平面与点的相关位置
- 格式:pptx
- 大小:289.67 KB
- 文档页数:7
平面直角坐标系的基本概念在数学中,平面直角坐标系是用来描述平面上点的位置的一种方法。
它由两条互相垂直的直线组成,称为x轴和y轴,它们的交点被定义为原点O。
下面将介绍平面直角坐标系的基本概念和相关术语。
1. 坐标轴和原点:平面直角坐标系由两条相交于原点的直线组成,水平的直线称为x 轴,垂直的直线称为y轴。
原点O表示坐标轴的交点,同时也是平面上所有坐标的起点。
2. 坐标和有序对:在平面直角坐标系中,每个点都可以用一个有序对(x, y)表示。
其中,x是该点在x轴上的投影距离,y是该点在y轴上的投影距离。
有序对(x, y)的x称为横坐标或x坐标,y称为纵坐标或y坐标。
通过横纵坐标的组合,可以唯一确定平面直角坐标系上的每个点。
3. 象限:平面直角坐标系将平面分为四个象限,分别记作第一象限、第二象限、第三象限和第四象限。
第一象限位于x轴和y轴的正半轴部分,第二象限位于y轴的正半轴和x轴的负半轴部分,第三象限位于x轴和y轴的负半轴部分,第四象限位于x轴的正半轴和y轴的负半轴部分。
4. 距离公式:在平面直角坐标系中,两点之间的距离可以使用距离公式来计算。
设两点的坐标分别为(x1, y1)和(x2, y2),则两点之间的距离d可以通过以下公式计算:d = √[(x2 - x1)² + (y2 - y1)²]5. 中点公式:中点公式用于计算连接两点的线段的中点坐标。
设两点的坐标分别为(x1, y1)和(x2, y2),则中点的坐标为:(x, y) = [(x1 + x2) / 2, (y1 + y2) / 2]6. 斜率公式:斜率公式用于计算两点之间连线的斜率。
设两点的坐标分别为(x1, y1)和(x2, y2),则连线的斜率k可以通过以下公式计算:k = (y2 - y1) / (x2 - x1)7. 图形的方程:在平面直角坐标系中,各种图形(如直线、曲线、抛物线等)可以通过方程来表示。
例如,一条直线的方程可表示为y = mx + b,其中m 为斜率,b为y轴截距。
平面直角坐标知识点总结平面直角坐标系是数学中常用的一种坐标系统,用于描述平面上点的位置。
它由横轴和纵轴组成,分别称为x轴和y轴。
本文将从基础概念、坐标表示、点的位置关系、距离计算和直角坐标系的应用等方面,逐步介绍平面直角坐标的相关知识点。
一、基础概念平面直角坐标系是由两条相互垂直的坐标轴所构成,通常将横轴表示为x轴,纵轴表示为y轴。
坐标原点是两条轴的交点,记作O。
在平面直角坐标系中,每个点的位置都可以用一对有序实数(x, y)来表示,其中x表示横坐标,y表示纵坐标。
二、坐标表示在平面直角坐标系中,每个点的坐标表示方法如下: - 如果点在x轴上,纵坐标为0,横坐标为实数x; - 如果点在y轴上,横坐标为0,纵坐标为实数y; - 如果点在第一象限,横坐标和纵坐标都是正数; - 如果点在第二象限,横坐标为负数,纵坐标为正数; - 如果点在第三象限,横坐标和纵坐标都是负数;- 如果点在第四象限,横坐标为正数,纵坐标为负数。
三、点的位置关系在平面直角坐标系中,可以通过坐标的比较来判断点的位置关系。
常见的点的位置关系有: - 如果两个点的横坐标和纵坐标都相等,那么这两个点重合; - 如果两个点的纵坐标相等但横坐标不等,那么这两个点在同一条水平直线上; - 如果两个点的横坐标相等但纵坐标不等,那么这两个点在同一条垂直直线上; - 如果一个点的横坐标大于另一个点的横坐标,且纵坐标大于另一个点的纵坐标,那么前者在后者的右上方; - 如果一个点的横坐标大于另一个点的横坐标,且纵坐标小于另一个点的纵坐标,那么前者在后者的右下方; - 如果一个点的横坐标小于另一个点的横坐标,且纵坐标大于另一个点的纵坐标,那么前者在后者的左上方; - 如果一个点的横坐标小于另一个点的横坐标,且纵坐标小于另一个点的纵坐标,那么前者在后者的左下方。
四、距离计算在平面直角坐标系中,可以通过坐标计算两点之间的距离。
设A(x1, y1)和B(x2, y2)是平面直角坐标系中的两个点,它们之间的距离公式为: d = √[(x2 - x1)² + (y2 - y1)²]五、直角坐标系的应用平面直角坐标系在几何学、物理学、经济学等领域有广泛的应用。
