2019-2020年七年级 数学 北师大版 参考答案
- 格式:doc
- 大小:84.00 KB
- 文档页数:2
北师大版数学七年级上册第二章第一节有理数课时练习一、选择题(共13题)1.如果气温上升3度记作+3度,下降5度记作-5度,那么下列(1)+5度;(2)-6度;各量分别表示什么?()A.上升5度;下降6度B.上升6度;下降6度C.上升5度;上升6度D.下降5度;下降6度答案:A解析:解答:根据正负数所表示的意义,可以判定答案为A.分析:考查正负数的定义,注意正负数表示意义相反的量2.向东走-8米的意义是()A.向东走8米B.向西走8米C.向西走-8米D.以上都不对答案:B解析:解答:根据正负数所表示的意义,向东走负数就是向西走正数.分析:考查正负数的定义,注意正负数表示意义相反的量3.下列说法正确的是()A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数答案:B解析:解答:零既不是正数也不是负数分析:考查正负数,0是正负数的分界点4.下列说法中,正确的是()(可以看第4页课本)A.正整数、负整数和零统称整数B.正分数、负分数统称有理数C.零既可以是正整数,也可以是负分数D.所有的分数都是有理数答案:A解析:解答:根据对整数的认识我们可以知道正整数和负整数统称整数;故答案为A;分数有的不是有理数所以B、D错误;零既不是正数也不是负数所以C错误.分析:考查对整数分类的掌握.5.如果水位下降了3m记着-3m,那么,水位上升4m记作()A.1m B.7m C.4m D.-7m答案:C解析:解答:正负数表示具有相反意义的量,下降为负,反过来上升为正,水位上升4m记作4m.分析:考查对正负数意义的理解.6.向东行进-30米表示的意义是()A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米答案:C解析:解答:正负数表示的是意义相反的量,故向东走负数米就表示向西走正数米,所以答案选择C.分析:考查正负数表示的意义7.下列说法正确的是()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数答案:B解析:解答:A选项应该是正数、负数和零统称为有理数;C选项0不是最小的数,负数比0还要小;D选项0既不是正数也不是负数;故答案为B选项分析:考查对基本概念的掌握.8.下列不是具有相反意义的量是()A.前进5米和后退5米B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克D.超过5克和不足2克答案:C解析:解答:C选项中的身高和体重不是同一个单位量,所以这两个量的变化不具有相反的意义.分析:注意相反意义的量应该是表示的同一个单位量.9.下列说法中不正确的是()A.0是自然数B.0是正数C.0是整数D.0是非负数答案:B解析:解答:通过分析我们可知0既不是正数也不是负数,故答案为B分析:考查对0这个数的分类.10.下列说法不正确的是()A.0不是正数也不是负数B.负数是带“—”的数,正数是带有“+”的数C.非负数是正数或0D.0是一个特殊的整数,它并不只是表示“没有”答案:B解析:解答:—(—1)表示的是正数,所以正数并不一定都带有“+”,所以B选项错误. 分析:注意对基本概念和定义的掌握.11.a一定表示()A.正数B.负数C.不是正数就是负数D.以上答案均不对答案:D解析:解答:a是一个字母,可以代表任何数,包括零,所以A、B、C选项错误,正确答案选D.分析:对字母表示的数如果没有限制条件那么就有可能代表所有的数.12.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A.-10℃B.-6℃C.6℃D.10℃答案:D解析:解答:以0℃为标准,高于0℃记作正,低于0℃记作负,2℃表示比标准高2℃,-8℃表示比标准低8℃,所以最高和最低的差为10℃分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题13.在一次数学测试中,七(2)班的平均分为85分,把高于平均分的高出部分数记为正数,老师将某一小组的美美、多多、田田、乐乐四位同学的成绩记为+7,-4,-11,+13,则这四位同学实际成绩最高的是()A.美美 B.多多 C.田田 D.乐乐答案:D解析:解答:85分为标准,高于标准为正,低于标准为负,因此可知乐乐高于标准,并且高于标准13分,即成绩最高的为乐乐,答案为D选项.