当前位置:文档之家› 下肢康复训练机器人的研究现状与趋势

下肢康复训练机器人的研究现状与趋势

下肢康复训练机器人的研究现状与趋势
下肢康复训练机器人的研究现状与趋势

专题(康复医学)

Thematic Forum(Rehabilitation Medicine)

收稿日期:2010-02-08

作者简介:谢欲晓,教授,硕士生导师,主任医师,中日友好医院物理康复科主任,中国康复医学会理事,副秘书长、科普工作委员

康复机器人(rehabilitation robots)是近年出现的一种新型机器人,它属于医疗机器人范畴。它分为康复训练机器人和辅助型康复机器人,康复训练机器人

的主要功能是帮助患者完成各种运动功能的恢复训练,如行走训练、手臂运动训练、脊椎运动训练、颈部运动训练等;辅助型康复机器人主要用来帮助肢体运动

有困难的患者完成各种动作,如机器人轮椅、导盲手杖、机器人假肢、机器人护士等[1]。

传统的康复程序依赖于治疗师的经验与徒手操作技术。随着病人数目迅速增大,节省治疗时间越来越成为关注的问题。如果机器人可以协助执行康复评估与治疗程序,应该是一个很大的进步。近年来,已经有很多研究涉及机器人在协助残疾者康复训练的作用[2,3]。康复机器人能通过机器带动肢体做成千上万的重复性的运动, 对控制肢体运动的神经系统刺激并重建, 从而恢复肢体功能运动的一种新的临床干预手段。

1 康复训练机器人的研发沿革

康复机器人技术是国际前沿技术,它的历史虽然很短,但发展的速度却很快,近一两年来不断有新的研究成果出现。从第一台在商业上获得巨大成功的康复机器人一Handy [4]至今,康复机器人的研究获得了巨大的发展。为了更好地促进运动康复和实现运动控制,自动化和机器人辅助的运动康复从上世纪90年代开始出现[5]。

1993年,Lum 等就研制了一种称作“手——物体——手”的系统(hand —object —hand system),尝

试对一只手功能受损的患者进行康复训练。1995年,Lum 等又研制了一种双手上举的康复器(bimanual lifting rehabilitation),用来训练患者用双手将物体上

举这一动作[6]。Hogan 与Krebs 等于研制出一种称作MIT-MANUS 的脑神经辅助康复机器人。MANUS 提供平面运动和手部三维运动两个训练模块,具有反向

可驱动性并可以通过阻抗控制实现训练的安全性、稳定性和平顺性。MANUS 具有辅助或阻碍手臂的平面运动功能,也可以精确测量手的平面运动参数,并为患者提供视觉反馈。MANUS 的不足在于,它实现的动作基本上是平面的,这就限制了训练方案的改进;而且它向患者提供的训练动作不是从患者本身的需要出发,因而不能达到最佳的训练效果。

2000年,美国国家航空航天局(NASA)喷气推进实验室和加州大学洛杉矶分校(UCLA)研制了一种用于脊椎神经受损病患者下肢康复的机器人设备,它运用一对机械臂引导下肢在脚踏车上运动,并且通过几个

传感器来测量病人的力、速度、加速度以及运动阻力。在国内,哈尔滨工业大学研制了一种下肢康复训练机器人,对下肢运动障碍者在机器人辅助运动过程中的重心控制进行了研究[7]

总结康复机器人的研发现状,下肢康复机器人以被动运动模式为主,但现有运动模式单一,缺乏目标导向训练设计;上肢康复机器人已实现主动、被动、助动三种模式相结合的运动,并实现神经控制参与的目标导向运动,将对临床治疗有突破性的贡献,应大力推广;而手部康复机器人是目前国际研究的难点,暂无突破性的产品。

专题(康复医学)

Thematic Forum(Rehabilitation Medicine)

2 下肢康复训练机器人的研发现状

下肢康复训练机器人是康复训练机器人中的一种,它可以模拟正常人的行走姿态,并且可以承担一部分人体的重量,对下肢有运动障碍的病人进行有效的下肢康复训练[8]。尽管目前国际上康复机器人研发覆盖的领域包括了手部康复机器人、上肢康复机器人、踝部康复机器人及下肢康复机器人,但恢复行走能力,是脑损伤患者和脊髓损伤后康复的主要目标。因此,恢复独立行走能力是康复治疗努力的首要目标。

由于脑的可塑性,医学上通常是通过进行重复的、特定任务的训练让患者进行足够的重复性活动[9]。从而使重组中的大脑皮质通过深刻的体验来学习和储存正确的运动模式[10]。基于这种方法已取得良好的临床效果,在过去20年里,减重活动平板步行训练的治疗方法已被引入成为神经康复方法。平板步行训练使复杂的步态周期得以重复[11]。然而,不利问题是所需要很多的物理治疗师来辅助病人患侧和重心转移。此外,治疗师必须花费很多的体力从而经常抱怨疲劳或过重身体压力。因此治疗的次数以及患者重复的次数将会有限。对患者的重心的变化和步幅系统校正往往变得不可能。因此,正如Kosak 和Reding 指出[12],治疗师更喜欢患者使用任务导向的方法让患者在地板上练习而不是在平板步行训练器上走路。为了克服这些缺点,机电协助的机器人,如步态训练(GT1)或Lokomat步态训练器被最近研制并在神经康复使用。

LokoHelp(LokoHelp集团,德国)是最新研制用于训练和改善脑损伤后步态机电设备(图1)。这个装置是放置在跑步机上并且可以轻松地安装和拆除的。虽然这一新的步态训练器的应用前景已被证明是可行的,但其疗效尚未评估[13]。

根据康复医学理论和人机合作机器人原理。在一套由计算机控制的步态模拟控制系统的控制下,帮助患者模拟正常人的步行规律进行康复训练,锻炼下肢肌肉,恢复神经系统对行走功能的控制能力,达到恢复下肢运动功能的目的[14]。一种被称为LOKOMAT的康复机器人能对脊髓损伤患者的踏车训练进行自动控制;最近又增加了视觉、触觉和听觉反馈模式来进行跨越障碍物训练,满意度达80%[15]。

3 下肢康复训练机器人的研发的限制性与发展趋势

机器人辅助康复训练方面已经建立了小规模应用。今后研发的步态机器人应能将干扰感觉信息输入最小化,易化正确的感觉信息输人和步态力学,并智能化地根据外界变化同步作出辅助量大小调整[16-17],还可为机器人配以合适的生物信息检测系统,实现生物反馈控制,以提高康复效果。肌电生物反馈(EMGBF)在康复机器人控制系统中的应用比较广泛。但Galvez等研究表明,使用机器人步态训练设备进行辅助步态训练时,仍需要治疗师适当的辅助训练指导,尤其是矫正下肢的关节力线、力矩,使其与正常步行周期接近,以达到最优化效果[13]。我国哈尔滨工业大学研究的采用AVR单片机的机器人控制系统,成本低,易于产品化。但也存在重力平衡、机器人与患者肢体的干涉等问题[17]。有研究表明.在机器人辅助下,患者行走中骨盆和下肢的活动自由度受到限制.这使得肌肉的运动发动模式与正常人不一样,且缺乏适应外界环境变化的反馈控制策略[18],为以后这类助行器的商品化研究指明方向。

3.1 应将评测和训练相结合

康复机器人由计算机控制,并配有相应的传感器和安全系统,可以自动评价康复训练效果,根据病人的实际情况自动调节运动参数,实现最佳训练。康复机器人运动状态测量系统可以实现运动状态的在线测

图1 LokoHelp(LokoHelp集团,德国)是最新研制用于训练和改善

专题(康复医学) Thematic Forum(Rehabilitation Medicine)

为医务工作者治疗肢体运动障碍患者提供准确的信息。也可以作为患者自己观察运动状态的工具。该测量系统主要提供如下参数:(1)步态及运动分析,标准步态在专业化名词中称为stance, heel-off, swing, heel-stike, 即站立,后跟抬起,摆动和后跟落下。如果出现病态步态,如前倾,后倾,左倾,右倾及不合理的步态相位分布都会影响人走路姿态。对于病人而言,分析和矫正病态步态是非常重要的。(2)运动重心实时跟踪,影响人走路的姿态除了步态之外还有重心分布,这一信息可用于病人自我矫正,借助于康复机器人,通过逐渐矫正到达健康恢复的目的。

