火焰检测原理培训
- 格式:ppt
- 大小:2.67 MB
- 文档页数:27
火检讲义一、火焰检测器的类型火焰检测器通常按照所采用的光电元件而进行分类。
常用的火焰检测器有三种:紫外线型、可见光型、以及红外线型。
1、紫外线型检测器采用紫外线光敏管作为传感元件,这种检测器的优点是报警灵敏度高,对于燃用天然气和重油的锅炉,由于火焰中的紫外线特别的丰富,采用这一类型的检测器比较合适。
对于燃烧煤粉的锅炉,由于在火焰燃烧的时候,相当一部分的紫外线被煤粉所吸收,特别当锅炉燃烧不稳定或锅炉低负荷运行时,检测器所能吸收到的紫外线较弱,这样容易造成检测器误动作。
因此,从70年代后期开始,这种检测器在煤粉锅炉上的应用日趋减少。
红外线型检测器采用光敏电阻(如硫化铅)作为传感元件,其光谱响应范围在0.7-0.32μm之间。
这种检测器的特点是呈现与紫外线型检测器相反的性能,如在火焰瞬时不稳定或低负荷运行的时候仍能稳定工作,对探头的安装位置和方向的要求也不象其他类型那样苛刻。
具有代表性的产品是美国FORNEY公司的DPD型检测器。
可见光型检测器采用光电二极管作为传感元件。
这种检测器的特点是极其类似人眼的光谱响应。
二、火焰检测器的一般工作原理1)、探头部分的原理如图 2所示,炉膛火焰中的相关波长的光线穿过探头端部的透镜,并经由光导纤维而到达探头小室,照到光敏元件上。
由光敏元件将光信号转化为电信号,并经由对数放大器转换为电压信号。
采用对数放大器是由于光敏元件输出的电流值是发光强度的指数函数,当发光强度大幅变化时,对数放大器的输出呈小幅度变化,这样可以避免放大器饱和,使得不同负荷下的正常火焰信号都在预定值之内。
对数放大器输出的电压信号,再经过传输放大器转换为电流信号,然后通过屏蔽电缆传输至火焰检测器的机箱部分。
采用电流传输而不采用电压传输,是由于前者抗干扰的能力强,信号衰减小,适合于长距离传输(可长达1500m)。
2)、机箱部分的原理如图3所示,炉膛中的火焰信号经过多次转换,最后在机箱里被转换成电压信号。
由于火焰信号本身是脉动的,其强度和频率随时在变化,且对于不同的燃料,其变化范围也不一样,所以在机箱里设计了频率检测线路,强度检测线路和故障检测线路。
火焰光度检测器原理
火焰光度检测器是一种通过检测火焰辐射光谱的仪器。
它利用光学技术来检测火焰的辐射能量,以便及时发现火灾。
火焰光度检测器的工作原理是利用光电转换技术将火焰的辐射能量转化为电信号。
当火焰燃烧时,会产生一系列的光谱辐射,包括可见光和红外线。
火焰光度检测器利用光束分光器将光谱分离,并利用光电池将光信号转换为电信号。
然后,通过电路处理和分析,可以确定火焰的存在和强度,从而及时发出警报。
火焰光度检测器在工业生产、建筑物安全、矿山等领域广泛应用。
它具有灵敏度高、反应速度快、误报率低等优点,能够有效地检测和预防火灾的发生。
- 1 -。
火焰测试实验火焰测试是一种常用的实验方法,用于测试物质的燃烧性能。
该实验可以通过观察燃烧物质在火焰下的反应,评估其燃烧性能和火灾危险性。
本文将介绍火焰测试实验的基本原理、实验步骤和应用场景。
一、实验原理火焰测试实验基于物质在火焰下的燃烧性能。
在实验中,将待测试的物质置于火焰之下,观察其燃烧情况以及火焰的扩散速度、颜色、烟雾产生等指标,从而评估其燃烧特性。
二、实验步骤1. 实验准备:确定实验室环境安全,确保有足够的通风,并戴上防护手套和护目镜。
2. 样品准备:将待测试物质切割成约5cm×5cm的小片。
3. 燃烧装置准备:选择适当的燃烧装置,例如火焰试验器、Bunsen 燃烧器等。
4. 实验操作:将待测试物质放置在燃烧装置的火焰下方,点燃物质并观察其燃烧情况。
5. 观察指标:观察燃烧的火焰高度、颜色、稳定性、燃烧痕迹,以及燃烧过程中是否产生烟雾、有毒气体等。
6. 实验记录:记录实验过程中的观察结果,并拍摄照片或视频作为实验数据。
三、实验应用火焰测试实验广泛应用于多个领域,包括材料科学、建筑工程、消防安全等。
以下为几个常见的应用场景:1. 材料阻燃性评估:通过火焰测试实验可以评估材料的阻燃性能,判断其在火灾情况下的燃烧特性,以指导材料选择和设计。
2. 建筑材料评估:火焰测试实验可用于评估建筑材料的火灾危险性,针对高层建筑、公共场所等需要考虑火灾安全性的场所进行材料筛选和改进。
3. 消防设备研究:火焰测试实验可以用于评估消防设备的性能,包括灭火器、防火涂料等,以确保其在实际使用中的有效性。
4. 产品安全检测:火焰测试实验可用于产品的安全性检测,例如电子产品、塑料制品等,以评估其在异常使用条件下的火灾风险。
总结:火焰测试实验作为一种常见的方法,可以通过观察物质在火焰下的燃烧反应,评估其燃烧性能和火灾危险性。
