高考数学极限及其运算
- 格式:doc
- 大小:632.50 KB
- 文档页数:8
上海高考数学知识点极限数学是高考考试中一门重要的科目,尤其是在上海地区,数学考试的难度系数往往较高。
在高考数学中,极限是一个重要的概念和知识点。
下面我将从数列极限、函数极限、极限运算法则等几个方面来探讨上海高考数学知识点极限。
一、数列极限数列极限是指当数列中的数值随着项数的增加趋于一个确定的数时,这个确定的数就是该数列的极限。
数列极限的概念在高考数学中是非常重要的。
在考试中,常常会涉及到数列的极限计算和性质运用。
例如,求数列${{a}_{n}}$的极限,可以利用数列极限的定义来进行求解。
假设数列${{a}_{n}}$的极限为$a$,那么对于充分大的$n$,数列中的元素${{a}_{n}}$都会无限接近$a$。
通过运用数列极限的定义,可以利用数学方法进行具体的极限计算,并得到数列极限的结果。
二、函数极限函数极限是指当自变量趋向于某个数或无穷大时,函数的值也趋于一个确定的数,称为函数极限。
函数极限在高考数学中也是一个重要的知识点。
在函数极限的计算中,常用的方法有极限的性质、夹逼定理、洛必达法则等。
这些方法可以用来求解各种不同类型的函数极限,从而解决高考数学中的相关问题。
例如,计算函数${{f(x)}=\frac{x}{\sqrt{1+x^{2}}}}$在$x\to+\infty$时的极限。
可以利用洛必达法则来解决这个问题。
按照洛必达法则的步骤,可以将函数的导数和极限进行运算,然后再进行计算,得到最后的结果。
三、极限运算法则极限运算法则是指当已知多个函数的极限时,可以利用这些极限的性质来计算复合函数的极限。
极限运算法则在高考数学中也是一个非常重要的知识点。
常用的极限运算法则有四则运算法则、复合函数运算法则、乘方函数极限法则等。
这些法则可以帮助我们快速计算复杂的极限,并得到准确的结果。
例如,计算复合函数极限${{f(g(x))}}$在$x\to a$时的极限。
可以先求得函数$g(x)$在$x\to a$时的极限,再将这个极限代入到函数$f(x)$中,从而得到复合函数的极限。
极限的运算法则及计算方法极限是微积分中的一个重要概念,用于研究函数在接近其中一点时的趋势。
在许多情况下,计算极限可以通过应用一些运算法则来简化。
本文将介绍极限的运算法则以及一些常用的计算方法。
一、极限的四则运算法则1. 乘法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) * g(x))的极限等于f(x)的极限乘以g(x)的极限,即lim(x→a) [f(x) * g(x)] = lim(x→a) f(x) * lim(x→a) g(x)。
2. 除法法则:如果函数f(x)的极限存在,g(x)的极限存在且g(x)不等于0,则(f(x) / g(x))的极限等于f(x)的极限除以g(x)的极限,即lim(x→a) [f(x) / g(x)] = lim(x→a) f(x) / lim(x→a) g(x)。
3. 加法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) + g(x))的极限等于f(x)的极限加上g(x)的极限,即lim(x→a) [f(x) + g(x)] = lim(x→a) f(x) + lim(x→a) g(x)。
4. 减法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) - g(x))的极限等于f(x)的极限减去g(x)的极限,即lim(x→a) [f(x) - g(x)] = lim(x→a) f(x) - lim(x→a) g(x)。
二、极限的乘方法则1. 幂函数法则:对于任意正整数n,如果函数f(x)的极限存在,则(f(x)^n)的极限等于f(x)的极限的n次方,即lim(x→a) [f(x)^n] = [lim(x→a) f(x)]^n。
2. 平方根法则:如果函数f(x)的极限存在且大于等于0,则√[f(x)]的极限等于f(x)的极限的平方根,即lim(x→a) √[f(x)] =√[lim(x→a) f(x)]。
三、特殊函数的极限计算法则1. 三角函数:常见的三角函数包括正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)等。