3.2 应有神经控制的参与及被动、主动、助动三种运动模式

康复机器人是直接对患者肢体进行操纵[6],因此机器的设计必须从患者的需要出发,同时符合临床康复训练的规律。尽管目前的康复机器人都能够在一定程度上向患者提供简单的训练方案,但是迄今为止,所有研究结果除了能够证实机器人辅助治疗确有一定疗效外, 并不能提供更多的有价值的结论。其根源在于,现有机器人所能提供的训练动作只是简单的曲线或者直线轨迹,首先它与临床训练的要求不符, 不能在康复早期给患者以更多的正确运动感觉的刺激;其次这些动作与日常功能性动作相差甚远,对于患者恢复日常生活能力帮助不大。不仅如此,由于机器人不能根据患者的康复情况做出实时的调整(辅助或阻尼支撑或不支撑), 容易让患者完全依赖于机器人完成动作,从而有可能导致瘫肢产生异常运动模式. 此外,相同的训练内容用于所有患者,缺乏针对性的治疗方案,因而很难获得不同于治疗师辅助治疗的康复效果。通过虚拟现实’脑电’肌电技术与机器人技术的集成,有望向患者提供全方位的刺激,全面促进中枢神经的重组和代偿。这些结果将不仅对临床研究神经康复有巨大的指导意义,而且为研究正常人的神经控制与运动机理提供了一个契机。

3.3 应有被动、主动、助动三种运动模式

患者的病情千差万别,在不同的康复分期还具有不同的运动模式,因此,机器人提供的训练动作应能作[6]。同时,康复训练必须针对不同的患者设计不同的康复方案,并有针对性地提供训练所需要的各种参数——运动参数和力参数,在机器人运动场和力场的设计中考虑患者瘫肢的特性。再者,机器人应该能够实时检测患者与机器人之间的相互作用力,在患者主动能力不足时提供更大的辅助,而在患者有能力完成动作时,适当减小辅助甚至施加阻力,以便充分发挥患者残存的功能。

4 下肢康复机器人产品市场

当今,许多国家正在开发各种功能齐全、操作简便、安全性能高的下肢康复机器人。而下肢康复机器人作为一种医疗康复机器人,也越来越多的受到产业界的关注。

下肢康复机器人的现有种类包括站立式下肢康复机器人(瑞士Hocoma图2;美国Motorica图3、LokoHelp图1等)、坐式下肢康复机器人(瑞士Swrotek;美国 Motorica等)。

在欧洲、美国和日本等国家,医疗康复机器人的市场占有率呈逐年上升的趋势[19],仅预测日本未来机器人市场,2005年医疗、护理、康复机器人的市场份额约为2500万美元,而到2010年将上升到10500万美元,其增长率在机器人的所有应用领域中占据首位[20]。在美国,数以百万计的有神经科疾病病史和受到过意外伤害的患者需要进行康复治疗,仅以中风为例,每年大约有60万中风幸存者,其中的20万病人

图2 瑞士Hocoma:技术特图3 美国Motorica:技术特点:前

专题(康复医学)

Thematic Forum(Rehabilitation Medicine)

在中风后存在长期的运动障碍。

自主的运动康复训练已成为基本而有效的疗法,而形形色色的康复训练机器人,以其经济的价格,简易的操作,适时的病情反馈与康复训练指导得到医学专家和病人的肯定。在我国,康复医学工程虽然得到了普遍的重视,而康复机器人研究仍处于起步阶段,一些简单康复器械远远不能满足市场对智能化、人机工程化康复机器人的需求。所以康复训练机器人广阔的市场前景将推动这一新型的技术得到更多重视与推广。

下肢康复机器人能够在辅助治疗中确保患者的安全性,患者可以接受机器人训练康复机器人辅助训练能获得明显的治疗效果,康复效果具有长期性。另外,机器人可以记录详实的治疗数据及图形,可能提供了客观准确的治疗和评价参数,有助于机器人辅助治疗偏瘫研究的深入开展, 具有改善康复效果和提高康复效率的潜力。

康复机器人主要作用于帮助由于疾病而造成偏瘫,或者因意外伤害造成肢体运动障碍的人恢复提高运动能力。脑血栓患者除了早期的手术治疗和必要的药物治疗外,康复训练对于患者肢体运动功能的恢复和提高起到非常重要的作用。康复机器人作为一种自动化设备,可以帮患者进行科学而又有效的康复训练,使患者的运动机能得到更好的恢复[21]。

随着人口老龄化及激烈的市场经济竞争,康复问题将要成为一个社会问题。康复机器人及其系列产品参考文献

[1] H I Krebs.B T Volpe.M L Aisen.N.Hogan Increasing

productivity and quality of care:Robot-aided neuro

rehabilitation 2000

[2] Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-

assisted therapy on upper limb recovery after

stroke: A systematic review. Neurorehabil Neural

Repair.22,111-21, 2008.

[3] Colombo R, Pisano F, Micera S, Mazzone A,Delconte C,

Carrozza MC, et al. Assessing mechanisms of recovery

during robot-aided neurorehabilitation of the upper limb.

Neurorehabil Neural Repair.22,50-63, 2008.

[4] Michael Hillman. Rehabilitation robotics from past to

present—a historical perspective[J].Proceedings of the

ICORR 2003(The Eighth International Conference on

Rehabilitation Robotics).23—25 April 2003.

[5] Hesse S,Schmidt H,Werner C,et a1.Upper and

lower extremity robotic devices for rehabilitation and

for studying motor control[J].CurrOpin NeuroI?2003.

16(6):705—710.

[6] 王耀兵,季林红.脑神经康复机器人研究的进展与前

景[J].中国康复医学杂志,2003,18(4).

[7] 张立勋,赵凌燕,胡明茂.下肢康复训练机器人的重

心轨迹控制研究[J].应用科技,200。

[8] 高峰杜良杰脊髓损伤患者的下肢功能重建:智能

化康复手段,中国康复理论与实践,2008.14(9):

845—846.

[9] Sterr A, Freivogel S. Motor-improvement following

intensive training in low-functioning chronic hemiparesis.

Neurology 2003;61: 842–844.

[10] Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub

E, Weiller C. Treatment-induced cortical reorganization

after stroke in humans. Stroke 2000; 31: 1210–1216.

[11] Visintin M, Barbeau H, Korner-Bitensky N, Mayo N E.

A new approach to retrain gait in stroke patients through

body weight support and treadmill stimulation. Stroke

1998; 29: 1122–1128.

[12] Kosak MC, Reding MJ. Comparison of partial body

weightsupported treadmill gait training versus aggressive

bracing assisted walking post stroke. Neurorehabil

Neural Repair 2000; 14: 13–19.

[13] F r e i v o g e l S, M e h r h o l z J, H u s a k-S o t o m a y o r

TA, Schmalohr D. Gait training with the newly

developed “LokoHelp”-system is feasible for non-

ambulatory patients after stroke, spinal cord and

brain injury. A feasibility study. Brain Inj 2008; 22:

625–632. 14 Hornby TG,Zemon DH,Campbell D .

图4 瑞士:Swrotek。技术特点:结合等速, 功能电刺激于一体;临

临床工程

Clinical Engineering

(上接第8页)

2.3实验室杀灭微生物试验

用于消毒的器械,应采用定量杀灭试验。针对高水平消毒试验对象选择枯草杆菌黑色变种芽孢,中水平消毒试验对象选择金黄色葡萄球菌、大肠杆菌、脊

髓灰质炎病毒悬液、龟分枝杆菌脓肿亚种和绿脓杆菌,低水平消毒试验对象选择金黄色葡萄球菌(ATCC 6538)绿脓杆菌、白色念珠菌。

评价消毒剂消毒效果的实验室试验,试验浓度要用产品说明书规定的该消毒剂对试验对象的最低使用浓度。试验设3个不同作用时间,原则上第一时间为说明书规定的最短作用时间的0.5倍,第二时间为最短作用时间,第三时间为最短作用时间的1.5倍。对多用途的消毒剂,消毒对象所涉及的微生物相同时,若使用浓度相同,选择各种用途中最短的作用时间。若使用时间相同,选择各种用途中最低的使用浓度。使用浓度低,作用时间短者与使用浓度高和作用时间长者同时存在时,以前者为准。使用浓度高,作用时间短者与使用浓度低,作用时间长者同时存在时,每个剂量均须进行试验。2.4模拟现场和现场试验

用于消毒及灭菌的器械均须进行模拟现场试验。消毒器械产生的化学因子按消毒剂的要求进行模拟现

场或现场试验。评价消毒剂灭菌效果的模拟现场灭菌试验,应用产品说明书规定的最低使用浓度和0.5倍的最短作用时间进行试验。评价消毒剂消毒效果的现场或模拟现场试验,应用产品使用说明书的最低有效浓

度和最短作用时间进行试验。3 结语

臭氧为强氧化剂,对多种物品有损坏,浓度越高对物品损害越重,可使铜片出现绿色锈斑、橡胶老化,变色,弹性降低,以致变脆、断裂,使织物漂白褪色等。使用时应注意。 多种因素可影响臭氧的杀菌作用,包括温度、相对湿度、有机物、pH 、水的浑浊度、水的色度等。使用时应加以控制。生产企业、监管部门要了解产品的特点,科学地控制产品的质量,保证产品的安全性和有效性,更好地服务于大众。

参考文献

[1] 朱孟府.王海燕.宿红波.臭氧发生器的结构设计及

性能评价.中国医学装备[J]2008, 5(1):18-19.[2] 中华人民共和国国家质量监督检验检疫总局发布.医

用电气设备 第一部分:安全通用要求[S].GB9706.1-2007.

