破口.①填个位 显然,差的个位上填1.②填百位 由差的十位数字8知,十位上数相减时,要向被减数的百位借1,这样百位上有91--口=口知,减数的百位填3或5,相应的差的百位上填5或3. ○3填十位 现在只剩下24、两个数,分别填在被减数和减数的十位上.例4 下面的算式里四个小纸片各盖住一个数字,问被盖住的四个数字的和是多少?941【分析】求被盖住的四个数字的和,对于这四个数具体是几并不十分重要.而和149的个位是9,所以个位数相加没有进位,即个位上两个数的和是9.十位上两个数的和是14.因此,被盖住的四个数字的和是14+9=23.【分析】这道题两个加数都不知道,只知道两个数的和,我们要知道这两个加数是多少,就要先找到解决问题的突破口.两个两位数的和是191,两个加数十位上数字都必须是9,而个位上两个数字的和要进位才能使十位数字的和是9,这样个位上两个数字和应该是11.因为29113811+=+=、47115611+=+=、,答案(答案不唯一,两个加数的顺序也可颠倒写)有:9992119999831199941179995611[拓展]下面的算式里,每个方框代表一个数字,问:这6个方框中数字的总和是多少?9911[分析]这6个方框中数字的总和是47.[拓展]在下面的加法算式中,第—个加数的各位数字之和恰好是和的各位数字之和的2倍.则第一个加数是多少?[分析]第一个加数是:169,和是170,1+6+9=16,1+7+0=8,16是8的2倍.例5在下面算式的空格内,各填入一个合适的数字,使算式成立.我来做下面方框可以填什么数?9111194199999999406119【分析】 这是一道加减法混合运算的填空格题,我们把加法、减法分开考虑,使问题简化:(1)加法:①填十位 从算式可以看出,第二个加数与和的十位上都是9,所以个位上数字之和一定向十位进了1,十位数字之和也向百位进了1,因此算式中十位上应是□+9+1=19,故第一个加数的十位上填9.②填个位 由于个位上1+口的和向十位进1,所以口中只能填9,和的个位就为0.③填百位和千位 由于两位数加三位数,和是四位数,所以百位上数相加后必向千位进1.这样第二个加数的百位应填9,和的千位填1,和的百位填0.2()减法: ①填个位 由于被减数的个位是0,差的个位是4,因此减数的个位应填6. ②填十位、百位 由于被减数是四位数,减数是三位数,差是两位数,所以减数的百位必须是9,同时十位相减时必须向百位借1,这样减数与差的十位也只能填9.【分析】 在这个题目中,我们要从低位开始考虑,而且一定要注意进位和退位的问题,除了方法更考察学生的口算能力.45453290453201733453298853207例6算下面竖式中的汉字各代表多少?我来做下面的方框各应该填几?53290453207 4529883207 数字、符号代表几?我爱数学我爱数学9065我=( ) 爱=( ) 数=( ) 学=( )【分析】 先看千位数,两个相同数相加,不可能是9,那么一定是百位向千位进了1,所以千位上是4,由于百位向千位进了1,因此,爱+爱=10,则爱=5,十位没有向百位进1.再看十位数,和是5,肯定个位进上了1,所以十位上数=2,个位上的数,学+学=16,则学=8,即:452845289056+=.我=(4),爱=(5), 数=(2),学=(8).[拓展] 下面的符号和汉字各代表几?2723111迎 运迎 奥 运280 我爱北京我爱北京0527△=( 8) 迎=( 1 ) 奥=( 9 ) 我=( 2 ) 爱=( 6 )运=( 4 ) 北=( 3 ) 京=( 5 )[拓展] 请你猜一猜,每个算式中的汉字各表示几?我爱数数数爱学2456 78724591161[分析] 首先我们可以确定百位的“数”=1,看个位,“爱”+5=2,所以“爱”=7; 再来观察上面的减法算式:“学”46717⨯-=,可见“学”=8;再来观察下面的加法算式:17 +“我”5=112⨯,可得“我”=9.答案如上.例7请你算一算,下面竖式中每个字各代表几?车卒马兵卒兵炮马卒兵炮车卒兵=( 5 ) 炮=( 2 ) 马=( 4 ) 车=( 1 ) 卒=( 0 )【分析】 我们从个位开始观察,卒+卒=卒,只有0+0=0,所以卒=0;再看和是一个五位数,所以车=1;再看千位,兵+兵=10,所以兵=5;然后看十位,马+车=兵,也就是马+1=5,所以马=4;最后看百位炮+炮=4,所以炮=2.[拓展] 相同的汉字代表相同的数字,这些汉字各代表几?泰寿山泰福永泰泰山泰山8888789991[分析] 泰=(8 )山=( 9 )福=( 1 )永=( 7 )寿=(0 )例8求当它们各代表什么数字时,能够使算式成立?节 乐 节儿 童 节 乐儿 童 节80个位十位百位千位09998119【分析】 被减数是一个四位数,减数是个三位数,所得的差是一个三位数,说明百位要向千位借l ,千位借走后无剩余,说明“儿”=1.因为百位上减1需要借位,所以“童”就只能取0,而十位上“节-童”肯定够减,不用向百位借位,这样从百位可得出“节”=9的结论.个位上分析可得出“乐”=8.即如上式所示.[拓展] 下面各数字表示几?元宵度元宵欢度元宵84919838883499911[分析] 从个位看“宵”+“宵”+“宵”= 4,可见“宵”=8,向十位进2.“元”+“元”+“元”=92-= 7,可见“元”=9,向百位进2.“度”+“度”=826-=,因此“度”=3,“欢”=1. 例9 相同的英文字母代表相同的数字,你知道下面A B C 、、代表几?C C B B B BAA A 512255111【分析】 这道题的突破口是要从百位上的B 进行思考,一个两位数加两位数,得数是一个三位数.那么这个三位数百位可能是1或者2.假设2B =,那么十位222A A ++=,这种情况不存在.因此可以肯定1B =,十位上111A A ++=,如果个位向十位进一,那么2个9A =,也不可能,因此2个10A =,5A =.当5A =时,看个位152C C C ++==、.答案如图:我来做下面竖式中的字母和符号各代表多少? B B BAA A 有点难度噢【分析】 A =( 4 ) B =( 5 ) C =( 1 )□=( 2 ) △=( 9 ) ○=( 5 )例10已知下面两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么满足下列算式的A B C D E ++++=?E D C B A 466E D1C B A 87【分析】 从右边的算式中我们马上可以看出1C =,再看左边算式的个位,14C E E +=+=,可推出3E =.由右边算式的十位上7B E +=,即37B +=,推出4B =.从左边算式十位上6B D +=,即46D +=,所以2D =,再推右边算式个位28A D A +=+=,所以6A =.于是得到两个算式:623446161827346164123A B C D E =====、、、、, 所以,6412316A B C D E ++++=++++=.试试看练 习 五1.在下列竖式的空格内,各填入一个合适的数字,使竖式成立. 