第一章矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.解:2. 设点O是正六边形ABCDEF的中心,在矢量OA、OB、OC、OD、OE、OF、AB、BC、CD、DE、EF和FA中,哪些矢量是相等的?[解]:图1-13. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=NM. 当ABCD是空间四边形时,这等式是否也成立?[证明]:.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) AB、CD; (2) AE、CG; (3) AC、EG;(4) AD、GF; (5) BE、CH.解:§1.2 矢量的加法1.要使下列各式成立,矢量b a ,应满足什么条件? (1=+ (2+=+ (3-=+ (4+=- (5= 解:§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解:2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF . 解:3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 解:4 在四边形ABCD中,→→→+=baAB2,→→→--=baBC4,→→→--=baCD35,证明ABCD为梯形.解:6. 设L、M、N分别是ΔABC的三边BC、CA、AB的中点,证明:三中线矢量AL, BM, CN可以构成一个三角形.7. 设L、M、N是△ABC的三边的中点,O是任意一点,证明OBOA++OC=OL+OM+ON.解:8. 如图1-5,设M是平行四边形ABCD的中心,O是任意一点,证明OA+OB+OC+OD=4OM.解:9在平行六面体ABCDEFGH(参看第一节第4题图)中,证明→→→→=++AGAHAFAC2.证明:.10.用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.解11. 用矢量法证明,平行四边行的对角线互相平分.解12. 设点O 是平面上正多边形A 1A 2…A n 的中心,证明: 1OA +2OA +…+n OA =0.解,13.在12题的条件下,设P 是任意点,证明 证明:§1.4 矢量的线性关系与矢量的分解1.在平行四边形ABCD 中,(1)设对角线,,b BD a AZ ==求.,,,DA CD BC AB 解(2)设边BC 和CD 的中点M 和N ,且q AN P AM ==,求CD BC ,。
平面直角坐标系中的点与直线的关系在平面直角坐标系中,点和直线之间有着密切的关系。
本文将从点到直线的不同关系进行探讨,并阐述其性质和特点。
一、点与直线的位置关系在平面直角坐标系中,点与直线的位置关系可分为三种情况:点在直线上、点在直线外部且在直线同侧、点在直线外部且在直线异侧。
1. 点在直线上当一个点的坐标恰好满足直线的方程时,我们说这个点在直线上。
以一条直线的一般方程为例,设直线的方程为Ax + By + C = 0,点的坐标为(x0, y0),如果将点的坐标带入方程后等号成立,即有Ax0 + By0 + C = 0,则点(x0, y0)在该直线上。
2. 点在直线外部且在直线同侧当一个点的坐标带入直线方程后不等号成立,且点与直线的关系满足特定条件时,我们说这个点在直线外部且在直线同侧。
以直线的斜截式方程为例,设直线方程为y = kx + b,点的坐标为(x0, y0),如果将点的坐标带入方程后不等号成立,即有y0 > kx0 + b 或 y0 < kx0 + b,且不等号的方向与直线的斜率有关,那么点(x0, y0)在直线的同侧。
3. 点在直线外部且在直线异侧当一个点的坐标带入直线方程后不等号成立,且点与直线的关系满足特定条件时,我们说这个点在直线外部且在直线异侧。
以直线的一般方程为例,设直线方程为Ax + By + C = 0,点的坐标为(x0, y0),如果将点的坐标带入方程后不等号成立,即有Ax0 + By0 + C > 0 或 Ax0 + By0 + C < 0,那么点(x0, y0)在直线的异侧。
二、点与直线之间的距离关系在平面直角坐标系中,点与直线之间的距离关系有着重要的意义。
点到直线的距离可以通过线段的长度来表示,即点到直线上的垂线段的长度。
1. 点到直线的距离公式设直线的一般方程为Ax + By + C = 0,点的坐标为(x0, y0),点到直线的距离为d。