分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题二、填空题(共7题)14.如果收入15•元记作+•15•元,•那么支出20•元记作________元.答案:—20解析:解答:正负数是表示意义相反的量,如果收入为正那么支出为负,所以支出20元记作—20元.分析:注意正负数是表示意义相反的量15.某食品包装袋上标有“净含量385±5”,•这包食品的合格净含量范围是______克~390克.答案:380解析:解答:385克为标准,高于标准为正,低于标准为负,因此可知合格的范围为最多高于标准5克或是最多低于标准5克,因此可以判断合格范围是在385克的基础上加或减去5克.分析:要找出标准来,超出为正,低于标准为负,由此来解决正负数问题16.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。
七年级(上)期末数学试卷一、精心选一选(本大题共12个小题,每个题4分,共48分)请将正确答案的序号填入下面表格中.1.2的相反数是()A.﹣B.C.2 D.﹣22.若x=1是方程2a+3x=9的解,则a的值为()A.B.1 C.3 D.63.如图的几何体是由若干形状、大小完全相同的小立方体组成,则从左面看几何体,看到的图形是()A.B.C.D.4.成渝高铁终于开通了,在百度搜索“成渝高铁”,相关结果约有62800个,高铁开通后,成都和重庆正式形成了1小时经济圈,沿线城市的交流、互动更加便捷和频繁.将62800用科学记数法表示为()A.0.628×105B.6.28×104C.62.8×103D.628×1025.下列调查方式中,最适合用普查的是()A.调查重庆市初中生每天体育锻炼所用的时间B.调查北京地区雾霾污染程度C.质检部门调查厂商生产的一批足球合格率D.调查深圳“12.20”滑坡事件的伤亡人数6.下列各式正确的是()A.x2x3=x6B.3=2x3D.x3÷x2=x7.若(x﹣1)(x+3)=x2+mx+n,则m+n=()A.﹣1 B.﹣2 C.﹣3 D.28.如图,线段AB=4,延长AB到点C,使BC=2AB,若点D是线段AC的中点,则BD的长为()A.1.5 B.2 C.2.5 D.69.已知x+y=4,xy=3,则x2+y2的值为()A.22 B.16 C.10 D.410.校园“mama”超市出售2种中性笔,一种每盒有8支,另一种每盒有12支.由于近段时间某班全体上课状态很不错,班委准备每人发1支以示鼓励.若买每盒8支的中性笔x盒,则有3位同学没有中性笔;若买每盒12支的中性笔,则可以少买2盒,且最后1盒还剩1支,根据题意,可列方程为()A.8x﹣3=12(x﹣3)+11 B.8x+3=12(x﹣2)﹣1C.8x+3=12(x﹣3)+1 D.8x+3=12(x﹣2)+111.如图是由一些点组成的图形,按此规律,第⑥个图形中点的个数为()A.43 B.49 C.63 D.12712.如图,长方形ABCD中有6个形状、大小相同的小长方形,且EF=3,CD=12,则图中阴影部分的面积为()A.108 B.72 C.60 D.48二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每个小题的正确答案填入下面表格中.13.﹣3的倒数是.14.已知多项式﹣3a2b+﹣ab+1,则这个多项式的次数是.15.小明在O点记录一辆正在行驶的笔直的公路l上的汽车的位置,第一次记录的汽车位置是在O点南偏西30°方向上的点A处,第二次记录的汽车位置是在O点南偏东45°方向上的点B处,则∠AOB=.16.已知5m=2,5n=3,则53m+2n=.17.一个两位数,个位数比十位数字大4,而且这个两位数比它的数字之和的3倍大2,则这个两位数是.18.小明正在离家9.5千米的地方放羊15只,突然风云变幻,不久后可能要下雨,羊必须尽快回家,现有一辆马车最多装羊10只,没有装羊时速度为18千米/时,装有羊时,为安全起见,速度控制为12千米/时,而羊独自回家的速度为3千米/时,若装卸羊的时间忽略不计,则所有羊都到家的最短时间是小时.三、解答题(本题共2小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:(1)|﹣5|+(﹣3)2×(π﹣2015)0++(﹣1)2018(2).20.解方程:(1)2x+3(x﹣1)=2(x+3)(2)=1.四、解答题(本大题共4个小题,其中21、22题8分,其余2个小题每题10分,共36分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:5(3a﹣1)+(2+a)(2﹣a)+(a﹣3)2,其中a=﹣1.22.