97734718835994 12194【答案】 (1) (2)971273411 97127341171882233455994(3) (4)10829911129991119105942.下面的符号各表示几?9318391618759【答案】93183916187593. 下面的汉字各代表几?【答案】4.下面的符号代表几?9825413183441【答案】98254131834415.下边的加法算式中,□内这四个数字之和是多少?111【答案】□内的数字之和是30.花样游泳这是一项既包括舞蹈内容的柔美、飘逸,又有体育的刚劲、有力的女子运动,也被称为“水上芭蕾”.奥运会花样游泳包括双人和集体两项,比赛也在奥林匹克公园的国家游泳中心举行.每个国家或地区的奥委会或协会只能参加一个集体和一个双人项目.集体项目比赛每队应有8人,但可报2名替补队员.按照规定,花样游泳比赛的泳池至少20米宽、30米长,并在其中12米宽、12米长的区域内,水深必须达到3米.在规定动作比赛时,运动员必须头戴白色泳帽,身穿黑色游泳衣;自选动作比赛时,运动员需身穿艳丽的游泳衣,泳衣上可以设计不同的图案,头发盘成发髻并戴上各种美丽的头饰.奥运会花样游泳只进行技术自选和自由自选比赛,最后总成绩由技术自选和自由自选各占50%,总成绩最高的集体和选手获得金牌.自选比赛在比赛的时间限制、音响伴奏以及裁判员的评分要求上都有比较严格的规定.其中的技术自选受规则限制,按照一定动作内容和动作顺序完成整套动作,而自由自选则不受内容和动作顺序的限制,可自由创编,自由组合.。
第五讲数字谜在这一节课中,教材内容中主要是通过不同的符号,汉字或字母来组成各种不同的竖式数字谜,让学生根据竖式的结构来计算这些未知的数字.弄清楚加减法各部分之间的数量关系是我们学习数字谜的基础.解答数字谜的关键是找准突破口.通过这节课的学习,要使学生掌握解答竖式数字谜的一般技巧.先要观察数字的特点,然后找出“关键位置”认真分析,一般可以引导学生从各个不同的数位进行考虑.解答完题目以后,教师还要培养学生验算的好习惯.小红在家做计算题,不小心碰倒了墨水瓶,把这两道题弄得残缺不全.认真观察一下,你能将墨迹破坏的数字找回来吗?【教学安排】 开课的时候,可用这道题来做引题,在学完例1后,可做为巩固练习来做.我们经常会看到一些残缺不全的算式,要求我们在方格内填上合适的数字,使算式成立.我们也经常看到在一个算式里面有很多的汉字或字母,要我们猜猜它们代表几,像这样的问题都是数字谜问题.在填数字时,要认真分析数字的特点,充分运用加、减法之间的关系,巧妙地安排每一个数,很快就能求出方格里应填的数字.今天这节课我们就一起来解答数字谜问题.动手动脑巧填方框里面的数例1在“庆元旦”晚会上,主持人小丽出了这样两道题目:1119761606请大家想一想,被纸片盖住的是什么数字?【分析】 (1) 先填个位,已知6+口的个位为1,所以口=5,且个位向十位进1.再填十位,由于个位向十位进1,十位上数□+7+1的个位数为1,所以十位数□应填3,且十位向百位进1.最后填百位,由十位进1,可知百位□填1.2()我们可以从位数入手.被减数是一个三位数,减数是一个两位数,差是一个一位数,应能推出它的被减数应尽可能的小,减数应尽可能大.再从个位入手,可知,被减数的个位是2,且个位向十位借1,而差的百位、十位上均无数字,说明被减数的百位是1,而减数十位上的数字是9.当然此题也可反着想:□6+6=□0□,也可推出答案.1531119761620619由上面的解题过程可以看到,解这种题应按三个步骤分析思考:(1)审题 审题就是找出算式中数字之间的关系和特征,挖掘题目中的隐含条件,它是确定各空格内应该填什么数字的主要依据.(2)选择解题突破口 在审题的基础上,认真思考找出算式中容易填出或关键性的空格,做为解题的突破口.这一步是填空格的关键.(3)确定各空格填什么数字 从突破口开始,依据竖式的已知条件,逐个填出各空格中的数字. 例2 用0123456789、、、、、、、、、这十个数字组成下面的加法算式,每个数字只许用一次,现已写出3个数字,请把这个算式补齐.好有意思的题目呀!【分析】 解题关键:由算式知,和的千位数字只能是百位上数字之和向前进的数,因此把确定千位数字做为突破口(1)填千位:据上分析,千位上只能填1.(2)确定百位:为了能使百位向千位进l ,所以第一个加数的百位可能是9或7.(因为8已用过) 试验:若百位上填9,则和的百元旦快乐842位只可能是1或2,而1和2都已用过,因此百位上不能填9,只能填7.则和的百位为0,且十位向百位进1.(3)确定剩下的4个空格:现在只剩下四个数字没有用,它们是96、、5、3.试验:若第二个加数的个位填5,和的个位为9,剩下的数字63、不能满足十位上的要求. 若第二个加数的个位填9,和的个位为3,剩下的数字5、6正好满足十位上的要求,即第一个加数的十位填6,和的十位填5.此题的答案为842178453201976例3把数字15~分别填写在下面算式中的口里.9876984532176984532176【分析】 这题限制了所需要填的五个数字,且个位这一列只有一个空格,因此把确定个位数字做为解题突破口.①填个位 显然,差的个位上填1.②填百位 由差的十位数字8知,十位上数相减时,要向被减数的百位借1,这样百位上有91--口=口知,减数的百位填3或5,相应的差的百位上填5或3. ○3填十位 现在只剩下24、两个数,分别填在被减数和减数的十位上.[拓展] 在下面算式的空格内,各填入一个合适的数字,使算式成立.819899080119999810119[分析] 解题关键:这是一道四位数减去三位数差为两位数的减法,所以选择被减数的千位做为解题突破口.又由于个位上已知两个数字,因此先从个位入手填.①填个位 由于个位这一列只有一个待定的数,减数的个位应为9,且个位向十位借1.②填千位 四位数减去三位数差为两位数,所以被减数的千位数字是1,且百位向千位借1.③填百位 由于差是两位数,所以被减数的百位数字为0,十位也向百位借1.这样百位向千位借1当10,十位又向百位借1,还剩9,990-=,因此减数的百位应填9.④填十位 由于十位向百位借1,所以被减数的十位数字不得超过减数的十位数字,即被减数的十位数字是0或1,那么差的十位数字为8或9.此题有两个答案.例4 下面的算式里四个小纸片各盖住一个数字,问被盖住的四个数字的和是多少?9119992119999831199941179995611【分析】 这道题两个加数都不知道,只知道两个数的和,我们要知道这两个加数是多少,就要先找到解决问题的突破口.两个两位数的和是191,两个加数十位上数字都必须是9,而个位上两个数字的和要进位才能使十位数字的和是9,这样个位上两个数字和应该是11.因为29113811+=+=、47115611+=+=、,答案如图(答案不唯一,两个加数的顺序也可颠倒写).[拓展] 图中方框可以填什么数?[分析] 求被盖住的四个数字的和,对于这四个数具体是几并不十分重要.而和149的个位是9,所以个位数相加没有进位,即个位上两个数的和是9.十位上两个数的和是14.因此,被盖住的四个数字的和是14+9=23.