高考数学中的极限问题解析高考数学中,极限问题是一个相对来说比较难的题型,但它是数字运算的基础,也是整个数学学科的核心概念之一。
因此,掌握高考数学中的极限问题非常重要。
一、极限的概念极限的概念是指数列或函数随着自变量趋近于某一值时所达到的极限值。
数列和函数都有自变量,当自变量变化时,因变量也会相应地发生变化。
极限的概念就是通过探究因变量的变化规律,来确定自变量趋近于某个值时因变量的取值。
二、极限的性质极限有很多性质,以下主要介绍常用的几个。
1. 唯一性对于某个数列或函数,它的极限只有可能有一个,即不存在多个不同的极限值。
2. 保号性如果极限值为正数,则必然存在一个与其小但大于0的正数;如果极限值为负数,则必然存在一个与其小但小于0的负数;如果极限值为0,则必定存在一个与其小的正数和负数。
3. 夹逼定理如果某个数列或函数,对于一个自变量趋近于某个值的区间,存在两个数列或函数,一个递增且趋近于某个限值,另一个递减且趋近于相同的限值,则该数列或函数的极限就是这个限值。
三、常见的极限计算方法1. 直接代入法这是最简单、最常用的一种求极限的方法。
当自变量趋近于某个数值的时候,可以直接将那个数值代入函数表达式中,看看函数是否有定义且取值有限,如果有,就代表它存在极限。
2. 替换法在求某个函数在某一点的极限时,一般可以用代数式子来替换函数式子,这样就可以直接用代数方式求值了。
这种方法的关键是,被替换的函数式子需要符合极限的定义。
3. 等价无穷小代换法当函数的极限无法直接求得时,可以用等价无穷小代换法来解决。
这种方法的核心是找到一个相对于极限值的无穷小量,以破除在求取某个函数极限时的不定性。
4. some other methods。
还有很多其他的求极限方法,这里就不一一列举了。
四、常见的极限问题类型1. 无穷大类型当函数的自变量趋近于某个数值时,函数取值越来越大,这种情况下就存在无穷大的情况。
即如果自变量增大,函数值也必须无限增大,反之,如果自变量趋近于某个数时,函数值趋近于0。
高考数学冲刺复习极限考点速记手册在高考数学的复习征程中,极限这一考点犹如一座必须攀登的山峰,它不仅是数学知识体系中的重要组成部分,也是高考中常常出现的关键知识点。
对于即将踏上高考战场的同学们来说,熟练掌握极限的相关概念、性质和计算方法,是取得优异成绩的重要保障。
接下来,让我们一同开启极限考点的速记之旅。
一、极限的定义极限是指变量在一定的变化过程中,逐渐趋近于某个确定的值。
通俗地说,就是当自变量无限接近某个特定值时,函数值无限接近的那个固定值。
比如,当 x 无限接近 2 时,函数 f(x) = x + 1 的值无限接近 3,我们就说 x 趋近于 2 时,f(x) 的极限是 3。
二、极限的计算方法1、代入法如果函数在极限点处连续,那么可以直接将极限点代入函数计算极限值。
例如,求lim(x→3) (x^2 9) /(x 3) ,直接将 x = 3 代入,分母为 0,所以不能直接代入。
2、因式分解法当分子分母有公因式时,先进行因式分解,然后约分,再代入计算。
就像上面的例子,(x^2 9) /(x 3) =(x + 3)(x 3) /(x 3)= x + 3 ,所以lim(x→3) (x^2 9) /(x 3) = 6 。
3、有理化法对于含有根式的式子,可以通过有理化来消除根式,然后计算极限。
比如,求lim(x→0) √(1 + x) 1 / x ,分子分母同时乘以√(1 +x) + 1 ,进行有理化后再计算。
4、利用重要极限两个重要极限:lim(x→0) sin x / x = 1 ;lim(x→∞)(1 + 1 / x)^x = e 。
在计算极限时,要善于将所给式子变形为这两个重要极限的形式。
三、极限的性质1、唯一性极限若存在,则必定唯一。
2、局部有界性如果函数在某一点的极限存在,那么在该点的某个邻域内,函数是有界的。
3、保号性如果函数在某一点的极限大于 0(或小于 0),那么在该点的某个邻域内,函数的值大于 0(或小于 0)。
高中数学中的极限运算知识点总结极限是高中数学中重要的概念和工具之一,具有广泛的应用领域。
本文将对高中数学中的极限运算知识点进行总结,包括极限的概念、性质、计算方法以及实际应用等方面。
一、极限的概念1. 定义:当自变量趋近于某个确定值时,函数的取值趋近于某个确定值。
即极限是函数在某一点附近的局部性质。
2. 记号:用lim来表示极限,例如lim(x→a) f(x) = L,表示当x趋近于a时,函数f(x)的极限为L。