数学篇数苑纵横坐标系与其它数学知识存在不可分割的联系.许多知识在平面直角坐标系中进行研究会更加直观易懂.所以只有牢固掌握了与直角坐标系有关的知识点与考点,才能更好地学习一次函数、反比例函数和二次函数等相关知识.一、平面直角坐标系相关知识点归纳1.平面直角坐标系的定义:在平面内画两条互相垂直、原点重合的数轴,就组成平面直角坐标系.水平的数轴称为x 轴或横轴,竖直的数轴称为y 轴或纵轴,两坐标轴的交点为平面直角坐标系的原点.2.各个象限内点的特征:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限.坐标在四个象限的特点:点P (x ,y )在第一象限则x >0,y >0;在第二象限则x <0,y >0;在第三象限则x <0,y <0;在第四象限则x >0,y <0.3.点到坐标轴的距离:点P (x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |.到坐标原点的距离为x 2+y 2.4.点的对称:点P (m ,n ),关于x 轴的对称点坐标是(m ,-n ),关于y 轴的对称点坐标是(-m ,n ),关于原点的对称点坐标是(-m ,-n ).5.平行线:平行于x 轴的直线上的点的特征:纵坐标相等,如直线PQ ,P (m ,n )Q (p ,n );平行于y 轴的直线上的点的特征:横坐标相等,如直线PQ 、P (m ,n )、Q (m ,p ).6.象限角的平分线:第一、三象限角平分线上的点横、纵坐标相等,可记作:P (m ,m );点P (a ,b )关于第一、三象限坐标轴夹角平分线的对称点坐标是(b ,a );第二、四象限角P (m ,-m );点P (a ,b )关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b ,-a ).7.点的平移:在平面直角坐标系中,将点(x ,y )向右平移a 个单位长度,可以得到对应点(x +a ,y );向左平移a 个单位长度,可以得到对应点(x -a ,y );向上平移b 个单位长度,可以得到对应点(x ,y +b );向下平移b 个单位长度,可以得到对应点(x ,y -b ).二、平面直角坐标系相关考点归纳1.求坐标求点的坐标的方法是过这个点向x 轴作垂线,则垂足对应的数就是该点的横坐标;过这个点向y 轴作垂线,则垂足对应的数就是该点的纵坐标.确定了一个点的横坐标和纵坐标,就知道这个点的坐标.例1如图1,在平面直角坐标系xOy 中,已知点A(3,4),将OA 绕坐标原点O 逆时针旋转90°至OA ′,则点A ′的坐标是.解:如图2,过点A 作AB ⊥x 轴于B ,过点A ′作A ′B ′⊥x 轴于B ′,∵OA 绕坐标原点O 逆时针旋转90°至OA ′,∴OA =OA ′,∠AOA ′=90°,∵∠A ′OB ′+∠AOB =90°,∠AOB +∠OAB =90°,∴∠OAB =∠A ′OB ′.在△AOB 和△OA ′B ′中,ìíîïï∠OAB =∠A ′OB ′,∠ABO =∠OB ′A ′,OA =OA ′,∴△AOB ≌△OA ′B ′(AAS ),∴OB ′=AB =4,A ′B ′=OB =3,有关平面直角坐标系的知识点及考点归纳湖南怀化顾建明图123数学篇数苑纵横图2例2在平面直角坐标系中,A(-5,0),B(3,0),点C在y轴上,△ABC的面积为12,求点C的坐标.解:∵点A(-5,0),B(3,0),都在x轴上,∴AB=8.∵△ABC的面积为12,点C在y轴上,∴△ABC的面积=12AB⋅OC=12.解得OC=3,若点C在y轴的正半轴上,则点C的坐标为(0,3),若点C在y轴的负半轴上,则点C的坐标为(0,-3),综上所述,点C的坐标为(0,3)或(0,-3).2.求象限在平面直角坐标系中,各象限内点的符号特点是:第一象限内的点,横坐标和纵坐标都为正;第二象限内点的横坐标为负,纵坐标为正;第三象限内点的横坐标和纵坐标都为负;第四象限内点的横坐标为正,纵坐标为负.确定了点横坐标及纵坐标的正负,就确定了象限.例3若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是().A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定解:∵(x+y)2=x2+y2+2xy,∴原式可化为xy=-1,∴x、y异号,∴点M(x,y)在第二象限或第四象限.故选B项.例4已知点P(x,y)在函数y=1x2+-x的图象上,那么点P在平面直角坐标系中的().A.第一象限B.第二象限C.第三象限D.第四象限解:由题意x2≠0且-x≥0,∴x<0,∴1x2>0,x>0,∴y>0.