[拓展] 下面的算式里,每个方框代表一个数字,问:这6个方框中数字的总和是多少?[分析] 这6个方框中数字的总和是47.例5 在下面算式的空格内,各填入一个合适的数字,使算式成立.94199999999406119【分析】 这是一道加减法混合运算的填空格题,我们把加法、减法分开考虑,使问题简化:(1)加法:①填十位 从算式可以看出,第二个加数与和的十位上都是9,所以个位上数字之和一定向十位进了1,十位数字之和也向百位进了1,因此算式中十位上应是□+9+1=19,故第一个加数的十位上填9.②填个位 由于个位上1+口的和向十位进1,所以口中只能填9,和的个位就为0.③填百位和千位 由于两位数加三位数,和是四位数,所以百位上数相加后必向千位进1.这样第二个加数的百位应填9,和的千位填1,和的百位填0.2()减法: ①填个位 由于被减数的个位是0,差的个位是4,因此减数的个位应填6. ②填十位、百位 由于被减数是四位数,减数是三位数,差是两位数,所以减数的百位必须是9,同时十位相减时必须向百位借1,这样减数与差的十位也只能填9.[拓展] 下面的方框各应该填几?5329045320745298832079419911[分析] 在这个题目中,我们要从低位开始考虑,而且一定要注意进位和退位的问题,除了方法更考察学生的口算能力.45453290453201733453298853207例6请你猜一猜,每个算式中的汉字各表示几?我爱数数数爱学2456 78724591161【分析】 首先我们可以确定百位的“数”=1,看个位,“爱”+5=2,所以“爱”=7; 再来观察上面的减法算式:“学”46717⨯-=,可见“学”=8;再来观察下面的加法算式:17 +“我”5=112⨯,可得“我”=9.答案如上.[拓展] 下面的符号和汉字各代表几?2723111迎 运迎 奥 运280 我爱北京我爱北京0527△=( 8) 迎=( 1 ) 奥=( 9 ) 我=( 2 ) 爱=( 6 )运=( 4 ) 北=( 3 ) 京=( 5 )例7算下面竖式中的汉字各代表多少?我爱数学我爱数学9065我=( ) 爱=( ) 数=( ) 学=( )【分析】 先看千位数,两个相同数相加,不可能是9,那么一定是百位向千位进了1,所以千位上是4,由于百位向千位进了1,因此,爱+爱=10,则爱=5,十位没有向百位进1.再看十位数,和是5,肯定个位进上了1,所以十位上数=2,个位上的数,学+学=16,则学=8,即:452845289056+=.数字、符号代表几?我=(4),爱=(5), 数=(2),学=(8).[拓展] 相同的汉字代表相同的数字,这些汉字各代表几?泰寿山泰福永泰泰山泰山8888789991[分析] 泰=(8 )山=( 9 )福=( 1 )永=( 7 )寿=(0 ) 例8 求当它们各代表什么数字时,能够使算式成立?节 乐 节儿 童 节 乐儿 童 节80个位十位百位千位09998119【分析】 被减数是一个四位数,减数是个三位数,所得的差是一个三位数,说明百位要向千位借l ,千位借走后无剩余,说明“儿”=1.因为百位上减1需要借位,所以“童”就只能取0,而十位上“节-童”肯定够减,不用向百位借位,这样从百位可得出“节”=9的结论.个位上分析可得出“乐”=8.即如上式所示.例9 下面各数字表示几?【分析】 从个位看“宵”+“宵”+“宵”= 4,可见“宵”=8,向十位进2.“元”+“元”+“元”=92-= 7,可见“元”=9,向百位进2.“度”+“度”=826-=,因此“度”=3, “欢”=1.例10 相同的英文字母代表相同的数字,你知道下面A B C 、、代表几?C C B B B BAA A 512255111【分析】 这道题的突破口是要从百位上的B 进行思考,一个两位数加两位数,得数是一个三位数.那么这个三位数百位可能是1或者2.假设2B =,那么十位222A A ++=,这种情况不存在.因此可以肯定1B =,十位上111A A ++=,如果个位向十位进一,那么2个9A =,也不可能,因此2个10A =,5A =.当5A =时,看个位152C C C ++==、.答案如图:有点难度噢元宵度元宵欢度元宵84919838883499911[拓展] 下面竖式中的字母和符号各代表多少?AA C BB BA A A777[分析] A =( 4 ) B =( 5 ) C =( 1 )□=( 2 ) △=( 9 ) ○=( 5 )[拓展] 已知下面两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么满足下列算式的A B C D E ++++=?E D C B A 466E D1C B A 87[分析] 从右边的算式中我们马上可以看出1C =,再看左边算式的个位,14C E E +=+=,可推出3E =.由右边算式的十位上7B E +=,即37B +=,推出4B =.从左边算式十位上6B D +=,即46D +=,所以2D =,再推右边算式个位28A D A +=+=,所以6A =.于是得到两个算式:623446161827346164123A B C D E =====、、、、,所以,6412316A B C D E ++++=++++=.练 习 五1.在下列竖式的空格内,各填入一个合适的数字,使竖式成立. 97734718835994 12194试试看【答案】 (1) (2)971273411 97127341171882233455994(3) (4)10829911129991119105942.下面的符号各表示几?9318391618759【答案】93183916187593.下面的符号代表几?9825413183441【答案】98254131834414.下边的加法算式中,□内这四个数字之和是多少?111【答案】□内的数字之和是30.花样游泳这是一项既包括舞蹈内容的柔美、飘逸,又有体育的刚劲、有力的女子运动,也被称为“水上芭蕾”.奥运会花样游泳包括双人和集体两项,比赛也在奥林匹克公园的国家游泳中心举行.每个国家或地区的奥委会或协会只能参加一个集体和一个双人项目.集体项目比赛每队应有8人,但可报2名替补队员.按照规定,花样游泳比赛的泳池至少20米宽、30米长,并在其中12米宽、12米长的区域内,水深必须达到3米.在规定动作比赛时,运动员必须头戴白色泳帽,身穿黑色游泳衣;自选动作比赛时,运动员需身穿艳丽的游泳衣,泳衣上可以设计不同的图案,头发盘成发髻并戴上各种美丽的头饰.奥运会花样游泳只进行技术自选和自由自选比赛,最后总成绩由技术自选和自由自选各占50%,总成绩最高的集体和选手获得金牌.自选比赛在比赛的时间限制、音响伴奏以及裁判员的评分要求上都有比较严格的规定.其中的技术自选受规则限制,按照一定动作内容和动作顺序完成整套动作,而自由自选则不受内容和动作顺序的限制,可自由创编,自由组合.。