每年5月的第2个星期日是母亲节.某班级就在今年母亲节当天以何种方式向母亲表达感谢面向全班同学开展了问卷调查,统计结果包含:仅用言语表达了对母亲的感谢、用行动表达对母亲的感谢、对母亲什么都没做三种结果,根据得到的数据绘制了如图所示的两幅不完整的统计图,请根据统计图所给的信息解答下列问题:(1)该班级一共有学生名,请补全条形统计图;(2)求扇形统计图中“仅用言语表达感谢”所对应的圆心角度数;(3)用行动来表达对母亲的感谢的同学中有4人(其中女生有2名)选择的是在母亲节当天为母亲做早餐,班主任决定从这4名同学中随机选择2名听取这样做的用意,请用列表法或画树状图的方法求选出的2人恰好是1男1女的概率.23.列方程解应用题:为喜迎“元旦节”,某商店购进某种气球200只,每只进价5元,在“元旦节”当天以11元的价格卖出气球150只,“元旦节”后,将剩下的气球全部降价销售,最终该商店从这批气球中共获利80%.求“元旦节”后此种气球每只降价多少元?24.如图,∠AOB=180°,∠BOC=80°,OD平分∠AOC,∠DOE=3∠COE,求∠BOE.五、解答题(本大题共2个小题,其中25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.规定符号△(x)(x是正整数)满足下列性质:①当x为质数时,△(x)=1②对于任意两个正整数p和q,有△(pq)=p△(q)+q△(p)例如:△(9)=△(3×3)=3△(3)+3△(3)=3×1+3×1=6;△(15)=△(3×5)=3△(5)+5△(3)=3×1+5×1=8;△(30)=△(2×15)=2△(15)+15△(2)=2×8+15×1=31问:(1)填空:△(4)=,△(16)=,△(32)=;(2)求△(2016).26.已知某提炼厂10月份共计从矿区以每吨4000元价格购买了72吨某矿石原料,该提炼厂提炼矿石材料的相关信息如下表所示:提炼方式每天可提炼原材料的吨数提炼率提炼后所得产品的售价(元/吨)每提炼1吨原材料消耗的成本(元)粗提炼7 90% 30000 1000精提炼 3 60% 90000 3000注:①提炼率指提炼后所得的产品质量与原材料的比值;②提炼后的废品不产生效益;③提炼厂每天只能做粗提炼或精提炼中的一种.受市场影响,提炼厂能够用于提炼矿石原材料的时间最多只有12天,若将矿石原材料直接在市场上销售,每吨的售价为5000元,现有3种提炼方案:方案①:全部粗提炼;方案②:尽可能多的精提炼,剩余原料在市场上直接销售(直接销售的时间忽略不计);方案③:一部分粗提炼,一部分精提炼,且刚好12天将所有原材料提炼完.问题:(1)若按照方案③进行提炼,需要粗提炼多少天?(2)哪个提炼方案获得的利润最大?最大利润是多少?(3)已知提炼厂会根据每月的利润按照一定的提成比例来计算每个月需要给工厂员工发放的总提成,具体计算方法如下表:提炼厂利润不超过150万元的部分超过150万元但不超过200万元的部分超过200万元的部分提成比例8% a% 15%现知按照(2)问中的最大利润给员工发放的10月份的总提成为15.09万元,11月份和12月份提炼厂获得的总利润为480万元,11月份和12月份给员工的总提成为50.6万元,且12月份的利润比11月份的利润大,求提炼厂12月份的利润.2015-2016学年重庆一中七年级(上)期末数学试卷参考答案与试题解析一、精心选一选(本大题共12个小题,每个题4分,共48分)请将正确答案的序号填入下面表格中.1.2的相反数是()A.﹣B.C.2 D.﹣2【考点】相反数.【分析】根据相反数的概念作答即可.【解答】解:根据相反数的定义可知:2的相反数是﹣2.故选:D.【点评】此题主要考查了相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.若x=1是方程2a+3x=9的解,则a的值为()A.B.1 C.3 D.6【考点】一元一次方程的解.【分析】把x=1代入方程,即可得出一个关于a的方程,求出方程的解即可.【解答】解:把x=1代入方程2a+3x=9得:2a+3=9,解得:a=3,故选C.【点评】本题考查了解一元一次方程,一元一次方程的解的应用,能得出一个关于a的一元一次方程是解此题的关键.3.如图的几何体是由若干形状、大小完全相同的小立方体组成,则从左面看几何体,看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易知一共两列,第一列有2个正方形,第二列有1个正方形,故选:A.