3. 无穷大与无穷小:当x趋近于无穷大时,函数的极限可能是无穷大或无穷小。
二、极限的性质1. 唯一性:函数在某一点的极限若存在,则唯一。
2. 有界性:有界函数的极限存在,且极限值在该有界区间内。
3. 局部性:极限的存在只与该点附近的函数值有关,与整体函数的取值无关。
4. 保号性:如果函数在某一点的极限存在且不为零,且函数在该点附近连续,则函数在该点附近保持与极限相同的符号。
三、极限的计算方法1. 代数运算法则:极限具有代数运算的性质,可以通过极限的加减乘除法则进行计算。
2. 数列极限法则:对于递推公式给定的数列,可以通过将递推公式的项逐项求极限来计算数列的极限。
四、常用的极限运算知识点1. 常用极限:- sinx/x的极限lim(x→0) = 1;- a^x(x趋于无穷大)的极限lim(x→∞) = ∞;- e^x(x趋于无穷大)的极限lim(x→∞) = ∞;- ln(1+x)/x的极限lim(x→0) = 1。
2. 极限的四则运算:- 两个函数的和(差)的极限等于各自函数的极限之和(差);- 两个函数的乘积的极限等于各自函数的极限之积;- 两个函数的商的极限等于各自函数的极限之商,其中分母函数的极限不为0。
3. 极限的复合运算:- 实数函数与数列的极限运算;- 函数的函数与数列的极限运算。
五、极限的实际应用极限在数学、物理、经济等学科中具有广泛的应用,常见应用包括:1. 利用极限的概念和性质,推导出数学中的重要定理和公式;2. 在物理学中,通过极限,可以计算出物体在某一瞬间的速度、加速度等相关信息;3. 在经济学中,通过极限,可以计算出市场需求、供应等相关指标。
高数极限运算法则讲解极限是数学中最重要的概念,它是用来描述一个函数d(x)在某个点a接近而不是等于某个值L时,对x的变化可以推导出一个结果。
也就是说,当x趋向于a时,d(x)会趋向于L,这时d(x)就称为以a为极限的函数。
实际应用中,很多复杂的数学问题都可以通过极限来解决。
极限也是高等数学的重点。
二、极限的运算法则(1)极限加法:当两个函数f (x)和g (x)的极限都存在的时候,两函数的极限的和也存在,其极限关系式为:lim_x→a[f(x)+g(x)]=lim_x→a f(x)+lim_x→a g(x)。
(2)极限减法:当两个函数f (x)和g (x)的极限都存在的时候,两函数的极限的差也存在,其极限关系式为:lim_x→a[f(x)-g(x)]=lim_x→a f(x)-lim_x→a g(x)。
(3)极限乘法:当两个函数f (x)和g (x)的极限都存在的时候,两函数的极限的积也存在,其极限关系式为:lim_x→a[f(x)*g(x)]=lim_x→a f(x)*lim_x→a g(x)。
(4)极限除法:当函数f (x)和g (x)都有极限,且lim_x→a g(x)非零时,两函数的极限的商也存在,其极限关系式为:lim_x→a [f(x)/g(x)]=lim_x→a f(x)/lim_x→a g(x)。
(5)极限交换法则:当两个函数f (x)和g (x)的极限都存在的时候,函数的项可以进行交换,即lim_x→a[f(x)g(x)]=lim_x→a g(x)lim_x→a f(x)。
(6)极限重复法则:当函数f (x)有极限,当x趋向于a时,函数f (x)重复m次,其极限关系式为:lim_x→a[f(x)^m]=[lim_x →a f(x)]^m。
三、极限的应用(1)冯科普雷定理:当n≥3时,给定f(x)在区间[a,b]上有n次连续可导,且f(a)=f(b),就一定存在某一点c∈(a,b),使得f′(c)=0。
极限的运算法则极限是一种概念,它表示在某一点附近,函数的值不断逼近某一特定值,但无论多少次迭代,都不会达到这个特定值。
极限的运算法则是指求解极限的一系列规则和公式,它们可以帮助我们更好地理解极限的概念,以及如何计算极限的值。
一、极限的定义极限的定义是:当x趋近于某个特定值p时,函数f(x)的值不断逼近某个特定值L,而无论x多次迭代,都不会达到L,那么L就是函数f(x)的极限,记为lim f(x)=L。
二、极限的运算法则(1)极限的运算法则一:加法法则若函数f(x)和g(x)的极限分别是L和M,那么两者的和的极限就是L+M。
例:计算lim (2x+3)/(x-1)解:lim (2x+3)/(x-1)=lim 2x/x-lim 3/x=2-3/x=2-0=2(2)极限的运算法则二:乘法法则若函数f(x)和g(x)的极限分别是L和M,那么两者的乘积的极限就是L*M。