小学二年级上册奥数知识点专家讲座第1课《速算与巧算》练习及答案一、“凑整”先算1.计算:(1)24+44+56 (2)53+36+47 解:(1)24+44+56=24+(44+56)=24+100=124 这样想:因为44+56=100是个整百的数,所以先把它们的和算出来. (2)53+36+47=53+47+36 =(53+47)+36=100+36=136 这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15 (2)52+69 解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111 这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算. (2)52+69=(21+31)+69 =21+(31+69)=21+100=121 这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19 (2)28+28+28 解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19)=60+20+20=100 这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算. (2)28+28+28 =(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84 这样想:因为28+2=30可凑整,但最后要把多加的三个2减去. 二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19 (2)45+18-19 解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46 这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1. (2)45+18-19=45+(18-19)=45-1=44 这样想:加18减19的结果就等于减1. 三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,9 1,3,5,7,9 2,4,6,8,10 3,6,9,12,15 4,8,12,16,20等等都是等差连续数. 1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9 =5×9 中间数是5 =45 共9个数(2)计算:1+3+5+7+9 =5×5 中间数是5 =25 共有5个数(3)计算:2+4+6+8+10 =6×5 中间数是6 =30 共有5个数(4)计算:3+6+9+12+15 =9×5 中间数是9 =45 共有5个数(5)计算:4+8+12+16+20 =12×5 中间数是12 =60 共有5个数 2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10 =(1+10)×5=11×5=55 共10个数,个数的一半是5,首数是1,末数是10. (2)计算:3+5+7+9+11+13+15+17 =(3+17)×4=20×4=80 共8个数,个数的一半是4,首数是3,末数是17. (3)计算:2+4+6+8+10+12+14+16+18+20 =(2+20)×5=110 共10个数,个数的一半是5,首数是2,末数是20. 四、基准数法(1)计算:23+20+19+22+18+21 解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去. 23+20+19+22+18+21 =20×6+3+0-1+2-2+1 =120+3=123 6个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推. (2)计算:102+100+99+101+98 解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算. 102+100+99+101+98 =100×5+2+0-1+1-2=500 方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98 =98+99+100+101+102 =100×5=500 可发现这是一个等差连续数的求和问题,中间数是100,个数是5.习题一 1.计算:(1)18+28+72 (2)87+15+13 (3)43+56+17+24 (4)28+44+39+62+56+21 2.计算:(1)98+67 (2)43+28 (3)75+26 3.计算:(1)82-49+18 (2)82-50+49 (3)41-64+29 4.计算:(1)99+98+97+96+95 (2)9+99+999 5.计算:(1)5+6+7+8+9 (2)5+10+15+20+25+30+35 (3)9+18+27+36+45+54 (4)12+14+16+18+20+22+24+26 6.计算:(1)53+49+51+48+52+50 (2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5。
小学奥数二年级图形推理题解题策略指导小学奥数中的图形推理题是一种常见的题型,不仅考察学生的观察能力和逻辑思维能力,同时也是培养学生综合思考和解决问题的能力的一种方式。
在解答这类题目时,有一些有效的解题策略可以帮助学生更好地理解题意,并且提高解题的准确性。
下面将为大家介绍一些小学奥数二年级图形推理题解题策略。
一、细致观察题目描述在解答图形推理题之前,应仔细观察题目中的图形,了解图形的特点和规律。
关注图形中的形状、数量、位置、颜色等各个方面的变化,并尝试找出其中的规律或者特殊性质。
通过对图形的细致观察,可以更好地理解题目并找到解题的线索。
二、总结规律和特点在初步观察图形后,可以尝试总结图形中存在的规律和特点。
这些规律和特点可以是图形的变化趋势,也可以是图形之间的关系。
例如,图形可能根据一定的顺序增加、减少、旋转或者翻转;图形之间可能存在对称关系、相同关系或者排列关系。
通过总结规律和特点,可以帮助我们更好地把握题目的解题思路。
三、推理和预测答案理解题目的规律和特点后,可以通过推理和预测的方式确定答案。
根据已经总结的规律和特点,观察题目中的图形变化情况并进行分析,找出规律并根据规律进行推理。
在推理的过程中,可以使用排除法来逐步排除不符合规律的选项,并逐渐缩小答案的范围。
同时,可以根据已知图形的特征判断出未知图形的性质,从而得出正确答案。
四、检查和验证答案在确定了一组解题的答案之后,应该再次检查和验证答案的准确性。
通过将答案应用到其他类似的题目中,观察是否能够得到相同的结果。
如果结果一致,那么答案基本上是正确的;如果结果不一致,那么需要重新审查解题的过程并寻找错误的原因。
以上是小学奥数二年级图形推理题解题的一些策略指导。
在解答这类题目时,需要学生们保持头脑清晰、耐心细致。
通过细致观察、总结规律、推理预测以及检查验证答案的策略,相信同学们能够更好地解答图形推理题,提高奥数的成绩。
希望这些指导能对大家有所帮助!。