【点评】本题考查了三视图的知识,熟悉左视图是从物体的左面看得到的视图是根本.4.成渝高铁终于开通了,在百度搜索“成渝高铁”,相关结果约有62800个,高铁开通后,成都和重庆正式形成了1小时经济圈,沿线城市的交流、互动更加便捷和频繁.将62800用科学记数法表示为()A.0.628×105B.6.28×104C.62.8×103D.628×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:62800=6.28×104,故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列调查方式中,最适合用普查的是()A.调查重庆市初中生每天体育锻炼所用的时间B.调查北京地区雾霾污染程度C.质检部门调查厂商生产的一批足球合格率D.调查深圳“12.20”滑坡事件的伤亡人数【考点】全面调查与抽样调查.【分析】根据抽样调查和全面调查的概念解答即可.【解答】解:调查重庆市初中生每天体育锻炼所用的时间适合用抽样调查,A错误;调查北京地区雾霾污染程度适合用抽样调查,B错误;质检部门调查厂商生产的一批足球合格率适合用抽样调查,C错误;调查深圳“12.20”滑坡事件的伤亡人数适合用全面调查,D正确;故选:D.【点评】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.下列各式正确的是()A.x2x3=x6B.3=2x3D.x3÷x2=x【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则、幂的乘方与积的乘方法则,分别进行各项的判断即可.【解答】解:A、x2x3=x5,故本选项错误;B、(x3)2=x6,故本选项错误;C、(2x)3=8x3,故本选项错误;D、x3÷x2=x,故本选项正确;故选D.【点评】此题考查了幂的乘方与积的乘方、同底数幂的乘除法,属于基础题,掌握各部分的运算法则是关键.7.若(x﹣1)(x+3)=x2+mx+n,则m+n=()A.﹣1 B.﹣2 C.﹣3 D.2【考点】多项式乘多项式.【专题】计算题;整式.【分析】已知等式左边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出m 与n的值,即可求出m+n的值.【解答】解:已知等式整理得:(x﹣1)(x+3)=x2+2x﹣3=x2+mx+n,∴m=2,n=﹣3,则m+n=2﹣3=﹣1.故选A【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.如图,线段AB=4,延长AB到点C,使BC=2AB,若点D是线段AC的中点,则BD的长为()A.1.5 B.2 C.2.5 D.6【考点】两点间的距离.【分析】根据AB=4cm,BC=2AB得出BC的长,从而得出AC的长,再根据D是AC的中点求出AD的长,根据BD=AD﹣AB即可得出答案.【解答】解:∵AB=4cm,BC=2AB=8cm,∴AC=AB+BC=4+8=12cm,∵D是AC的中点,∴AD=AC=×12=6cm,∴BD=AD﹣AB=6﹣4=2cm.故选B.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.9.已知x+y=4,xy=3,则x2+y2的值为()A.22 B.16 C.10 D.4【考点】完全平方公式.【分析】根据完全平方公式得出x2+y2=(x+y)2﹣2xy,代入求出即可.【解答】解:∵x+y=4,xy=3,∴x2+y2=(x+y)2﹣2xy=42﹣2×3=10.故选C.【点评】本题考查了完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.10.校园“mama”超市出售2种中性笔,一种每盒有8支,另一种每盒有12支.由于近段时间某班全体上课状态很不错,班委准备每人发1支以示鼓励.若买每盒8支的中性笔x盒,则有3位同学没有中性笔;若买每盒12支的中性笔,则可以少买2盒,且最后1盒还剩1支,根据题意,可列方程为()A.8x﹣3=12(x﹣3)+11 B.8x+3=12(x﹣2)﹣1C.8x+3=12(x﹣3)+1 D.8x+3=12(x﹣2)+1【考点】由实际问题抽象出一元一次方程.【分析】根据买每盒8支的中性笔x盒,则有3位同学没有中性笔可知全班人数为8x+3,根据买每盒12支的中性笔,则可以少买2盒,且最后1盒还剩1支可知12(x﹣2)﹣1人,据此可列出一元一次方程.