例:计算lim (2x+3)*(x-1)解:lim (2x+3)*(x-1)=lim 2x*x-lim 3*x=2x2-3x=2x2-0=2x2(3)极限的运算法则三:除法法则若函数f(x)和g(x)的极限分别是L和M,且M不等于0,那么两者的商的极限就是L/M。
例:计算lim (2x+3)/(x2+2x+1)解:lim (2x+3)/(x2+2x+1)=lim 2x/x2+lim 3/x2=2/x+3/x2=2/x+0=2/x(4)极限的运算法则四:指数函数法则若函数f(x)的极限是L,那么函数f(x)的指数函数的极限就是L的指数函数。
例:计算lim (2x+3)^2解:lim (2x+3)^2=(lim 2x+3)^2=(2+0)^2=4(5)极限的运算法则五:幂函数法则若函数f(x)的极限是L,那么函数f(x)的幂函数的极限就是L的幂函数。
例:计算lim (2x+3)^(1/2)解:lim (2x+3)^(1/2)=(lim 2x+3)^(1/2)=(2+0)^(1/2)=2^(1/2)=√2三、极限的运算法则的应用极限的运算法则主要用于计算函数的极限,例如可以用它们计算函数的无穷大极限、无穷小极限等。
高中数学极限公式高中数学中,极限是一个重要的概念。
它在各种数学分支中都有重要的应用,并且是理解和掌握高中数学的基础。
为帮助读者更好地理解和应用极限,下面将介绍一些常用的极限公式和性质。
1.基本极限公式:(1)极限的四则运算法则:a) 如果$\lim_{x \rightarrow a} f(x) = L$,$\lim_{x\rightarrow a} g(x) = M$,那么$\lim_{x \rightarrow a} (f(x) \pm g(x)) = L \pm M$。
b) 如果$\lim_{x \rightarrow a} f(x) = L$,$\lim_{x\rightarrow a} g(x) = M$,那么$\lim_{x \rightarrow a} (f(x)\cdot g(x)) = L \cdot M$。
c) 如果$\lim_{x \rightarrow a} f(x) = L$,$\lim_{x\rightarrow a} g(x) = M$,且$M \neq 0$,那么$\lim_{x \rightarrow a} \left(\frac{f(x)}{g(x)}\right) = \frac{L}{M}$。
(2)常数极限公式:a) $\lim_{x \rightarrow a} k = k$(常数的极限等于它本身)。
b) $\lim_{x \rightarrow a} x = a$(自变量的极限等于它的取值点)。
c) $\lim_{x \rightarrow a} x^n = a^n$(幂函数的极限等于各次幂的极限)。
2.无穷大与无穷小:(1) 无穷大的定义:如果对于任意的正数$M$,都存在正数$\delta$,使得当$0 < ,x-a, < \delta$时,有$,f(x), > M$,那么我们称函数$f(x)$当$x$趋近于$a$时的极限为无穷大,记为$\lim_{x \rightarrow a} f(x) = +\infty$。
高中数学函数求极限技巧分享函数求极限是高中数学中的重要内容,也是许多学生感到困惑的地方。
在这篇文章中,我将分享一些函数求极限的技巧,帮助高中学生更好地理解和解决这类问题。
一、基本极限法则在解决函数求极限的问题时,我们可以利用一些基本的极限法则来简化计算过程。
这些基本法则包括:1. 极限的四则运算法则:对于两个函数f(x)和g(x),当x趋向于某个数a时,我们有以下法则:- 极限的和差法则:lim(f(x) ± g(x)) = lim(f(x)) ± lim(g(x))- 极限的乘法法则:lim(f(x) × g(x)) = lim(f(x)) × lim(g(x))- 极限的除法法则:lim(f(x) / g(x)) = lim(f(x)) / lim(g(x)) (其中lim(g(x)) ≠ 0)2. 极限的乘方法则:当x趋向于某个数a时,我们有以下法则:- 极限的幂运算法则:lim(f(x)^n) = [lim(f(x))]^n (n为常数)通过运用这些基本极限法则,我们可以将复杂的函数极限问题简化为更容易计算的形式。
二、无穷小量与无穷大量在函数求极限的过程中,我们需要了解无穷小量和无穷大量的概念。