小学二年级上册数学奥数知识点讲解第1课《速算与巧算》试题附答案一、“凑整”先算1.计算:(1)24+44+56(2)53+36+472.计算:(1)96+15(2)52+693.计算:(1)63+18+19(2)28+28+28二、改变运算顺序:在只有“+”、“-”的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:和=中间数x个数(1)计算:1+2+3+4+5+6+7+8+9(2)计算:1+3+5+7+9(3)计算:2+4+6+8+10(4)计算:3+6+9+12+15(5)计算:4+8+12+16+202. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:和=(首数+末数)X个数的一般(1)计算:1+2+3+4+5+6+7+8+9+10(2)计算:3+5+7+9+11+13+15+17(3)计算:2+4+6+8+10+12+14+16+18+20四、基准数法(1)计算:23+20+19+22+18+21(2)计算:102+100+99+101+98习题一 1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5答案一、“凑整”先算 1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:和=中间数x个数(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:和=(首数+末数)X个数的一般(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.习题一 1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5二年级奥数上册:第一讲速算与巧算习题解答。
小学二年级上册奥数知识点专家讲座第1课《速算与巧算》练习及答案一、“凑整”先算1.计算:(1)24+44+56 (2)53+36+47 解:(1)24+44+56=24+(44+56)=24+100=124 这样想:因为44+56=100是个整百的数,所以先把它们的和算出来. (2)53+36+47=53+47+36 =(53+47)+36=100+36=136 这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15 (2)52+69 解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111 这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算. (2)52+69=(21+31)+69 =21+(31+69)=21+100=121 这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19 (2)28+28+28 解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19)=60+20+20=100 这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算. (2)28+28+28 =(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84 这样想:因为28+2=30可凑整,但最后要把多加的三个2减去. 二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19 (2)45+18-19 解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46 这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1. (2)45+18-19=45+(18-19)=45-1=44 这样想:加18减19的结果就等于减1. 三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,9 1,3,5,7,9 2,4,6,8,10 3,6,9,12,15 4,8,12,16,20等等都是等差连续数. 1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9 =5×9 中间数是5 =45 共9个数(2)计算:1+3+5+7+9 =5×5 中间数是5 =25 共有5个数(3)计算:2+4+6+8+10 =6×5 中间数是6 =30 共有5个数(4)计算:3+6+9+12+15 =9×5 中间数是9 =45 共有5个数(5)计算:4+8+12+16+20 =12×5 中间数是12 =60 共有5个数 2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10 =(1+10)×5=11×5=55 共10个数,个数的一半是5,首数是1,末数是10. (2)计算:3+5+7+9+11+13+15+17 =(3+17)×4=20×4=80 共8个数,个数的一半是4,首数是3,末数是17. (3)计算:2+4+6+8+10+12+14+16+18+20 =(2+20)×5=110 共10个数,个数的一半是5,首数是2,末数是20. 四、基准数法(1)计算:23+20+19+22+18+21 解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去. 23+20+19+22+18+21 =20×6+3+0-1+2-2+1 =120+3=123 6个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推. (2)计算:102+100+99+101+98 解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算. 102+100+99+101+98 =100×5+2+0-1+1-2=500 方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98 =98+99+100+101+102 =100×5=500 可发现这是一个等差连续数的求和问题,中间数是100,个数是5.习题一 1.计算:(1)18+28+72 (2)87+15+13 (3)43+56+17+24 (4)28+44+39+62+56+21 2.计算:(1)98+67 (2)43+28 (3)75+26 3.计算:(1)82-49+18 (2)82-50+49 (3)41-64+29 4.计算:(1)99+98+97+96+95 (2)9+99+999 5.计算:(1)5+6+7+8+9 (2)5+10+15+20+25+30+35 (3)9+18+27+36+45+54 (4)12+14+16+18+20+22+24+26 6.计算:(1)53+49+51+48+52+50 (2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5。
