最优控制的特点、实例
- 格式:ppt
- 大小:117.50 KB
- 文档页数:17
最优控制的应用概述1。
引言最优控制是现代控制理论的重要组成部分,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。
最优控制是使控制系统的性能指标实现最优化的基本条件和综合方法.可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。
最优控制是最优化方法的一个应用。
从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。
从经济意义上说,是在一定的人力、物力和财力资源条件下,是经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。
最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,基本内容和常用方法包括动态规划、最大值原理和变分法。
这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的“动态规划”和庞特里亚金等人提出的“极大值原理”,到了60年代,卡尔曼(Kalman)等人又提出了可控制性及可观测性概念,建立了最优估计理论.这方面的先期工作应该追溯到维纳(N。
Wiener)等人奠基的控制论(Cybernetics).最优控制理论的实现离不开最优化技术。
控制系统最优化问题,包括性能指标的合理选择以及最优化控制系统的设计,而性能指标在很大程度上决定了最优控制性能和最优控制形式。
最优化技术就是研究和解决最优化问题,主要包括两个需要研究和解决的方面:一个是如何将最优化问题表示为数学模型;另一个是如何根据数学模型尽快求出其最优解。
2.最优控制问题所谓最优控制问题,就是指在给定条件下,对给定系统确定一种控制规律,使该系统能在规定的性能指标下具有最优值。
也就是说最优控制就是要寻找容许的控制作用(规律)使动态系统(受控系统)从初始状态转移到某种要求的终端状态,且保证所规定的性能指标(目标函数)图1 最优控制问题示意图达到最大(小)值。
《控制工程基础》题集一、选择题(每题5分,共50分)1.在控制系统中,被控对象是指:A. 控制器B. 被控制的设备或过程C. 执行器D. 传感器2.下列哪一项不是开环控制系统的特点?A. 结构简单B. 成本低C. 精度低D. 抗干扰能力强3.PID控制器中的“I”代表:A. 比例B. 积分C. 微分D. 增益4.下列哪种控制系统属于线性定常系统?A. 系统参数随时间变化的系统B. 系统输出与输入成正比的系统C. 系统输出与输入的平方成正比的系统D. 系统参数随温度变化的系统5.在阶跃响应中,上升时间是指:A. 输出从0上升到稳态值的时间B. 输出从10%上升到90%稳态值所需的时间C. 输出从5%上升到95%稳态值所需的时间D. 输出达到稳态值的时间6.下列哪种方法常用于控制系统的稳定性分析?A. 时域分析法B. 频域分析法C. 代数法D. A和B都是7.在频率响应中,相位裕度是指:A. 系统增益裕度对应的相位角B. 系统相位角为-180°时的增益裕度C. 系统开环频率响应相角曲线穿越-180°线时的增益与实际增益之差D. 系统闭环频率响应相角曲线穿越-180°线时的增益8.下列哪种控制策略常用于高精度位置控制?A. PID控制B. 前馈控制C. 反馈控制D. 最优控制9.在控制系统的设计中,鲁棒性是指:A. 系统对参数变化的敏感性B. 系统对外部干扰的抵抗能力C. 系统的稳定性D. 系统的快速性10.下列哪项不是现代控制理论的特点?A. 基于状态空间描述B. 主要研究单变量系统C. 适用于非线性系统D. 适用于时变系统二、填空题(每题5分,共50分)1.控制系统的基本组成包括控制器、和。
2.在PID控制中,比例作用主要用于提高系统的______,积分作用主要用于消除系统的______,微分作用主要用于改善系统的______。
3.线性系统的传递函数一般形式为G(s) = ______ / ______。
复杂系统控制中的非线性最优控制技术研究随着科技的发展,越来越多的实际问题需要用到复杂系统控制技术。
而复杂系统往往具有多变、非线性等特点,如何实现复杂系统的最优控制是一个难点。
本文将从非线性最优控制技术的角度探讨该问题。
一、复杂系统控制中的非线性最优控制在复杂系统控制中,最优控制是一种常用的方法,其目的是在控制系统中选取最佳的控制变量,使系统响应更快、更稳定、误差更小,控制系统的性能更优。
而非线性最优控制则是通过对非线性系统的数学建模与分析,运用最优控制原理,研究非线性系统的最优控制方法。
非线性最优控制方法有多种,其中最常用的是基于泛函分析的方法、基于逆动力学的方法、基于模糊理论的方法、基于神经网络的方法等。
这些方法的本质都是将最优控制问题转化为极值问题,通过求解极值问题得到最优控制方式。
二、基于变结构控制的非线性最优控制研究变结构控制是一种最优控制的分支,它主要是针对复杂系统中的非线性问题所提出的一种方法。