1. 无穷小量:当x趋向于某个数a时,如果函数f(x)的极限为0,那么f(x)就是x趋于a时的无穷小量。
常见的无穷小量有x、sinx、cosx等。
2. 无穷大量:当x趋向于某个数a时,如果函数f(x)的极限为正无穷大或负无穷大,那么f(x)就是x趋于a时的无穷大量。
常见的无穷大量有1/x、e^x、lnx等。
了解无穷小量和无穷大量的性质,可以帮助我们更好地理解函数的极限性质。
三、常见的函数极限类型在高中数学中,有一些常见的函数极限类型,我们可以通过分析其特点来求解。
1. 无穷小量与无穷大量的乘积:当两个函数f(x)和g(x)的极限分别为无穷小量和无穷大量时,我们可以通过分析它们的乘积来求解极限。
题目高中数学复习专题讲座极限的概念及其运算 高考要求极限的概念及其渗透的思想,在数学中占有重要的地位,它是人们研究许多问题的工具 旧教材中原有的数列极限一直是历年高考中重点考查的内容之一 本节内容主要是指导考生深入地理解极限的概念,并在此基础上能正确熟练地进行有关极限的运算问题 重难点归纳1 学好数列的极限的关键是真正从数列的项的变化趋势理解数列极限 学好函数的极限的关键是真正从函数值或图象上点的变化趋势理解函数极限2 运算法则中各个极限都应存在 都可推广到任意有限个极限的情况,不能推广到无限个 在商的运算法则中,要注意对式子的恒等变形,有些题目分母不能直接求极限3 注意在平时学习中积累一些方法和技巧,如)1|(|0lim ,0)1(lim<==-∞→∞→a a nn n nn ⎪⎪⎪⎩⎪⎪⎪⎨⎧><==++++++--∞→时当不存在时当时当l k l k l k b a b x b x b a x a x a l l k k k n ,,0,lim 01110110 典型题例示范讲解例1已知lim ∞→x (12+-x x -ax -b )=0,确定a 与b 的值命题意图 在数列与函数极限的运算法则中,都有应遵循的规则,也有可利用的规律,既有章可循,有法可依 因而本题重点考查考生的这种能力 也就是本知识的系统掌握能力知识依托 解决本题的闪光点是对式子进行有理化处理,这是求极限中带无理号的式子常用的一种方法错解分析 本题难点是式子的整理过程繁琐,稍不注意就有可能出错 技巧与方法 有理化处理解 bax x x b ax x x b ax x x x x +++-+-+-=--+-∞→∞→1)()1(lim)1(lim 2222bax x x b x ab x a x +++--++--=∞→1)1()21()1(lim2222要使上式极限存在,则1-a 2=0, 当1-a 2=0时,1)21(1)21(1111)21(lim 1)1()21(lim 2222=++-++-=+++--++-=+++--+--=∞→∞→a ab a ab ax b xx x b ab b ax x x b x ab x x 由已知得上式 ∴⎪⎩⎪⎨⎧=++-=-01)21(012aab a 解得⎪⎩⎪⎨⎧-==211b a例2设数列a 1,a 2,…,a n ,…的前n 项的和S n 和a n 的关系是S n =1-ba n -nb )1(1+,其中b 是与n 无关的常数,且b ≠-1(1)求a n 和a n -1的关系式;(2)写出用n 和b 表示a n 的表达式; (3)当0<b <1时,求极限lim ∞→n S n命题意图 历年高考中多出现的题目是与数列的通项公式,前n 项和S n 等有紧密的联系 有时题目是先依条件确定数列的通项公式再求极限,或先求出前n 项和S n 再求极限,本题考查学生的综合能力知识依托 解答本题的闪光点是分析透题目中的条件间的相互关系 错解分析 本题难点是第(2)中由(1)中的关系式猜想通项及n =1与n =2时的式子不统一性技巧与方法 抓住第一步的递推关系式,去寻找规律解 (1)a n =S n -S n -1=-b (a n -a n -1)-1)1(1)1(1-+++n n b b=-b (a n -a n -1)+nb b)1(+ (n ≥2)解得a n =11)1(1+-+++n n b b a b b (n ≥2)代入上式得把由此猜想21113211132321213212221221111)1()1()1(,)1()1()1(])1(1[)1()1()1()1(1])1(1[1)1(,111)2(b ba b b b b b a b b a b b b b a b b b b b b b