第五讲数字谜在这一节课中,教材内容中主要是通过不同的符号,汉字或字母来组成各种不同的竖式数字谜,让学生根据竖式的结构来计算这些未知的数字.弄清楚加减法各部分之间的数量关系是我们学习数字谜的基础.解答数字谜的关键是找准突破口.通过这节课的学习,要使学生掌握解答竖式数字谜的一般技巧.先要观察数字的特点,然后找出“关键位置”认真分析,一般可以引导学生从各个不同的数位进行考虑.解答完题目以后,教师还要培养学生验算的好习惯.小红在家做计算题,不小心碰倒了墨水瓶,把这两道题弄得残缺不全.认真观察一下,你能将墨迹破坏的数字找回来吗?【教学安排】 开课的时候,可用这道题来做引题,在学完例1后,可做为巩固练习来做.我们经常会看到一些残缺不全的算式,要求我们在方格内填上合适的数字,使算式成立.我们也经常看到在一个算式里面有很多的汉字或字母,要我们猜猜它们代表几,像这样的问题都是数字谜问题.在填数字时,要认真分析数字的特点,充分运用加、减法之间的关系,巧妙地安排每一个数,很快就能求出方格里应填的数字.今天这节课我们就一起来解答数字谜问题.动手动脑巧填方框里面的数例1在“庆元旦”晚会上,主持人小丽出了这样两道题目:1119761606请大家想一想,被纸片盖住的是什么数字?【分析】 (1) 先填个位,已知6+口的个位为1,所以口=5,且个位向十位进1.再填十位,由于个位向十位进1,十位上数□+7+1的个位数为1,所以十位数□应填3,且十位向百位进1.最后填百位,由十位进1,可知百位□填1.2()我们可以从位数入手.被减数是一个三位数,减数是一个两位数,差是一个一位数,应能推出它的被减数应尽可能的小,减数应尽可能大.再从个位入手,可知,被减数的个位是2,且个位向十位借1,而差的百位、十位上均无数字,说明被减数的百位是1,而减数十位上的数字是9.当然此题也可反着想:□6+6=□0□,也可推出答案.1531119761620619由上面的解题过程可以看到,解这种题应按三个步骤分析思考:(1)审题 审题就是找出算式中数字之间的关系和特征,挖掘题目中的隐含条件,它是确定各空格内应该填什么数字的主要依据.(2)选择解题突破口 在审题的基础上,认真思考找出算式中容易填出或关键性的空格,做为解题的突破口.这一步是填空格的关键.(3)确定各空格填什么数字 从突破口开始,依据竖式的已知条件,逐个填出各空格中的数字. 例2 用0123456789、、、、、、、、、这十个数字组成下面的加法算式,每个数字只许用一次,现已写出3个数字,请把这个算式补齐.好有意思的题目呀!【分析】 解题关键:由算式知,和的千位数字只能是百位上数字之和向前进的数,因此把确定千位数字做为突破口(1)填千位:据上分析,千位上只能填1.(2)确定百位:为了能使百位向千位进l ,所以第一个加数的百位可能是9或7.(因为8已用过) 试验:若百位上填9,则和的百位只可能是1或2,而1和2都已用过,因此百位上不能填9,只能填7.则和的百位为0,且元旦快乐842十位向百位进1.(3)确定剩下的4个空格:现在只剩下四个数字没有用,它们是96、、5、3.试验:若第二个加数的个位填5,和的个位为9,剩下的数字63、不能满足十位上的要求. 若第二个加数的个位填9,和的个位为3,剩下的数字5、6正好满足十位上的要求,即第一个加数的十位填6,和的十位填5.此题的答案为842178453201976例3在下面算式的空格内,各填入一个合适的数字,使算式成立.819【分析】 解题关键:这是一道四位数减去三位数差为两位数的减法,所以选择被减数的千位做为解题突破口.又由于个位上已知两个数字,因此先从个位入手填.①填个位 由于个位这一列只有一个待定的数,减数的个位应为9,且个位向十位借1.②填千位 四位数减去三位数差为两位数,所以被减数的千位数字是1,且百位向千位借1.③填百位 由于差是两位数,所以被减数的百位数字为0,十位也向百位借1.这样百位向千位借1当10,十位又向百位借1,还剩9,990-=,因此减数的百位应填9.④填十位 由于十位向百位借1,所以被减数的十位数字不得超过减数的十位数字,即被减数的十位数字是0或1,那么差的十位数字为8或9.此题有两个答案.899080119999810119[拓展] 把数字15~分别填写在下面算式中的口里.9876 984532176984532176[分析] 这题限制了所需要填的五个数字,且个位这一列只有一个空格,因此把确定个位数字做为解题突破口.①填个位 显然,差的个位上填1.②填百位 由差的十位数字8知,十位上数相减时,要向被减数的百位借1,这样百位上有91--口=口知,减数的百位填3或5,相应的差的百位上填5或3. ○3填十位 现在只剩下24、两个数,分别填在被减数和减数的十位上.例4 下面的算式里四个小纸片各盖住一个数字,问被盖住的四个数字的和是多少?941【分析】求被盖住的四个数字的和,对于这四个数具体是几并不十分重要.而和149的个位是9,所以个位数相加没有进位,即个位上两个数的和是9.十位上两个数的和是14.因此,被盖住的四个数字的和是14+9=23.【分析】这道题两个加数都不知道,只知道两个数的和,我们要知道这两个加数是多少,就要先找到解决问题的突破口.两个两位数的和是191,两个加数十位上数字都必须是9,而个位上两个数字的和要进位才能使十位数字的和是9,这样个位上两个数字和应该是11.因为29113811+=+=、47115611+=+=、,答案(答案不唯一,两个加数的顺序也可颠倒写)有:9992119999831199941179995611[拓展]下面的算式里,每个方框代表一个数字,问:这6个方框中数字的总和是多少?9911[分析]这6个方框中数字的总和是47.[拓展]在下面的加法算式中,第—个加数的各位数字之和恰好是和的各位数字之和的2倍.则第一个加数是多少?[分析]第一个加数是:169,和是170,1+6+9=16,1+7+0=8,16是8的2倍.例5在下面算式的空格内,各填入一个合适的数字,使算式成立.我来做下面方框可以填什么数?9111194199999999406119【分析】 这是一道加减法混合运算的填空格题,我们把加法、减法分开考虑,使问题简化:(1)加法:①填十位 从算式可以看出,第二个加数与和的十位上都是9,所以个位上数字之和一定向十位进了1,十位数字之和也向百位进了1,因此算式中十位上应是□+9+1=19,故第一个加数的十位上填9.②填个位 由于个位上1+口的和向十位进1,所以口中只能填9,和的个位就为0.③填百位和千位 由于两位数加三位数,和是四位数,所以百位上数相加后必向千位进1.这样第二个加数的百位应填9,和的千位填1,和的百位填0.2()减法: ①填个位 由于被减数的个位是0,差的个位是4,因此减数的个位应填6. ②填十位、百位 由于被减数是四位数,减数是三位数,差是两位数,所以减数的百位必须是9,同时十位相减时必须向百位借1,这样减数与差的十位也只能填9.