该方法的核心思想是利用系统控制变量的“切换”行为,对复杂系统进行有效地控制。
基于变结构控制的非线性最优控制研究主要分为两大类:一类是利用变结构控制对不确定性系统进行控制,这类系统的特点是系统模型难以精确定量化;另一类是利用变结构控制对跳跃系统进行控制,这类系统的特点是系统状态难以连续变化。
三、基于随机过程的非线性最优控制研究随机过程是一种具有随机性质的过程,它的发展促进了控制系统理论的进步。
在非线性最优控制研究中,基于随机过程的方法是一种常用的数学建模方式。
该方法是将非线性系统建模为一个随机过程,通过对随机过程的分析求解最优控制问题。
基于随机过程的非线性最优控制研究主要包括两个方面:一是随机过程的数学性质的分析,二是通过分析随机过程的特性来获取最优控制策略。
四、基于鲁棒控制的非线性最优控制研究鲁棒控制是一种针对带有不确定性的系统提出的控制方法,该方法的核心思想是通过系统建模与鲁棒分析得到鲁棒控制器,对系统进行控制。
1 课题背景及意义温度是工业生产过程控制中很重要的被控变量。
在冶金、化工、工业炉窑等工业生产中, 温度控制系统是较普遍且较关键的控制系统, 它具有非线性、强耦合、时变、时滞等特性,采用常规的PI D控制器, 一般很难实现对其快速有效地精确控制,而作为非线性控制的一个分支----模糊控制,在温度控制系统中得到了较好的应用。
模糊逻辑是人工智能的重要组成部分,自从1965年美国控制理论专家L.A.Zadeh提出了用“Fuzzy Sets”(模糊集合)描述Fuzzy(模糊)事物以来[1 ], Fuzzy技术获得了广泛的应用。
而模糊控制取得的最早应用成果之一,是1975 年英国P.J.King和E.H.Mamdani将模糊控制系统应用于工业反应过程的温度控制中。
随后模糊控制成为自动化技术中一个非常活跃的领域.。
著名的自动控制权威Austrom曾经指出:模糊逻辑控制、神经网络控制与专家系统控制是三种典型的智能控制方法。
随着现代科学技术的迅速发展,生产系统的规模越来越大,形成了复杂的大系统,导致了控制对象、控制器以及控制目的的日益复杂化。
而另一方面,人类对自动化的要求也更加广泛,传统的自动控制理论和方法已不能适应复杂系统的控制。
在许多系统中,复杂性不仅仅体现在很高的维数上,更多表现在被控对象模型的不确定性、系统信息的模糊性、高度非线性和多层次、多目标的控制要求。
因此,建立一种更有力的控制理论和方法来解决上述问题,就显得十分重要。
模糊控制是智能控制的一种典型和较早的形式,作为智能控制的一个分支,模糊控制是模糊数学和控制理论相结合的产物,它利用了人的思维具有模糊性- 1 -的特点,通过使用模糊数学中的隶属度函数、模糊关系、模糊推理等工具得到控制规则矩阵表格进行控制。
模糊控制的基本思想是用机器去模拟人对系统的控制, 即在被控对象的模糊模型的基础上运用模糊控制器近似推理等手段, 实现系统控制的一种方法[ 2 ]。
模糊模型是用模糊语言和规则描述一个系统的动态特性及性能指标。
控制理论各历史阶段发展的特点经典控制理论在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成奠定了基础;二次大战以后,又经过众多学者的努力,在总结了以往的实践和关于反馈理论、频率响应理论并加以发展的基...经典控制理论(20世纪40-50年代)在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成奠定了基础;二次大战以后,又经过众多学者的努力,在总结了以往的实践和关于反馈理论、频率响应理论并加以发展的基础上,形成了较为完整的自动控制系统设计的频率法理论。
1948年又提出了根轨迹法。
至此,自动控制理论发展的第一阶段基本完成。
这种建立在频率法和根轨迹法基础上的理论,通常被称为经典控制理论。
经典控制理论以拉氏变换为数学工具,以单输入-单输出的线性定常系统为主要的研究对象。
将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。
通常是采用反馈控制,构成所谓闭环控制系统。
经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。
当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,这是因为它的以下几个特点所决定。
1.经典控制理论只限于研究线性定常系统,即使对最简单的非线性系统也是无法处理的;出描述方式,这就从本质上忽略了系统结构的内在特性,也不能处理输入和输出皆大于1的系统。
实际上,大多数工程对象都是多输入-多输出系统,尽管人们做了很多尝试,但是,用经典控制理论设计这类系统都没有得到满意的结果;2.经典控制理论采用试探法设计系统。
即根据经验选用合适的、简单的、工程上易于实现的控制器,然后对系统进行分析,直至找到满意的结果为止。
虽然这种设计方法具有实用等很多优点,但是,在推理上却是不能令人满意的,效果也不是最佳的,人们自然提出这样一个问题,即对一个特定的应用课题,能否找到最佳的设计。