∴点P(x,y)在第二象限.故选B项.3.求面积当三角形有一边在x轴上时,则以x轴上的边为底边,其长等于x轴上两个顶点横坐标差的绝对值,此边上的高就等于另一个顶点纵坐标的绝对值;当三角形的一边在y 轴上时,则以y轴上的边为底边,其长等于y 轴上两个顶点纵坐标差的绝对值,此边上的高就等于另一个顶点横坐标的绝对值.确定了三角形的底边和高就能求出面积.例5如图3,△ABC的三个顶点坐标分别是A(2,4),B(-2,0),C(3,0),求△ABC的面积.图3解:过A作AD⊥x轴,垂足为D,∵A的坐标是(2,4),∴AD=4,24数学篇∵B (-2,0),C (3,0),∴BC =5,∴S △ABC =12BC ∙AD =12×5×4=10.例6如图4,平面直角坐标系中,已知点A (-3,-1),B (1,3),C (2,-3),求三角形ABC 的面积.图4分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一个坐标轴平行,高(宽)与另一个坐标轴平行.这样,梯形(长方形)的面积就容易求出,然后再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图5,过点A 、C 分别作平行于y 轴的直线,与过点B 平行于x 轴的直线交于点D 、E ,则四边形ADEC 为梯形.图5因为A (-3,-1),B (1,3),C (2,-3),所以AD =4,CE =6,DB =4,BE =1,DE =5.所以S △ABC =12(AD +CE )×DE -12×AD ×DB-12×CE ×BE =12×(4+6)×5-12×4×4-12×6×1=14.平面直角坐标系可以帮助我们建立图形与数量间的联系,并为几何问题和代数问题的相互转化提供条件.因此,同学们一定要掌握好平面直角坐标系的相关知识点与考点,从而不断提高分析问题和解答问题的能力.上期《<实数>巩固练习》参考答案1.D ;2.C ;3.D ;4.A ;5.B ;6.5;7.-1;8.4;9.14或22;10.-3;11.解:(1)3,14-3;(2)∵2<6<3,4<21<5,∴m =6-2,n =4,∴2m +n -26=2(6-2)+4-26=0;(3)a =15,b =32-5.12.解:(1)原来正方形场地的周长为80m;(2)设长方形场地宽为3a m ,则长为5a m.由题意有:3a ×5a =315,解得:a =±21,∵3a 表示长度,∴a >0,∴a =21,∴这个长方形场地的周长为2(3a +5a )=16a =1621(m ),∵80=16×5=16×25>1621,∴这些铁栅栏够用.答:这些铁栅栏够用.数苑纵横25。
点与平面的位置关系在数学中,点和平面是常见的几何概念,并且它们之间有着密切的位置关系。
本文将探讨点与平面之间的位置关系及其相关性质。
一、点在平面内部当一个点在平面内部时,我们可以将其描述为点属于平面。
具体而言,如果一个点的坐标满足平面方程,则该点在平面内。
例如,对于一个二维平面方程为ax+by+c=0,如果一个点(x,y)满足该方程,则该点在平面内部。
二、点在平面外部同样地,当一个点在平面外部时,我们可以将其描述为点不属于平面。
即该点的坐标无法满足平面方程。
如果一个点不满足平面方程,那么我们可以断定该点在平面外部。
三、点在平面上在数学中,点也可以位于平面上。
如果一个点同时满足平面方程,那么我们说该点位于平面上。
平面上的点与平面的关系可以用平面的方程来判断。
例如,对于一个二维平面方程为ax+by+c=0,如果一个点(x,y)满足该方程,则该点在平面上。
四、点与平面的距离点与平面之间的距离是一个重要的度量,它可以帮助我们理解点与平面之间的位置关系。
点到平面的距离是指从该点到平面上的任意一点的最短距离。
为了计算点到平面的距离,我们可以使用点到平面的法向量与点的坐标之间的关系。
具体计算公式如下:设点P(x0,y0,z0)为平面外的一点,平面的方程为ax+by+cz+d=0。
平面法向量为N(a,b,c)。
点P到平面的距离d可用公式d = |ax0+by0+cz0+d| / √(a^2+b^2+c^2) 计算得出。
五、点与平面的位置关系点与平面之间的位置关系可以分为以下几种情况:1. 点在平面上当一个点在平面上时,它既属于平面,也位于平面上。
在点和平面的相互关系中,该情况是最直观的,因为点正好与平面重合。