[3] 中华人民共和国卫生部发布.《消毒技术规范》,

2002. ■

Robotic-assisted ,bodyweight —supported treadmill t r a i n i n g i n i n d i v i d u a l s f o l l o w i n g m o t o r i n —complete spinal cord injury[J].Phys Ther .2005.85(1):52—66.

[14] 张立勋,颜庆.杨勇,等.下肢康复训练机器人

AVR 单片机控制系统[J].机械与电子,2004。(10):52—55.

[15] Wellner M 。Thoring T ,Smajic E .et a1.Obstacle

crossing in a virtual environment with the rehabilitation gait robot LOKOMAT[J]。Stud Heahh Technol Inform .2007。125:497—499.

[16] Galvez JA 。Budovitch A ,Harkema SJ ,et a1.

Quanti fi cation of therapists"mBnual assistance on the leg during treadmill gait training with partial body —weight support after spinal cord injury [J].Conf Proc 1EEE [17] Reinkensmeyer DJ 。Aoyagi D ,Emken JL ,et a1.

Tools for understanding and optimizing robotic gait training[J].J Rehabil Res Dev ,2006,43(5):657—670.

[18] Aoyagi D ,Ichinose WE 。Harkema SJ 。et a1.A robot

and control algorithm that can synchronously assist in naturalistic motion during body —weight —supported gait training following neurologic injury[J].IEEE Trans Neural Syst Rehabil Eng ,2007,15(3):387—400.[19] 唐庆玉,冉凡英,“康复仪器的现状与发展”,技术论

坛,V01.7 No .2,2001

[20] 袁启明,蓬勃发展的康复医学工程.医疗保健器具,

No .6 1999

[21] 张立勋,颜庆.杨勇,等.下肢康复训练机器人

AVR 单片机控制系统[J].机械与电子,2004。(10):

2020年中国机器人行业发展现状分析

2020年中国机器人行业发展现状分析 1、机器人行业发展概况分析:定义、分类、市场规模 机器人(Robot)是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。 它的任务是协助或取代人类工作的工作。我国机器人主要分为工业机器人和服务机器人两大。我国工业机器人已进入产业化极端,并成为了全球最大工业机器人应用市场。 我国机器人销售额总体呈逐年增长态势,2019年我国机器人销售额近608亿元,主要以工业机器人为主,工业机器人比重达66%。2019年我国工业机器人市场规模近401亿元。 我国机器人主要分为工业机器人和服务机器人两大类,其中工业机器人主要包括切割焊接机器人、装配机器人、喷涂机器人、运输机器人、分拣机器人及协作机器人等;服务机器人包括个人/家用、专业服务机器人及特种机器人等三类。

2、中国成为全球最大工业机器人应用市场 1959年美国诞生世界上第一台工业机器人,开启机器人时代。我国工业机器人发展远远落后于美国,直至1972年我国才开始研制国产工业机器人,但我国工业机器人发展迅速,现今我国工业机器人已进入产业化极端,并成为了全球最大工业机器人应用市场。 在服务机器人研发方面,我国也远落后于其他国家。早在1968年美国斯坦福研究所成功研制出世界第一台智能机器人,1969年早

稻田大学实验室研发出双脚走路的仿生机器人。我国服务机器人现仍处于发展阶段,仍有很长的一段路要走。 3、2019年中国机器人行业销售额或突破600亿元 据统计,2016-2018年我国机器人销售额总体呈逐年增长态势,年均复合增速达20.99%。2018年我国机器人销售额为539亿元,同比增长11.4%。初步估计2019年我国机器人销售额为608亿元。

下肢康复机器人

XYKXZFK-9型智能下肢反馈康复训练系统 1. 产品研发背景 1. 我国每年新发脑卒中病例120-150万人,死亡者80-100万人,死亡率高达 66.7%! 存活者中约75%致残,丧失了行走的能力。 另外造成下肢瘫痪的疾病还有脊髓损伤、外伤、比如下肢关节性疾病(如膝关节退 行性骨关节炎、脊髓性肌萎缩症、多发性硬化症等。 下肢康复机器人作为一种自动化的康复治疗设备,可以帮助患者进行科学有效的康复训练,使患者的运动功能得到更好的恢复。20 世纪80 年代是康复机器人研究的起步阶段,美国、英国和加拿大在康复机器人方面的研究处于世界领先地位,1990 年以后康复机器人的研究进入到全面发展时期。目前,康复机器人已经广泛应用到康复治疗方面,不仅促进了康复医学的发展,同时带动了相关领域的新技术和新理 论的发展。 研发背景: 1.我国每年新发脑卒中病例120-150万人,死亡者80-100万人,死亡率高达66.7%! 存活者中约75%致残,丧失了行走的能力。另外造成下肢瘫痪的疾病还有脊髓损伤、外伤、比如下肢关节性疾病(如膝关节退行性骨关节炎、脊髓性肌萎缩症、多 发性硬化症等。 2. 下肢活动障碍导致的严重并发症,长期卧床,下肢静脉血液回流受阻,下肢生理功能衰退,下肢组织血液供应不足,废用综合症 3. 传统康复训练治疗存在严重不足医护人员劳动强度大且不能保证稳定持续的运动训练 4. 单纯的直立床训练也存在着缺陷。患者下肢关节活动度得不到锻炼 下肢康复机器人应运而生 二. 产品设计原理:

按照正常行走时不同肌肉收缩的时序 通过预先设定的程序在预定的时间内刺激各组肌肉群产生一种协调动作模拟正常的行走动作 3. 产品参数及优势: XYKXZFK-9型智能下肢反馈康复训练系统 技术参数 ·电源电压:220V 50/60Hz 功率400VA

服务机器人行业现状及发展趋势分析

报告编号:1657362

行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称: 报告编号:1657362←咨询时,请说明此编号。 优惠价:¥8280 元可开具增值税专用发票 网上阅读: 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 根据国际机器人联合会的定义,服务机器人是一种半自主或全自主工作的机器人,它能帮助人类完成除生产制造加工过程以外的设备。服务机器人包括专用服务机器人和家用服务机器人。其中专用服务机器人是指在特殊环境下作业的机器人,如核电站事故检测与处理机器人、极地科考机器人、反恐防暴机器人、军用机器人、救援机器人等;家用服务机器人是指服务于人的机器人,如助老助残机器人、康复机器人、清洁机器人、护理机器人、医疗机器人、教育娱乐机器人等。 目前,世界上至少有48个国家在发展机器人,其中25个涉足服务型机器人开发。在服务机器人领域,发展处于前列的国家主要是日本、韩国、美国和德国。清洁是服务机器人应用最广泛的领域之一,主要应用有家用吸尘器、公共建筑地板清洗机和大型建筑物的擦窗机器人和外墙清洗机器人等。2012年全球家务机器人销量达到196万台,同比增长15%,预计到2015年全球家务机器人销量将达到300万台。 我国在服务机器人领域的研发与日本、美国等国家相比起步较晚,但在国家863计划的支持下,我国在服务机器人研究和产品研发方面已开展了大量工作并取得一定的成果。我国服务机器人产业发展较好的地区主要集中在北京、上海、深圳、浙江、沈阳、哈尔滨、广州、江苏、西安等地。 2012年4月,中国科技部正式印发了《服务机器人科技发展“十三五”专项规划》,提出“十三五”服务机器人重点专项安排公共安全机器人、仿生机器人平台、医疗康复机器人和模块化核心部件等4个方面任务。 据中国产业调研网发布的2015-2020年中国服务机器人行业现状研究分析及市场前景预测报告显示,纵观国内外服务机器人的发展,可以发现服务机器人在我国具有广阔的市场空间。随着城市化进程加速、人口老龄化和人口素质的提高,服务机器人的商业