a b b b b b bb a b b b b b a b b b b a b b a b ba S a n n n n n n n n n n n n n n n +=+++++++=+++++=+++++++=++++=++++++=∴+=∴+--==+--+-+--+-+-),1()11(1)()1(11)1(1)1)(1(1)1(11)3()1(2)1()1)(1()1(111111112≠+---+-=+-+--⋅-=+--=⎪⎪⎩⎪⎪⎨⎧=≠+--=++++=++++++++b b b b b b b b b b b b b b ba S b n b b b b b b b b b a n n nn n n n n n n n n n n n.1lim ,0)11(lim ,0lim ,10=∴=+=<<∞→∞→∞→n n nn n n S bb b 时例3求1122+-∞→++n n n n n aa 111121()21:22,;lim lim 22()n nn n n n n n a a a a a a a a a--+→∞→∞++><-==++解当或时 111()212222,;lim lim 242()2n n n n n n n n a a a a a a -+→∞→∞++-<<==++当时 1112123212,;lim lim 262n n n n n n n n a a a --+-→∞→∞+⋅===+⋅当时2,a =-当时11111111112221()2(2)22232622(2)22323()2222n n n n n n n n n nn n n n nn n n n n n a a n ----+++--+⎧-+-==-⎪+-+⎪+⋅==⎨++-+⋅⎪==-⎪⎩--为奇数为偶数学生巩固练习1 a n 是(1+x )n 展开式中含x 2的项的系数,则)111(lim 21nn a a a +++∞→ 等于A 2B 0C 1D -12 若三数a ,1,c 成等差数列且a 2,1,c 2又成等比数列,则nn ca c a )(lim 22++∞→的值是( )A 0B 1C 0或1D 不存在3 )(lim x x x x n -+++∞→ =_________4 若)12(lim 2nb n n a n --+∞→=1,则ab 的值是_________5 在数列{a n }中,已知a 1=53,a 2=10031,且数列{a n +1-101a n }是公比为21的等比数列,数列{lg(a n +1-21a n }是公差为-1的等差数列 (1)求数列{a n }的通项公式; (2)S n =a 1+a 2+…+a n (n ≥1),求lim ∞→n S n6 设f (x )是x 的三次多项式,已知ax x f a x x f a n a n 4)(lim2)(lim42-=-→→=1,试求a x x f n 3)(lim-∞→的值 (a 为非零常数)7已知数列{a n },{b n }都是由正数组成的等比数列,公式分别为p 、q ,其中p >q ,且p ≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求1lim-∞→n nn S S 的值8 已知数列{a n }是公差为d 的等差数列,d ≠0且a 1=0,b n =2n a (n ∈N *),S n 是{b n }的前n 项和,T n =nnb S (n ∈N *) (1)求{T n }的通项公式;(2)当d >0时,求lim ∞→n T n参考答案1 解析 )111(21,2)1(C 2nn a n n a n n n --=∴-==, 2)11(2lim )111(lim 21=-=+++∴∞→∞→na a a n n n答案 A2 解析 ⎩⎨⎧=+=+⎩⎨⎧=+=+⎩⎨⎧==+6222 ,12222222c a c a c a c a c a c a 或得 答案 C二、3 解析 xx x x x x x x x x x x x x +++-++=-+++∞→+∞→lim)(lim.21111111lim23=++++=+∞→x xx x 答案21 4 解析原式=112)2(lim12)12(lim22222222222=+-+-+-=+-+--+∞→∞→nbn n a a n a n b a nbn n a b n n n a n n⎩⎨⎧==⇒⎪⎩⎪⎨⎧=+=-422120222b