通过严格的实验操作和观察指标,可以得出准确的实验结果,为材料科学、建筑工程和消防安全等领域提供重要的技术支持。
第四章火焰的检测4.1 概述图4-1 电磁波谱图二、火灾时发出的火焰光谱与燃烧物质有关,见图4.2。
图4-2 各种不同材料的火焰光谱能量分布图由图可见,对烃类物质,产生的火焰光谱能量在红外光谱范围内,辐射强度的最大值位于4.1-4.7nm范围内。
三、火焰探测器火焰探测器是一种响应火灾发出的电磁辐射(红外、可见和紫外)的火灾探测器。
因为电磁辐射的传播速度极快,因此,这种探测器对快速发生的火灾或爆炸能够及时响应,是对这类火灾早期通报火灾的理想探测器。
响应波长高于700nm辐射能通量的探测器称红外火焰探测器。
响应波长低于400nm辐射能通量的探测器称紫外火焰探测器。
极少应用400—700nm之间的可见光辐射谱区探测火灾,这是由于太阳光的干扰太强。
图4-火焰和地面太阳光光谱图4.2 光电效应火灾探测器是一种将光量变化转换为电量变化的传感器。
它的物理基础就是光电效应。
光电效应分为外光电效应和内光电效应两大类。
4.2.1 外光电效应在光线的作用下,物体内的电子逸出物体表面向外发射的现象称为外光电效应。
向外发射的电子叫光电子。
基于外光电效应的光电器件有光电管、光电倍增管等。
众所周知,光子是具有能量的粒子,每个光子具有的能量E可由下式确定E=hυ (4-1)式中h一一普朗克常数,6.626*10-34(J·s)υ一一光的频率(s-1)物体中的电子吸收了入射光子的能量,当足以克服逸出功A0时,电子就逸出物体表面,产生光电子发射。
如果一个电子要想逸出,光子能量hυ必须超过逸出功A0,超过部分的能量表现为逸出电子的动能。
根据能量守恒定理则有:hυ=(1/2)mv o2+ A0(4-2)式中A0——金属的逸出功,J;m——电子质量,g;v o—电子逸出速度,cm/s。
该方程称为爱因斯坦光电效应方程。
由式(4-2)可知:1、电子能否产生逸出,取决于光子的能量是否大于该物体的表面电子逸出功A0。
不同的物质具有不同的逸出功,这意味着每一个物体都有一个对应的光频阈值,称为红限频率或波长限。
火焰检测器工作原理
燃烧火焰的辐射光具有强度和脉动频率两个特点。
火焰检测器其原理是用探头接收火焰发出的辐射,按其强度和频率的大小判断火焰的存在与否。
火焰的辐射是具有离散光谱的**体辐射和伴有连续光谱的固体辐射,其波长在0.1-10μm或更宽的范围,为了避免其他信号的干扰,常利用波长<300nm的紫外线,或者火焰中特有的波长在4.4μm附近的CO
辐射光谱作为探测信号。
2
紫外线传感器只对185-260nm狭窄范围内的紫外线进行响应,而对其它频谱范围的光线不敏感,利用它可以对火焰中的紫外线进行检测。
紫外线传感器不断的检测各种液体或**体燃烧时火焰产生的紫外线辐射,传感器为常激励UV光敏传感器。
当传感器置于190-270nm光谱范围的光线下时,就会产生电流,检测器通过内置的MCU信号采集、综合分析和逻辑判断,当出现火焰熄灭时,立即输出外空联动信号。
UV光敏传感器不会对炉膛内闪烁的耐火材料、日光、炉内的辉光物质作出反应。
如果炉膛内出现火焰异常,系统将立即切断燃料供应,关闭燃**主控制阀,保障燃烧系统的安全运行。
图1为火焰检测器的外观图。
Array
图1 火焰检测器外观图。
火焰探测器(Flame Detector)工作原理与分类
工作原理:
火焰探测器(flame detector)是探测在物质燃烧时所产生可见的或大气中没有的不可见的光辐射。
火焰燃烧辐射光波段火焰探测器又称感光式火灾探测器,它是用于响应火灾的光特性,即探测火焰燃烧的光照强度和火焰的闪烁频率的一种火灾探测器。
分类:
一、根据火焰的光特性,目前使用的火焰探测器有三种:
1、对火焰中波长较短的紫外光辐射敏感的紫外探测器;
2、对火焰中波长较长的红外光辐射敏感的红外探测器;
3、同时探测火焰中波长较短的紫外线和波长较长的红外线的紫外/红外混合探测器。
具体根据探测波段可分为:单紫外、单红外、双红外、三重红外、红外\紫外、附加视频等火焰探测器;
二、根据防爆类型可分为:隔爆型、本安型;
传感器类型:
紫外探测:对于火焰燃烧中产生的0.185~0.260μm波长的紫外线,可采用一种固态物质作为敏感元件,如碳化硅或硝酸铝,也可使用一种充气管作为敏感元件,如盖革一弥勒管。
红外探测:对于火焰中产生的2.5~3μm波长的红外线,可采用硫化铝材料的传感器,对于火焰产生的4.4~4.6μm波长的红外线可采用硒化
铅材料或钽酸铝材料的传感器。
根据不同燃料燃烧发射的光谱可选择不同的传感器,三重红外(IR3)应用较广。