康复机器人行业发展现状分析

康复机器人行业发展现状分析 一、市场发展现状 中投顾问在《2016-2020年中国医疗机器人产业深度调研及投资前景预测报告》中表示,康复机器人是辅助人体完成肢体动作,实现助残行走、康复治疗、负重行走、减轻劳动强度等功能的一种医用机器人。我们认为康复机器人的下游市场可被认为是一种特殊环境下的“可穿戴设备”,在应用技术突破后的市场需求量巨大,未来几年产业增长速度将超过整体医用机器人市场的增长速度。预测康复机器人市场将从2015年的4300万美元增长至2020年的18亿美元。 图表2015-2020年康复机器人市场(包含外骨骼机器人) 数据来源:中投顾问产业研究中心 二、供需缺口巨大 中投顾问在《2016-2020年中国医疗机器人产业深度调研及投资前景预测报告》中表示,肢体残疾主要由骨关节病、脊髓损伤和脑血管疾病等造成。大量存在的骨关节疾病,其疼痛和功能障碍会导致行走能力、劳动力丧失,甚至致残,60岁以上的老年人55%的人患有该病。脊髓损伤主要是由交通事故造成,轻者使损伤者行走能力减弱,重则瘫痪。脑血管疾病是神经系统疾病的常见病,其中以脑卒中患者居多。脑卒中是死亡率最高的三大疾病之一,85%的脑卒中患者会出现侧肢体运动功能障碍。据专家估计每年我国脑血病新发患者超过200万人。 我国肢体残疾基数庞大,且人数仍在递增。相较于1987年第一次全国残疾人抽样调查数据,2006年第二次抽样调查数据表示,残疾类别结构发生改变,肢体残疾人数大幅增加,肢体残疾人数从1987年的755万上升到2006年的2412万,占残疾总人口比重为29.07%,是残疾的最主要类型。另外,由于我国残疾标

准较为严格,与发达国家相比,残疾人比例相对较低,国际社会公认的全球残疾人比例约为全球总人口的10%,2006年我国的残疾人口比例约为6.34%,因此我国目前的残疾人数可能存在一定的低估。根据第六次全国人口普查的总人数,以及第二次全国残疾人抽样调查残疾人占比,推算2010年末我国残疾人总人数8502万人中,肢体残疾2472万人。 图表肢体残疾人数增长情况 数据来源:中投顾问产业研究中心 人口老龄化增加了致残几率和残疾人的数量,残疾人年龄结构呈倒金字塔型,年龄越大,比重越高。老年人由于生理机能衰退,脑血管疾病、骨关节病、痴呆等发病率和致残几率增高。 我国已步入老龄化进程,老年人口占比不断攀升。2014年我国65岁以上老年人口数达到1.38亿,所占人口比重不断攀升,达到10.1%;老年人抚养比在2014年达到13.7%,维持不断增加的趋势;少儿抚养比下降伴随着因计划生育和经济增长带来的人口出生率下降。伴随着老龄化过程中的生理衰退是老年人四肢的灵活性下降,并且,在老年人群体中存在大量的心脑血管疾病或神经系统疾病患者,且多数患者存在偏瘫症状。

医疗手术机器人发展研究报告

医疗手术机器人发展研究报告

投资要点 ●2021 年,全球手术机器人市场规模预计将达到200 亿美元。手术机器人 市场规模在2014 年为32 亿美元,目前北美市场目前为最大市场,而由于政府医疗投入加大,医疗系统重组和人们对微创手术意识加强,未来市场 重心将逐渐往亚洲市场转移。 ●达芬奇手术机器人是目前全球最成功及应用最广泛的手术机器人,也代表 着当今手术机器人最高水平。由总部位于美国加利福尼亚州阳光谷1995 年成立的直觉手术机器人公司(Intuitive Surgical)自行设计、生产及销售。 主要由3 个部分组成:1、医生控制系统;2、三维成像视频影像平台;3、机械臂,摄像臂和手术器械组成移动平台。它有三个关键核心技术:可自由运动的手臂腕部EndoWrist、3D 高清影像技术、主控台的人机交互设计。截止2016 年上半年,达芬奇系统全球累计安装3745 台,全球共完成达芬 奇手术300 万例,其中2015 年全球共65.2 万例,同比增长14%。 ●Intuitive Surgical Devices Inc(直觉外科公司)成立于1995 年,公司盈利 状况良好。2016 年上半年,公司总资产57.81 亿美元,实现营业收入12.65 亿元,较上年同期增长13.09%。实现净利润3.21 亿美元,较去年同期上涨38.62%。公司主营业务为产品销售与服务,产品销售主要是系统及仪器与配件的销售。 ●手术机器人系统开发者除了美国Intuitive Surgical 公司外,还有刚刚进入 手术机器人的老牌医疗公司Stryker。2013 年,Stryker 以16.5 亿美元收购Mako 外科治疗公司及其相关核心技术。另外,国际上一些公司已经开始把注意力集中在眼科、神经外科、骨科这些达芬奇系统还未占领的领域,例如CUREXO Technology 的ROBODOC 外科手术系统、英国Acrobot 公司的外科医疗手术系统等。 ●国内医疗机器人市场蕴含巨大潜力,博实股份设立全资子公司投资微创外 科手术机器人项目。博实股份早在2013 年底即起步开展对公司关注的智能医疗服务装备个别关键技术的研究。微创外科手术机器人属于高技术聚集、高利润附加的高端智能医疗装备,是国际机器人行业增长最为迅速的领域,临床需求旺盛。公司看好相关领域投资机会,是公司进军高端医疗装备领域战略的具体实施,具有重要意义。 ●风险提示:技术进步低于预期;消费者需求低于预期。

现阶段国内外机器人产业发展现状分析

机器人与智能装备产业是高度集成微电子、通信、计算机、人工智能、控制和图像处理等学科最新科研和产业成果的前沿高新技术产业,是拟建的江苏省(常州)工业技术研究院的服务的产业核心和研发的产业立足点。直接影响生活最优化和智能化的机器人技术是机器人与智能装备产业的技术核心,推进着未来机器人与智能装备领域的科技创新力和产业竞争力。 机器人技术是一种是以自动化技术和计算机技术为主体、有机融合各种现代信息技术的系统集成和应用。经过半个多世纪的发展,机器人技术在工业生产领域得到了广泛的应用,极大地提升了生产品质并成功解放了劳动力资源。作为高技术领域中重要的前沿技术之一,机器人技术具有前瞻性、先导性的特点,对学术研究、产业升级、培养创新意识、保障国家安全、引领未来经济社会的发展有着十分重要的作用。 目前,相关领域的技术突破,从根本上为提升机器人技术的学术研究提供了必要的支持,为机器人的应用范围拓宽了道路,已涵盖国防、航空航天、工业生产、服务、老人康复、教育甚至普通家庭生活,一场新的机器人技术研究高潮和发展契机业已到来。 机器人技术毫无疑问是未来的战略性高技术,充满机遇和挑战。 目前,国际上机器人市场大概有80亿至100亿,其中工业机器人占的比重最大。2025年,整个机器人市场将达到500亿,服务机器人从原来的300多万台增加到1200多万台,特种机器人(如:排爆机器人、医疗机器人等)的呼声也越来越高。另外,微软等IT企业,丰田、奔驰等汽车公司,甚至还有家具、卫生洁具企业都纷纷参与机器人的研制。 美国和日本多年来引领国际机器人的发展方向,代表着国际上机器人领域的最高科技水平。目前,日本除了比较关注特种机器人和服务机器人以外,还注重中间件的研制。然而,近年来日本基本上在做模仿性的工作,突破性技术比较少。而美国在机器人领域的技术开发方面,一直保持着世界领先地位。再有,美国主要做高附加值的产业,比如军用机器人,目前世界销售的9000台军用机器人之中,有60%来自美国。比如:美国最近研制成功的BigDog 军用机器人,能负重100公斤,行进速度跟人相当,每小时达到五公里,还能适应各种地形,即使是在侧面受到冲击时也能保持很好的系统稳定性。 在各种机器人中,工业机器人应用较早,发展最为成熟。同时,技术的不断进步一直在牵引着机器人学科的发展,使机器人的应用领域从工业机器人扩展到特种机器人和服务机器人等。机器人技术也正越来越深刻地影响着我们的生活。机器人不但将在工厂、实验室与人一起工作,还将在车站、机场、码头、交通路口为人们指引路径、回答问题、帮助行人。机器人还将步入千家万户,为老人端茶送水,护理伤病人等等。未来机器人将会越来越广泛地进入人类社会,人类对机器人的依赖会如同现时对待计算机一样,即使是短时间的离开都可能会造成很大不便。 机器人化是先进制造领域的重要标志和关键技术,针对先进制造业生产效率提高的诸多瓶颈问题,尤其是在汽车产业中,机器人得到了广泛的应用。如在毛坯制造(冲压、压铸、锻造等)、机械加工、焊接、热处理、表面涂覆、上下料、装配、检测及仓库堆垛等作业中,机器人都已逐步取代了人工作业。目前汽车制造业是所有行业中人均拥有机器人密度最高的