【分析】 在这个题目中,我们要从低位开始考虑,而且一定要注意进位和退位的问题,除了方法更考察学生的口算能力.45453290453201733453298853207例6算下面竖式中的汉字各代表多少?我来做下面的方框各应该填几?53290453207 4529883207 数字、符号代表几?我爱数学我爱数学9065我=( ) 爱=( ) 数=( ) 学=( )【分析】 先看千位数,两个相同数相加,不可能是9,那么一定是百位向千位进了1,所以千位上是4,由于百位向千位进了1,因此,爱+爱=10,则爱=5,十位没有向百位进1.再看十位数,和是5,肯定个位进上了1,所以十位上数=2,个位上的数,学+学=16,则学=8,即:452845289056+=.我=(4),爱=(5), 数=(2),学=(8).[拓展] 下面的符号和汉字各代表几?2723111迎 运迎 奥 运280 我爱北京我爱北京0527△=( 8) 迎=( 1 ) 奥=( 9 ) 我=( 2 ) 爱=( 6 )运=( 4 ) 北=( 3 ) 京=( 5 )[拓展] 请你猜一猜,每个算式中的汉字各表示几?我爱数数数爱学2456 78724591161[分析] 首先我们可以确定百位的“数”=1,看个位,“爱”+5=2,所以“爱”=7; 再来观察上面的减法算式:“学”46717⨯-=,可见“学”=8;再来观察下面的加法算式:17 +“我”5=112⨯,可得“我”=9.答案如上.例7请你算一算,下面竖式中每个字各代表几?车卒马兵卒兵炮马卒兵炮车卒兵=( 5 ) 炮=( 2 ) 马=( 4 ) 车=( 1 ) 卒=( 0 )【分析】 我们从个位开始观察,卒+卒=卒,只有0+0=0,所以卒=0;再看和是一个五位数,所以车=1;再看千位,兵+兵=10,所以兵=5;然后看十位,马+车=兵,也就是马+1=5,所以马=4;最后看百位炮+炮=4,所以炮=2.[拓展] 相同的汉字代表相同的数字,这些汉字各代表几?泰寿山泰福永泰泰山泰山8888789991[分析] 泰=(8 )山=( 9 )福=( 1 )永=( 7 )寿=(0 )例8求当它们各代表什么数字时,能够使算式成立?节 乐 节儿 童 节 乐儿 童 节80个位十位百位千位09998119【分析】 被减数是一个四位数,减数是个三位数,所得的差是一个三位数,说明百位要向千位借l ,千位借走后无剩余,说明“儿”=1.因为百位上减1需要借位,所以“童”就只能取0,而十位上“节-童”肯定够减,不用向百位借位,这样从百位可得出“节”=9的结论.个位上分析可得出“乐”=8.即如上式所示.[拓展] 下面各数字表示几?元宵度元宵欢度元宵84919838883499911[分析] 从个位看“宵”+“宵”+“宵”= 4,可见“宵”=8,向十位进2.“元”+“元”+“元”=92-= 7,可见“元”=9,向百位进2.“度”+“度”=826-=,因此“度”=3,“欢”=1. 例9 相同的英文字母代表相同的数字,你知道下面A B C 、、代表几?C C B B B BAA A 512255111【分析】 这道题的突破口是要从百位上的B 进行思考,一个两位数加两位数,得数是一个三位数.那么这个三位数百位可能是1或者2.假设2B =,那么十位222A A ++=,这种情况不存在.因此可以肯定1B =,十位上111A A ++=,如果个位向十位进一,那么2个9A =,也不可能,因此2个10A =,5A =.当5A =时,看个位152C C C ++==、.答案如图:我来做下面竖式中的字母和符号各代表多少? B B BAA A 有点难度噢【分析】 A =( 4 ) B =( 5 ) C =( 1 )□=( 2 ) △=( 9 ) ○=( 5 )例10已知下面两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么满足下列算式的A B C D E ++++=?E D C B A 466E D1C B A 87【分析】 从右边的算式中我们马上可以看出1C =,再看左边算式的个位,14C E E +=+=,可推出3E =.由右边算式的十位上7B E +=,即37B +=,推出4B =.从左边算式十位上6B D +=,即46D +=,所以2D =,再推右边算式个位28A D A +=+=,所以6A =.于是得到两个算式:623446161827346164123A B C D E =====、、、、, 所以,6412316A B C D E ++++=++++=.试试看练 习 五1.在下列竖式的空格内,各填入一个合适的数字,使竖式成立. 97734718835994 12194【答案】 (1) (2)971273411 97127341171882233455994(3) (4)10829911129991119105942.下面的符号各表示几?9318391618759【答案】93183916187593. 下面的汉字各代表几?【答案】4.下面的符号代表几?9825413183441【答案】98254131834415.下边的加法算式中,□内这四个数字之和是多少?111【答案】□内的数字之和是30.花样游泳这是一项既包括舞蹈内容的柔美、飘逸,又有体育的刚劲、有力的女子运动,也被称为“水上芭蕾”.奥运会花样游泳包括双人和集体两项,比赛也在奥林匹克公园的国家游泳中心举行.每个国家或地区的奥委会或协会只能参加一个集体和一个双人项目.集体项目比赛每队应有8人,但可报2名替补队员.按照规定,花样游泳比赛的泳池至少20米宽、30米长,并在其中12米宽、12米长的区域内,水深必须达到3米.在规定动作比赛时,运动员必须头戴白色泳帽,身穿黑色游泳衣;自选动作比赛时,运动员需身穿艳丽的游泳衣,泳衣上可以设计不同的图案,头发盘成发髻并戴上各种美丽的头饰.奥运会花样游泳只进行技术自选和自由自选比赛,最后总成绩由技术自选和自由自选各占50%,总成绩最高的集体和选手获得金牌.自选比赛在比赛的时间限制、音响伴奏以及裁判员的评分要求上都有比较严格的规定.其中的技术自选受规则限制,按照一定动作内容和动作顺序完成整套动作,而自由自选则不受内容和动作顺序的限制,可自由创编,自由组合.。
小学二年级上册奥数知识点精讲第1课《速算与巧算》练习及答案一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:和=中间数x个数(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:和=(首数+末数)X个数的一般(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.习题一1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5二年级奥数上册:第一讲速算与巧算习题解答。
二年级数学奥数讲座仔细审题
二年级仔细审题
解数学题很关键的一步是审题。
如果把题目看错了,或是把题意理解错了,那样解题肯定是得不出正确的答案来的。
什么叫审题?扼要地讲,审题就是要弄清楚:未知数是什么?已知数是什么?条件是什么?