2. 点在平面内部如果一个点在平面内部,说明它属于平面并且位于平面内部,根据平面上点的定义,该点与平面的位置关系无疑是最紧密的。
3. 点在平面外部当一个点在平面外部时,它既不属于平面,也不位于平面上。
这种情况下,点与平面之间存在明显的分离。
-34-§3.2 平面与点的相关位置平面与点的位置关系,有两种情形,就是点在平面上和点不在平面上. 前者的条件是点的坐标满足平面方程. 点不在平面上时,一般要求点到平面的距离,并用离差反映点在曲面的哪一侧.1.点到平面的距离定义3.2.1 自点M 0向平面π 引垂线,垂足为Q . 向量0QM 在平面π的单位法向量n 0上的射影叫做M 0与平面π之间的离差,记作δ = 射影n 00QM(3.2-1)显然δ = 射影n 00QM = 0QM ·n 0 =∣0QM ∣cos ∠(0QM ,n 0) =±∣0QM ∣当0QM 与n 0同向时,离差δ > 0;当0QM 与n 0反向时,离差δ < 0. 当且仅当M 0在平面上时,离差δ = 0.显然,离差的绝对值就是点M 0到平面π 的距离. 定理3.2.1 点M 0与平面(3.1-13)之间的离差为δ = n 0r 0-p(3.2-2)推论 1 若平面π 的法式方程为 0cos cos cos =-++p z y x γβα,则),,(0000z y x M 与π间的离差=δp z y x -++γβαcos cos cos 000(3.2-3)推论2 点),,(0000z y x M 与平面Ax +By +Cz +D = 0间的距离为()2220000,CB A DCz By Ax M d +++++=π (3.2-4)2.平面划分空间问题 三元一次不等式的几何意义设平面π的一般方程为Ax +By +Cz +D = 0则空间中任一点M (x ,y ,z )与π间的离差为=δp z y x -++γβαcos cos cos = λ (Ax +By +Cz +D )-35-式中λ为平面π的法化因子,由此有Ax +By +Cz +D =δλ1(3.2-5)对于平面π同侧的点,δ 的符号相同;对于在平面π的异侧的点,δ 有不同的符号,而λ一经取定,符号就是固定的. 因此,平面π:Ax +By +Cz +D = 0把空间划分为两部分,对于某一部分的点M (x ,y ,z ) Ax +By +Cz +D > 0;而对于另一部分的点,则有Ax +By +Cz +D < 0,在平面π上的点有Ax +By +Cz +D = 0.P112习题 1,2,5,8。
平面直角坐标系简称平面直角坐标系,简称直角坐标系,是数学中常用的一种坐标表示方法,用于描述平面上的点和与之相关的数学问题。
它是由两条相互垂直的坐标轴组成,通常分别称为x轴和y轴。
直角坐标系的建立为我们解决各种几何、代数和分析问题提供了强有力的工具。
在直角坐标系中,每个点都可以由其在x轴上的位置和在y轴上的位置来确定。
这两个位置分别称为点的x坐标和y坐标。
以坐标原点O为参考点,每个点P可以表示为一个有序数对(x, y),其中x和y 分别代表其x坐标和y坐标,坐标原点O的坐标为(0, 0)。
这样,我们可以通过有序数对的形式来表示平面上的每个点,将其与数学问题相联系。
在直角坐标系中,我们可以进行各种几何运算,例如计算两点之间的距离、计算线段的斜率、确定两个线段是否垂直或平行等。
通过使用直角坐标系,我们可以将几何问题转化为代数问题,从而利用代数的方法进行求解。
这为我们带来了巨大的便利。
直角坐标系在代数中也起到了至关重要的作用。
通过将函数图像映射到直角坐标系上,我们可以更清晰地观察函数的性质和行为。
在直角坐标系中,函数图像可以更直观地展示出随变量变化时的规律和趋势。
通过观察函数的图像,我们可以求解方程、求导、求积分等。
直角坐标系为我们进行数学分析提供了有效的工具。
在实际问题中,直角坐标系也经常被广泛应用。
例如,在地理学中,我们可以利用直角坐标系来描述地球上的地理位置,确定不同地点的坐标。
在物理学中,直角坐标系可以用于描述物体在平面上的位置和运动。
在计算机图形学中,直角坐标系可用于描述计算机屏幕上的像素点,实现图像的显示和处理。
在学习和使用直角坐标系时,我们需要注意一些基本要点。
首先,x轴和y轴要垂直且互相正交,这是直角坐标系的基本特性。
其次,我们需要熟悉坐标轴的正方向,通常x轴向右延伸,y轴向上延伸。
同时,我们还要学会在坐标系中进行平移、旋转和缩放等操作,以适应不同问题的要求。
总之,直角坐标系是数学中一种重要的表示方法,它为我们解决各种几何、代数和分析问题提供了便捷和直观的工具。