医疗机器人市场发展现状分析

医疗机器人销售规模及重点竞争企业 一、医疗机器人市场发展规模 中投顾问在《2016-2020年中国医疗机器人产业深度调研及投资前景预测报告》中表示,2014年全球医疗机器人的销量为1224台,与2004年全球医疗机器人销量为386台相比,年复合增速达12.2%。 图表2004-2014年全球医疗机器人销售情况 数据来源:中投顾问产业研究中心 商业机器人市场于2015年达到了59亿美金,主要受益于在商业机器人中占比极大的医疗及手术机器人的迅速增长,未来市场份额有望在2025年达到170亿美金,取代军用机器人板块成为第二大机器人市场。 图表2015-2020年机器人市场细分以及增速情况 单位:十亿美元

数据来源:中投顾问产业研究中心 中投顾问在《2016-2020年中国医疗机器人产业深度调研及投资前景预测报告》中表示,截止2016年1月,全球医疗机器人行业每年营收达到74.7亿美元,预计未来5年年复合增长率能稳定在15.4%,至2020年,全球医疗机器人规模有望达到$114亿美金。其中,手术机器人占60%左右市场份额。 目前北美市场目前为最大市场,而由于政府医疗投入加大,医疗系统重组和人们对微创手术意识加强,未来市场重心将逐渐往亚洲市场转移。2013年全球外科手术辅助机器人总销售额达14.95亿美元,其中达芬奇机器人全球销售额达6.33亿美元,占比42.43%。截至2014年底,全球共装机达芬奇机器人3266台,其中美国2223台(68%),欧洲549台(16.8%),亚洲350台(10.7%),我国内地共29台(7.96%),其中9台在北京(2.76%)。 二、医疗机器人市场竞争格局 中投顾问在《2016-2020年中国医疗机器人产业深度调研及投资前景预测报告》中表示,医疗机器人在国外属于市场化程度较高的行业,主要是由市场的供需情况决定的,竞争比较激烈。而技术更迭周期短的行业特性也决定了拥有核心技术以及突破性独创理念的公司将快速抢占市场份额。 目前全球医疗机器人行业中欧美地区的医疗企业占据了较大的市场份额,处于市场主导地位,全球最大的10家医疗机器人企业中大部分是美国和欧洲公司。其中,美国医疗机器人行业在全球处于领先地位,已发展到30多个。这些医疗科技公司拥有庞大的资源网络、全面的服务内容和优秀的研发团队。能够为医院、及其他医疗机构提供更科学、精确、安全的手术辅助服务。

我国机器人市场现状及未来变化趋势

我国机器人市场现状及未来变化趋势 近日,由工信部,国家发改委,财政部联合发布的《机器人产业发展规划(2016-2020年)》为整个机器人产业吹起了东风。 一、全球现状 法国市场调研公司Yole预测了机器人细分行业未来的市场规模,到2021年总体市场规模将会达到460亿美元。未来工业机器人占比超过一半;其次是国防机器人,预计占比接近20%;消费级机器人占比位列第三;商用机器人份额虽然仅位列第四,但是增长速度在未来5年将会翻一倍,是增长最快的细分领域。医疗和安全领域的机器人也会逐渐起步。 统计显示,2015年销量首次突破24万台,达24.8万台。其中中国市场处于领先,销量为6.6万台,同比增长16%。中国本土机器人制造商正不断取得进展,2015年累计销售22257台,市场份额从2013年的25%增长至2015年的31%。 2015年欧洲机器人销量同比增长9%,接近5万台。东欧是主要的增长来源。北美市场的销售同比增长11%,至3.4万台。 2015年全球工业机器人销量增速为12%,不到2014年29%增速的一半。全球制造业机器人密度(每万名工人使用工业机器人数量)平均值由5年前的50提高到66,其中工业发达国家机器人密度普遍超过200。

中国机器人销售情况 2015年国产多关节机器人销售加速,销量超过6000台,同比增长71.7%,占国产工业机器人总销量的27.4%。 工厂物流机器人销量超过1700台,同比增速高达93.7%。 坐标机器人仍是国产工业机器人主力机型,2015年销售接近10600台,占机器人销售总量的比重为47.6%。 平面多关节机器人销售2179台,销量同比下降20.8%。并联机器人和圆柱坐标机器人销售均实现同比增长。 数据显示,三轴四轴等低端机器人在国产工业机器人中比重下降,而技术附加值较高类型产品的比重在提升,表明国产工业机器人产品结构正在逐步优化。 二、全球机器人龙头企业都有谁? 世界工业发达国家已经建立起完善的工业机器人产业体系,核心技术与产品应用领先,并形成了少数几个占据全球主导地位的机器人龙头企业。 三、中国的差距在哪里? 主要表现在: 机器人产业链关键环节缺失,零部件中高精度减速器、伺服电机和控制器等依赖进口;

康复机器人市场规模及供需情况分析

康复机器人市场规模及供需情况分析 一、市场发展现状 中投顾问在《2016-2020年中国医疗机器人产业深度调研及投资前景预测报告》中表示,康复机器人是辅助人体完成肢体动作,实现助残行走、康复治疗、负重行走、减轻劳动强度等功能的一种医用机器人。我们认为康复机器人的下游市场可被认为是一种特殊环境下的“可穿戴设备”,在应用技术突破后的市场需求量巨大,未来几年产业增长速度将超过整体医用机器人市场的增长速度。预测康复机器人市场将从2015年的4300万美元增长至2020年的18亿美元。 图表2015-2020年康复机器人市场(包含外骨骼机器人) 数据来源:中投顾问产业研究中心 二、供需缺口巨大 中投顾问在《2016-2020年中国医疗机器人产业深度调研及投资前景预测报告》中表示,肢体残疾主要由骨关节病、脊髓损伤和脑血管疾病等造成。大量存在的骨关节疾病,其疼痛和功能障碍会导致行走能力、劳动力丧失,甚至致残,60岁以上的老年人55%的人患有该病。脊髓损伤主要是由交通事故造成,轻者使损伤者行走能力减弱,重则瘫痪。脑血管疾病是神经系统疾病的常见病,其中以脑卒中患者居多。脑卒中是死亡率最高的三大疾病之一,85%的脑卒中患者会出现侧肢体运动功能障碍。据专家估计每年我国脑血病新发患者超过200万人。 我国肢体残疾基数庞大,且人数仍在递增。相较于1987年第一次全国残疾人抽样调查数据,2006年第二次抽样调查数据表示,残疾类别结构发生改变,肢体残疾人数大幅增加,肢体残疾人数从1987年的755万上升到2006年的2412万,占残疾总人口比重为29.07%,是残疾的最主要类型。另外,由于我国残疾标