a b b a∴a ·b =82 答案 825 解 (1)由{a n +1-101a n }是公比为21的等比数列,且a 1=53,a 2=10031,∴a n +1-101a n =(a 2-101a 1)(21)n -1=(10031-53×101)(21)n -1=1121)21(41+-=n n ,∴a n +1=101a n +121+n ①又由数列{lg(a n +1-21a n )}是公差为-1的等差数列,且首项lg(a 2-21a 1)=lg(10031-21×53)=-2,∴其通项lg(a n +1-21a n )=-2+(n -1)(-1)=-(n +1),∴a n +1-21a n =10-(n +1),即a n +1=21a n +10-(n +1)②①②联立解得a n =25[(21)n +1-(101)n +1](2)S n =])101()21([2511111∑∑∑==++=-=n k n k k k nk k a911]1011)61(211)21([25lim 22=---=∴∞→n n S6 解 由于ax x f a x 2)(lim2-→=1,可知,f (2a )=0①同理f (4a )=0 ②由①②可知f (x )必含有(x -2a )与(x -4a )的因式,由于f (x )是x 的三次多项式,故可设f (x )=A (x -2a )(x -4a )(x -C ),这里A 、C 均为待定的常数,,1))(4(lim 2))(4)(2(lim ,12)(lim222=--=----=-→→→C x a x A ax C x a x a x A a x x f a x a x a x 即由1)2)(42(=--C a a a A 得,即4a 2A -2aCA =-1③同理,由于ax x f a x 4)(lim4-→=1,得A (4a -2a )(4a -C )=1,即8a 2A -2aCA =1 ④由③④得C =3a ,A =221a ,因而f (x )= 221a(x -2a )(x -4a )(x -3a ),21)(21)4)(2(21lim 3)(lim 2233-=-⋅⋅=--=-∴→→a a aa x a x a a x x f a x a x 1111111111111111111)1()1()1()1()1()1()1()1(1)1(1)1(1)1(1)1(1)1(1)1(:.7----------+------+-=--+----+--=∴--+--=n n nn n n n n n nn n n q p b p q a p b q a q p b p q a p b q a qq b p p a q q b p p a S S q q b p p a S 解由数列{a n }、{b n }都是由正数组成的等比数列,知p >0,q >0.01)1(00)1(01))(1(1)1()1()1())(1()1()1()1(lim)1()1()1()1()1()1()1()1(lim lim 111111111111111111111111p pq a q a p p q p b p q a p p b q a p q p b q a p p b q a p q p b p q a p b q a p q p b p q a p b q a S S p n n nnn nn n nnn n n n n =------=-----+------+-=-----+------+-=>--∞→--∞→-∞→时当当p <1时,q <1, 0lim lim lim lim 11====-∞→∞→-∞→∞→n n n n n n n n q q p p1lim1=∴-∞→n nn S S8 解 (1)a n =(n -1)d ,b n =2n a =2(n-1)dS n =b 1+b 2+b 3+…+b n =20+2d +22d +…+2(n-1)d由d ≠0,2d≠1,∴S n =dnd 21)2(1--∴T n =ndd n nd d n d nd n n b S 2221221)2(1)1()1(--=--=-- (2)当d >0时,2d >1122121101211)2(1lim )2()2()2(1lim 2221lim lim 1)1(-=--=--=--=--=∴∞→-∞→-∞→∞→dd dd nd n nd n d nd n nd d n nd n n n T课前后备注。