有一种类型的数学题叫“机智题”。
在这一讲要通过解这种题体会如何审题。
例1 ①树上有5只小鸟,飞起了1只,还剩几只?
②树上有5只小鸟,“叭”地一声,猎人用枪打下来1只,树上还剩几只?
解:①5-1=4(只),树上还剩4只小鸟。
②对这一问,如果你还像上面那样算就错了。
正确地算法应该是:5-1-4=0(只)
为什么呢?听到“叭”地一声响,其他4只会被吓飞的,这叫“隐含的条件”,在题目中虽没有明确地说出来,解题时却要考虑到。
例2 要把一个篮子里的5个苹果分给5个孩子,使每人得到1个苹果,但篮子里还要留下一个苹果,你能分吗?
解:能。
最后一个苹果留在篮子里不拿出来,把它们一同送给一个孩子。
这是因为“篮子里留下一个苹果和每个孩子分得一个苹果”这两个条件并不矛盾(见图12—3)。
例3 两个父亲和两个儿子一起上山捕猎,每人都捉到了一只野兔。
拿回去后数一数一共有兔3只。
为什么?
解:“两个父亲和两个儿子”实际上只是3个人:爷爷、爸爸和孩子。
“爸爸”这个人既是父亲又是儿子。
再数有几个爸爸几个儿子时,把他算了两次。
这是数数与计数时必须注意的(见图12—4)。
例 4 一个小岛上住着说谎的和说真话的两种人。
说谎人句句谎话,说真话的人句句是实话。
假想某一天你去小岛探险,碰到了岛上的三个人A、B和C。
互相交谈中,有这样一段对话:
A说:B和C两人都说谎;
B说:我没有说谎;
C说:B确实在说谎。
小朋友,你能知道他们三个人中,有几个人说谎,有几个人说真话吗?
解:这是并不难的一道逻辑推理问题。
怎样解答这个问题呢?有的人一定会列成下面形式的表格,想由此把所有的可能情况都判断出来,认为这样就可以得到答案了。
人说谎说真话
A _____ _____
B _____ _____
C _____ _____
但是,如果你也真的这样做的话,你是无论如果得不出答案的,因为从这道题目所给出的条件中根本无法判断出某一个人是说谎还是说真话。
你这样解题,说明你把解题的目标(未知数)改变了。
请你再看一下,题目问的是什么?题目并没有问“谁说谎,谁说真话”?而是在问“几个人说谎,几个人说真话?”正确的答案是不难得到的:因为B和C两人说的话正好相反,所以一定有一个人说谎,另一个人说真话;由此又可
知道,他们两人不可能都说谎,所以A必定说谎。
于是可知3个人有2个人说谎,有一个人说真话。
例5 如图12—5,三根火柴棍可以组成一个等边三角形,再加三根火柴棍,请你组成同样大小的四个等边三角形。
解:请你先不要继续往下看,自己想一想能不能用六根火柴棍组成四个同样大小的等边三角形?
通常,很多人在解这题时,往往自己给自己多加了一个限制条件:“在平面上组成等边三角形”。
但是,仔细看看,原题并没有限制你在平面上解题。
由于给自己多加了一个条件,他们的思想就会被限制在平面上解题,那就无论如何也解不出来。
这也是把题意理解错了的一种情况。
但是,如图12—6所示,只要把思维从平面扩大到立体空间,你就能轻而易举找到问题的答案。
例 6 一笔画出由四条线段连接而成的折线把九个点串起来,你能做到吗?(见图12—7)。
解:先不要往下看,你先画画试试。
你可能会画出类似于下面的各种各样的折线来,但你很快会发现,它们都不是符合题目要求的答案(见图12—8)。
总结一下画过的折线的特点,显然这些线段都没有超出这9个点所决定的正方形。
再仔细看看已知条件,问题里并没有这一条限制,画线段的时候没有不让你超出这个正方
形。
明白了这点,就不难得到正确的答案了(见图12—9)。
回想一下开始的想法也是属于把题意理解错了的情况,但是这种错误是很不容易被自己发现的。
只有在解题的过程中,通过对自己的失败的解法加以总结,再与题目中所给出的已知条件加以对照,才有可能发现自己“不自觉”的错误想法。