下肢康复训练机器人的研究现状与趋势

专题(康复医学) Thematic Forum(Rehabilitation Medicine) 收稿日期:2010-02-08 作者简介:谢欲晓,教授,硕士生导师,主任医师,中日友好医院物理康复科主任,中国康复医学会理事,副秘书长、科普工作委员 康复机器人(rehabilitation robots)是近年出现的一种新型机器人,它属于医疗机器人范畴。它分为康复训练机器人和辅助型康复机器人,康复训练机器人 的主要功能是帮助患者完成各种运动功能的恢复训练,如行走训练、手臂运动训练、脊椎运动训练、颈部运动训练等;辅助型康复机器人主要用来帮助肢体运动 有困难的患者完成各种动作,如机器人轮椅、导盲手杖、机器人假肢、机器人护士等[1]。 传统的康复程序依赖于治疗师的经验与徒手操作技术。随着病人数目迅速增大,节省治疗时间越来越成为关注的问题。如果机器人可以协助执行康复评估与治疗程序,应该是一个很大的进步。近年来,已经有很多研究涉及机器人在协助残疾者康复训练的作用[2,3]。康复机器人能通过机器带动肢体做成千上万的重复性的运动, 对控制肢体运动的神经系统刺激并重建, 从而恢复肢体功能运动的一种新的临床干预手段。 1 康复训练机器人的研发沿革 康复机器人技术是国际前沿技术,它的历史虽然很短,但发展的速度却很快,近一两年来不断有新的研究成果出现。从第一台在商业上获得巨大成功的康复机器人一Handy [4]至今,康复机器人的研究获得了巨大的发展。为了更好地促进运动康复和实现运动控制,自动化和机器人辅助的运动康复从上世纪90年代开始出现[5]。 1993年,Lum 等就研制了一种称作“手——物体——手”的系统(hand —object —hand system),尝 试对一只手功能受损的患者进行康复训练。1995年,Lum 等又研制了一种双手上举的康复器(bimanual lifting rehabilitation),用来训练患者用双手将物体上 举这一动作[6]。Hogan 与Krebs 等于研制出一种称作MIT-MANUS 的脑神经辅助康复机器人。MANUS 提供平面运动和手部三维运动两个训练模块,具有反向 可驱动性并可以通过阻抗控制实现训练的安全性、稳定性和平顺性。MANUS 具有辅助或阻碍手臂的平面运动功能,也可以精确测量手的平面运动参数,并为患者提供视觉反馈。MANUS 的不足在于,它实现的动作基本上是平面的,这就限制了训练方案的改进;而且它向患者提供的训练动作不是从患者本身的需要出发,因而不能达到最佳的训练效果。 2000年,美国国家航空航天局(NASA)喷气推进实验室和加州大学洛杉矶分校(UCLA)研制了一种用于脊椎神经受损病患者下肢康复的机器人设备,它运用一对机械臂引导下肢在脚踏车上运动,并且通过几个 传感器来测量病人的力、速度、加速度以及运动阻力。在国内,哈尔滨工业大学研制了一种下肢康复训练机器人,对下肢运动障碍者在机器人辅助运动过程中的重心控制进行了研究[7] 总结康复机器人的研发现状,下肢康复机器人以被动运动模式为主,但现有运动模式单一,缺乏目标导向训练设计;上肢康复机器人已实现主动、被动、助动三种模式相结合的运动,并实现神经控制参与的目标导向运动,将对临床治疗有突破性的贡献,应大力推广;而手部康复机器人是目前国际研究的难点,暂无突破性的产品。

医疗机器人项目立项申请报告

医疗机器人项目立项申请报告 投资分析/实施方案

报告说明— 该医疗机器人项目计划总投资20406.17万元,其中:固定资产投资13800.99万元,占项目总投资的67.63%;流动资金6605.18万元,占项目总投资的32.37%。 达产年营业收入48056.00万元,总成本费用37489.24万元,税金及附加376.17万元,利润总额10566.76万元,利税总额12400.41万元,税后净利润7925.07万元,达产年纳税总额4475.34万元;达产年投资利润率51.78%,投资利税率60.77%,投资回报率38.84%,全部投资回收期 4.07年,提供就业职位943个。 医疗用的机器人种类很多,主要包括手术机器人、康复机器人、医疗服务机器人、健康服务机器人等。目前,在我国医疗机器人市场中,康复机器人占比最大,约为41%;医疗服务机器人、手术机器人占比相差不大,分别为17%、16%

第一章基本信息 一、项目概况 (一)项目名称及背景 医疗机器人项目 (二)项目选址 某循环经济产业园 项目建设区域以城市总体规划为依据,布局相对独立,便于集中开展 科研、生产经营和管理活动,并且统筹考虑用地与城市发展的关系,与项 目建设地的建成区有较方便的联系。所选场址应避开自然保护区、风景名 胜区、生活饮用水源地和其他特别需要保护的环境敏感性目标。项目建设 区域地理条件较好,基础设施等配套较为完善,并且具有足够的发展潜力。 (三)项目用地规模 项目总用地面积50318.48平方米(折合约75.44亩)。 (四)项目用地控制指标 该工程规划建筑系数76.04%,建筑容积率1.54,建设区域绿化覆盖率6.38%,固定资产投资强度182.94万元/亩。 (五)土建工程指标

十三五中国机器人产业发展现状及未来规划

十三五中国机器人产业发展现状及未来规划 近日,由工信部,国家发改委,财政部联合发布的《机器人产业发展规划(2016-2020年)》为整个机器人产业吹起了东风。 一、发展现状 法国市场调研公司Yole预测了机器人细分行业未来的市场规模,总体市场规模到2021年将会达到460亿美元。工业机器人占比超过一半;其次是国防,占比接近20%;除了消费级机器人外,商用机器人份额位列第四,但是增长速度在未来5年内将会翻一倍,是增长最快的细分领域。医疗和安全领域的机器人也会逐渐起步。 全球工业机器人销量年均增速超过17%,2014年销量达到22.9万台,同比增长29%,2014年自主品牌工业机器人销量达到1.7万台,较上年增长78%。 全球制造业机器人密度(每万名工人使用工业机器人数量)平均值由5年前的50提高到66,其中工业发达国家机器人密度普遍超过200。 自2013年起我国成为全球第一大工业机器人应用市场,2014年销量达到5.7万台,同比增长56%,占全球销量的1/4,机器人密度由5年前的11增加到36。 二、我国的差距在哪里 主要表现在: 机器人产业链关键环节缺失,零部件中高精度减速器、伺服电机和控制器等依赖进口; 核心技术创新能力薄弱,高端产品质量可靠性低; 机器人推广应用难,市场占有率亟待提高; 企业“小、散、弱”问题突出,产业竞争力缺乏; 机器人标准、检测认证等体系亟待健全。 三、需求在哪,机会就在哪 工业机器人:我国生产方式向柔性、智能、精细转变,构建以智能制造为根本特征的新型制造体系迫在眉睫,对工业机器人的需求将呈现大幅增长。 服务机器人:老龄化社会服务、医疗康复、救灾救援、公共安全、教育娱乐、重大科学研究等领域对服务机器人的需求也呈现出快速发展的趋势。 四、领头品类是工业生产和公共服务 机器人细分领域,产品品类众多。而发展规划中提到的重点推动的以下10个标志性产品。其中大部分是工业机器人,在关键性能参数上有更进一步的要求。还包括消防,医疗护

手术机器人市场发展现状及主要研发机构

手术机器人市场发展现状及主要研发机构 一、行业发展概况 手术机器人大类包括腹腔镜手术机器人系、统矫形外科机器人系统、神经外科机器人系统、可操纵的机器人导管、及其他临床手术机器人。 2014年,手术机器占全球医疗机器人份额60%以上,占比最重。其中,腹腔镜检查是手术机器人最大的应用领域,在2014年占手术机器人行业的88.5%。其他临床手术机器人占比11.5%。未来由于对微创诊断和治疗程序的需求增加、老年人口基数的增长、地球环境的恶化、不健康的饮食习惯和对高脂肪食品、酒精的消费,以及都市人口平日缺乏体育锻炼等不健康的生活方式,种种因素都极大促进了手术的发生率,也为手术机器人的发展提供了空间。 二、市场发展现状 事实上,手术机器人只是一个手术平台。在手术中,医生可以远离手术台坐在操作控制台中,双手握住手柄,同步控制患者体内的机械臂手术器械进行手术。在这个系统操作下的手术过程比起传统的手术更可控,而且给“远程手术”带来了发展空间:事实上,手术机器人最早就是为野战医院而设计的,在未来,北京、上海的医生远程控制新疆、西藏的机器人进行手术都可以变为现实。 在我国,目前机器人手术主要用于普外科(肝胆、胰腺、胃肠道、甲状腺等)、心脏外科、胸外科、泌尿外科、妇科、小儿外科、咽喉头颈外科等等。 一个不得不正视的现实是,目前几乎国内所有公立、民营医院所应用的机器人清一色进口,直觉外科公司凭借“达芬奇机器人”成为最大赢家:根据中国区供应商的统计,从2006年第一台达芬奇手术机器人落户国内至今,截至2015年12月,分布在全国各地的数几十台“达芬奇手术机器人”在2014年共完成手术11445例,历年总计完成手术22917例。在美国,2007至2013年间有170万名病人进行了机器人手术。 在2018年,全球医疗机器人的销量会达到约4000台,从2014年起,未来4年内平均每年年均复合增速达到34.45%,在中国这一数字会更加好看。 政策扶持加之庞大的市场增量,对于国内的医械企业来说,谁能率先研发出具有自主知识产权的手术机器人设备,谁就将占有市场先机。 对于国内的患者来说,尽管手术机器人拥有者诸多优势:精度更高、有效避免人工手颤抖的缺陷、出血量更小、影响系统有效扫除手术盲点,但敢于尝试的患者仍不是很多,除了信任度之外,高昂的手术费用是另一个主要因素。

国内外机器人发展的现状及发展动向

国内外机器人发展的现状及发展动向 机器人技术毫无疑问是未来的战略性高技术,充满机遇和挑战。目前,国际上机器人市场大概有80亿至100亿,其中工业机器人占的比重最大。2025年,整个机器人市场将达到500亿,服务机器人从原来的300多万台增加到1200多万台,特种机器人(如:排爆机器人、医疗机器人等)的呼声也越来越高。另外,微软等IT企业,丰田、奔驰等汽车公司,甚至还有家具、卫生洁具企业都纷纷参与机器人的研制。 美国和日本多年来引领国际机器人的发展方向,代表着国际上机器人领域的最高科技水平。目前,日本除了比较关注特种机器人和服务机器人以外,还注重中间件的研制。然而,近年来日本基本上在做模仿性的工作,突破性技术比较少。而美国在机器人领域的技术开发方面,一直保持着世界领先地位。再有,美国主要做高附加值的产业,比如军用机器人,目前世界销售的9000台军用机器人之中,有60%来自美国。比如:美国最近研制成功的Big Dog军用机器人,能负重100公斤,行进速度跟人相当,每小时达到五公里,还能适应各种地形,即使是在侧面受到冲击时也能保持很好的系统稳定性。 在各种机器人中,工业机器人应用较早,发展最为成熟。同时,技术的不断进步一直在牵引着机器人学科的发展,使机器人的应用领域从工业机器人扩展到特种机器人和服务机器人等。机器人技术也正越来越深刻地影响着我们的生活。机器人不但将在工厂、实验室与人一起工作,还将在车站、机场、码头、交通路口为人们指引路径、回答问题、帮助行人。机器人还将步入千家万户,为老人端茶送水,护理伤病人等等。未来机器人将会越来越广泛地进入人类社会,人类对机器人的依赖会如同现时对待计算机一样,即使是短时间的离开都可能会造成很大不便。 机器人化是先进制造领域的重要标志和关键技术,针对先进制造业生产效率提高的诸多瓶颈问题,尤其是在汽车产业中,机器人得到了广泛的应用。如在毛坯制造(冲压、压铸、锻造等)、机械加工、焊接、热处理、表面涂覆、上下料、装配、检测及仓库堆垛等作业中,机器人都已逐步取代了人工作业。目前汽车制

机器人在医疗应用上的现状和发展前景

机器人在医疗应用上的现状和发展前景 机器人是在解决人类社会生产力问题 最近两年关于机器人的讨论非常热烈,其中一个比较激烈的观点是人工智能或者机器人是人类在自掘坟墓,这方面,霍金多次强调了类似的观点。不过,从我个人的角度而言,我们研发机器人的目的,是为了什么?我们希望机器人能够聪明一点,灵巧一点,安全一点,归底结底是希望机器人能够弥补人类或者个人在某些领域的不足,帮助人类在某些不方便到达的区域工作,放大在未来10年、20年,甚至30年、50年以后,机器人其实是在解决人类社会生产力问题。 人工智能的标志不是知识而是想象力 某些时候,大家会纠结一个问题,什么是智能机器人,到底什么是智能?其实在28年前,我在学医的时候,就一直在思考这个问题,我在医学院最后实习的半年,在精神病总院待了半年,有人说人类区别于动物,或者人类智慧的特点是语言,当你观察精神病人会发现精神病人经常滔滔不绝,但通常缺乏逻辑性。智能的东西不管是学习还是深度学习,你能告诉我,能不能有逻辑性。包括最近《Science》发表的一篇文章提到,机器人可以通过视觉学习识别和定位菠萝,但是如果你在菠萝中再加入一些其他事物,比如菠萝饭,酸奶中放入菠萝,面包中夹片菠萝,人工智能能分辨认识总结吗?但如果你问五岁的小孩这几样东西有什么共同的地方,他会强调都有菠萝或者菠萝味。因此我认为智能的标志不是知识,而是想象力。 关于医用机器人、Robot和Humanoid 关于医用机器人,很多时候会涉及到一个问题,到底是医疗还是医用。我认为医疗是非常严格的一个科学过程或者实践过程,医用有的时候要求则可以稍微低一点,所以我把医用定义为必须实用,必须可用,而且可负担。比如英国有一个护理机器人,27万英镑,那还不如雇个人更实惠。 关于Robot和Humanoid,我认为Robot是一个智能机器或者装置,在自控程序下执行工

国内外机器人发展现状及发展动向

国内外机器人发展现状及发展动向 一、全球机器人行业现状 (一)全球机器人行业现状 1、行业发展:增长态势延续 (1)预计2017年全球工业机器人销售量25万台 从2008年第四季度起,全球金融风暴导致工业机器人的销量急剧下滑。2010年全球工业机器人市场逐渐由2009年的谷底恢复。 2011年是全球工业机器人市场自1961年以来的行业顶峰,全年销售达16.6万台。2012年全球工业机器人销量为15.9万台,略有回落,主要原因是电气电子工业领域的销量有所下滑,但汽车工业机器人销量延续增长态势。 随着全球制造业产能自动化水平提升,特别是中国制造业升级,我们估计到2017年全球工业机器人销量达到25万台,年复合增长率9.5%. (2)预计到2017年全球工业机器人市场容量2700亿 2012年全球机器人本体市场容量为530亿元,本体加集成市场容量按本体大约三倍算,估计1600亿元。 估计2013年至2017年,包含本体和集成在内的全球工业机器人市场,年复合增长率约为11%。预计2017年全球工业机器人市场容量将达到2700亿元。 (3)预计到2017年全球服务机器人市场容量接近500亿 根据IFR数据,2012年全球个人(或家庭)用服务机器人市场容量为73亿元,公共服务机器人市场容量为208亿元。目前看公共服务机器人产业化走在前面,市场容量更大。 预计2013-2017年个人(或家庭)用服务机器人市场容量增长率为7%,公共服务机器人市场容量年均复合增长率为17%。到2017年,全球服务机器人市场容量将接近500亿元。如果智能家居算是广义的服务机器人,服务机器人市场容量会大很多。 2、全球机器人行业布局:日欧产业优势明显,中国市场潜力巨大 (1)工业机器人市场销量与存量 全球工业机器人本体市场以中欧美日为主。日、美、德、韩、中五国存量占全球比例达71.24%,销量达69.92%。 截至2012年底,全球机器人累计销量达到247万台。机器人平均使用寿命为12年,最长15年。估计现在全球机器人存量在120万台-150万台之间。 分区域看,亚洲/澳洲增幅达到9%。亚洲增幅主要由中国需求拉动,因为中国2012年工业机器人销量增幅达到30%。 分生产地和消费地看,日本是唯一的工业机器人净出口国,拥有全球最大的机器人产能,占据全球机器人产量的66%。机器人消费地最大的区域是除日本以外的亚洲地区,占比约34%,而且是以中国市场为主。 (2)全球工业机器人与机床行业销量的对比 工业机器人销量占机床销量比反映各国机器人使用情况。这个比例的上升在一定程度上代表着这个国家机器人普及水平的提升。我们给出美日德中四国的机器人销量占机床销量比,从这个数据和历年的变化趋势看各国机器人行业的发展状况。 美日德三国的机器人销量占机床销量比稳定在一定区间内(15%-25%),表明

医疗机器人行业发展规划

医疗机器人行业发展规划 ——20xx年 医疗用的机器人种类很多,主要包括手术机器人、康复机器人、 医疗服务机器人、健康服务机器人等。目前,在我国医疗机器人市场中,康复机器人占比最大,约为41%;医疗服务机器人、手术机器人占比相差不大,分别为17%、16% 以转型升级、提质增效为主线,以技术创新和管理创新为支撑点,加快推进供给侧结构性改革,扩大新型产品生产和应用,积极开展产 能合作,有效提高区域产业的质量和效益。 为加快区域产业结构调整和优化升级,依据国家和xx省产业发展 规划,结合区域产业xx年发展情况,制定该规划,请结合实际情况认 真贯彻执行。 第一章发展思路 以新发展理念统领发展全局,加快供给侧结构性改革,大力发展 特色产业,促进产业链、创新链、服务链、信息链、人才链联动发展,全面提升创新发展能力和核心竞争力,培育区域国民经济新支柱。 第二章指导原则

1、因地制宜,示范引领。着眼区域实际,充分考虑经济社会发展 水平,逐步研究制定适合区域特点的能效标准。制定合理技术路线, 采用适宜技术、产品和体系,总结经验,开展多种示范。 2、坚持融合发展。推进业态和模式创新,促进信息技术与产业深 度融合,强化产业与上下游产业跨界互动,加快产业跨越式发展。 3、坚持转型发展。引导要素优化配置,提高全要素发展。 4、政府引导,市场推动。以政策、规划、标准等手段规范市场主 体行为,研究运用价格、财税、金融等经济手段,发挥市场配置资源 的决定性作用,营造有利于产业发展的市场环境。 第三章产业环境分析 医疗用的机器人种类很多,主要包括手术机器人、康复机器人、 医疗服务机器人、健康服务机器人等。目前,在我国医疗机器人市场中,康复机器人占比最大,约为41%;医疗服务机器人、手术机器人占比相差不大,分别为17%、16%。 康复机器人是辅助人体完成肢体动作,实现助残行走、康复治疗、负重行走、减轻劳动强度等功能的一种医用机器人,产品包括上肢康 复机器人、下肢康复机器人、智能轮椅、交互式健康训练机器人等。

国内机器人技术分析研究现状

国内机器人技术研究现状分析 王守龙 摘要:随着经济全球化对工农业生产提出越来越高的要求,计算机技术向着智能化发展,机器人越来越普遍的被工农业应用,其在提高工农业产品质量,增加经济效益方面发挥着重大作用。本文又介绍分析了移动机器人和小口径管内机器人及其在我国的技术研究现状。中国的机器人事业面临着新的机遇和挑战。 关键词:机器人;技术研究;移动机器人;小口径管内机器人

前言 有人认为, 应用机器人只是为了节省劳动力, 而我国劳动力资源丰富, 发展机器人不一定符合我国国情。这是一种误解。在我国, 会主义制度的优越性决定了机器人能够充分发挥其长处。它不仅能为我国的经济建设带来高度的生产力和巨大的经济效益, 而且将为我国的宇宙开发、海洋开发、核能利用等新兴领域的发展做出卓越的贡献。 1 工农业机器人 1.1 工业机器人研究现状分析 机器人产业是近30年发展起来的新型产业。我国政府早在“七·五”期间就开始组织了对工业机器人的攻关,到了1987年,国家高技术研究开发计划就把智能机器人作为七大重点领域之一进行集中研究。经过十几年的艰苦奋斗,我国在水下、空间、核领域等特殊机器人方面取得了令人欣慰的成果,一批机器人产品和机器人应用工程应运而生。到20世纪90年代末,我国共完成了l00多项工业机器人应用工程,建成了20个机器人产业化基地,从事机器人研究、开发和应用工程单位200多家,专业从事机器人产业开发的50家左右,全国工业机器人用户近800家,拥有工业机器人约4000台。2006年发布的《国家中长期科学和技术发展规划纲要》前沿技术中,我国将智能服务机器人列为重点方向,提出加大科技投入与科技基础条件平台建设。 然而,由于主要依靠科技部门研究开发计划的支持,从资金到产业的支持力度不够,在机器人关键技术方面,我国与国外的差距并没有明显缩小,在关键部件、产品产业化以及基础研究方面的差距还在拉大。到1998年,863计划推动的几个机器人产业化基地产值仅仅1亿元。然而,国外各大机器人公司认识到高速发展中的中国机器人市场的巨大潜力,凭借其技术和资金的优势纷纷进入了中国市场。可以说,目前的中国机器人市场仍然是外国企业一统天下,我国机器人发展尚未进入规模开发利用和产业化的阶段。 我国经过几十年来的研究与引进, 在机器人运动学仿真、动力学仿真和某些典型工业机器人机构分析软件方面取得了一些成果,但总的看来, 我国机器人机械技术的研究状况与国外相比还有较大的差距, 目前既没有建立一种多功能的机器人系统, 也缺乏利用技术对机器人机械学的很多专门问题进行深人研究。我国目前研制的几种工业机器人机型结构主要是直接仿制日本90年代初的样机, 一些主要关键元器件依赖国外进口。虽然国家“七五”期间安排了一些单项研究课题, 但这些课题一时还难于直接用于国产工业机器人, 还远不能从理论及实际技术上建立起我国机器人的完整设计体系, 这与国外相比差距较大。国内利用国产机器人开展应用工程的研究工作刚刚起步。我国对移动机器人研究, 近年来在步行机基础理论方面的成果较多, 而步行机实物模型或样机较少,与国外先进水平相比也存在较大的差距。

医疗机器人的应用与发展

医疗机器人的应用与发展 12机制2班黄谞2012509071 【摘要】医用机器人,是指用于医院、诊所的医疗或辅助医疗的机器人。是一种智能型服务机器人,它能独自编制操作计划,依据实际情况确定动作程序,然后把动作变为操作机构的运动。重点介绍了手术机器人、康复医疗机器人、医院服务机器人、医用教学机器人等。【关键词】手术机器人;康复医疗机器人;医院服务机器人;医用教学机器人; 医用机器人是机器人技术、计算机网络控制技术、数字图像处理技术、虚拟现实技术和医疗外科技术的结合,用于实现机器人辅助外科手术、康复医疗和医院服务等功能。医用机器人是目前国内外机器人研究领域中最活跃、投资最多的方向之一,其发展前景非常看好,美、法、德、意、日等国家学术界对此给予了极大关注,研究工作蓬勃发展[1]。从二十世纪九十年代起,国际先进机器人计划(IARP)已召开过多届医用机器人研讨会,美国国防部高等研究计划局(DARPA)立项开展基于遥控操作机器人的研究,用于战伤模拟手术、手术培训、解剖教学。欧盟、法国国家科学研究中心也将机器人辅助外科手术及虚拟外科手术仿真系统作为重点研究发展的项目之一。 中国人口众多,随着人们生活水平的提高和人口老龄化进程的加剧,我国正在成为高新技术医疗器械生产和使用大国,然而由于中国相关科技研究落后,医用机器人大量依赖进口,从而造成医疗费用增长,加重了病人负担。目前,医用机器人的研制主要集中在微创外科手术、康复和服务机器人系统等几个方面,本文详细介绍了国内外有关医用机器人的关键技术及其研究现状,并探讨了今后的发展方向。 1、手术机器人 近年来,各种医用机器人的概念和模型被提出和研发;而在众多的医用机器人研究中,手术机器人得到了相关研发人员的重视。 手术机器人最早源于美军机器人手术和远程外科计划。1994年,由美国国防部下属的国防高级研究计划局(DARPA)研制成原型机。商业化的手术机器人则最早出现在1994年,由美国Computer Motion公司研制,命名为AESOP;该机器人实质上是一种声控腹腔镜的自动“腹镜手”。1997年3月,比利时布鲁塞尔St Pierre医院利用AESOP系统成功完成第一例腹腔镜手术——胆囊切除术。1998年,Computer Motion公司研制的Zeus系统,Intuitive Surgical 公司研制的DaVinci系统,和EndoVia公司研制的Laprotek系统分别获得了成功;其中DaVinci 系统在国际上影响最大。这三系统均由三大部分组成:医生操纵台,机械手和内镜装置。Zeus 系统采用纯信号方式实现医生操纵台对机器臂的控制,在传输距离上不受视频延迟的影响;2001年9月首次实现跨大西洋(美国纽约-法国斯特拉斯堡)的机器人腹腔镜胆囊切除术。最近,美军正在研究远程微创外科手术机器人,采用DaVinci系统在美国华尔特里德陆军医学中心和约翰霍普金斯医院之间(相距64 km)开展远程手术。 在国内,海军总医院和北航机器人研究所共同开发出智能化远程外科手术系统,被称为“遥操作远程医用机器人”。2002年,首次成功使用该机器人为一脑肿瘤患者做了立体定向活检手术。专家先通过电脑网络接收病人信息,分析病人CT影像,进行手术规划,然后遥控操作手术室内的机器人开始手术;机器人根据专家指令,自动搜索手术部位,并迅速锁定立体定向穿刺路径;20分钟后,成功地取出病变组织。2006年3月,我国首例通过互联网异地操控机器人的骨科手术在陕西延安获得成功;该手术为胫骨髓内钉手术,由1300公里外的北京专家通过互联网远程遥控机器人实施。微型机电技术的不断深入发展为微小型机器人甚至纳米机器人提供了技术支持,它可以直接进入人体器官内部进行工作,完成组织取样、血

相关主题
文本预览
相关文档 最新文档