【解答】解:依据题意得全班级人数是一定的,所以:8x+3=12(x﹣2)﹣1,故选:B.【点评】本题主要考查了由实际问题抽象出一元一次方程的知识,解答本题的关键是用x表示出全班同学人数,此题难度一般.11.如图是由一些点组成的图形,按此规律,第⑥个图形中点的个数为()A.43 B.49 C.63 D.127【考点】规律型:图形的变化类.【分析】根据题干中图形发现,每个图形第1行有1个,以后每行的个数是连续偶数,据此规律可知第6个图形中点的个数.【解答】解:∵第1个图形中点的个数为:1+1×(1+1)=3,第2个图形中点的个数为:1+2×(2+1)=7,第3个图形中点的个数为:1+3×(3+1)=13,…∴第6个图形中点的个数为:1+6×(6+1)=43,故选:A.【点评】本题考查规律型中的图形变化问题,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.12.如图,长方形ABCD中有6个形状、大小相同的小长方形,且EF=3,CD=12,则图中阴影部分的面积为()A.108 B.72 C.60 D.48【考点】一元一次方程的应用.【专题】几何图形问题.【分析】设每小长方形的宽为x,则每小长方形的长为x+3,根据一个小长方形的宽+2个小长方形的长=CD,列出方程,求出x的值,再根据长方形的面积公式用最大的长方形减去6个最小的小长方形的面积,得出阴影部分的面积.【解答】解:设每小长方形的宽为x,则每小长方形的长为x+3,根据题意得:2(x+3)+x=12,解得:x=2,则每小长方形的长为2+3=5,则AD=2+2+5=9,阴影部分的面积为9×12﹣2×5×6=48;故选D.【点评】此题考查了一元一次方程的应用,关键是根据所给出的图形,找出相等关系,列出方程,求出小长方形的宽和长.二、耐心填一填(本大题共6个小题,每小题4分,共24分)请将每个小题的正确答案填入下面表格中.13.﹣3的倒数是﹣.【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:﹣3的倒数是﹣.【点评】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.已知多项式﹣3a2b+﹣ab+1,则这个多项式的次数是5.【考点】多项式.【分析】直接利用多项式次数的定义得出答案.【解答】解:多项式﹣3a2b+﹣ab+1,则这个多项式的次数是:a2b3的次数,即为:2+3=5.故答案为:5.【点评】此题主要考查了多项式,正确把握多项式的次数定义是解题关键.15.小明在O点记录一辆正在行驶的笔直的公路l上的汽车的位置,第一次记录的汽车位置是在O点南偏西30°方向上的点A处,第二次记录的汽车位置是在O点南偏东45°方向上的点B处,则∠AOB=75°.【考点】方向角.【分析】首先根据方向角正确作出A、B和O的相对位置,然后利用角的和、差计算.【解答】解:∠AOB=30°+45°=75°.故答案是:75°.【点评】本题考查了方向角的定义以及角度的计算,正确理解方向角的定义是本题的关键.16.已知5m=2,5n=3,则53m+2n=72.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂的乘法的逆运算把原式变形,根据幂的乘方法则计算即可.【解答】解:53m+2n=53m52n=(5m)3(5n)2=8×9=72.故答案为:72.【点评】本题考查的是同底数幂的乘法、幂的乘方和积的乘方,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.幂的乘方法则:底数不变,指数相乘.17.一个两位数,个位数比十位数字大4,而且这个两位数比它的数字之和的3倍大2,则这个两位数是26.【考点】一元一次方程的应用.【专题】数字问题.【分析】设十位数字为x,个位数字为x+4,根据数字问题的数量关系建立方程组求出其解即可.【解答】解:设十位数为x,个位数字为x+4,根据题意得:10x+x+4=3(x+x+4)+2,解得:x=2,则这个两位数是26;故答案为:26.【点评】本题考查了一元一次方程的应用,解答时运用数字问题的数量关系建立方程是关键.18.小明正在离家9.5千米的地方放羊15只,突然风云变幻,不久后可能要下雨,羊必须尽快回家,现有一辆马车最多装羊10只,没有装羊时速度为18千米/时,装有羊时,为安全起见,速度控制为12千米/时,而羊独自回家的速度为3千米/时,若装卸羊的时间忽略不计,则所有羊都到家的最短时间是1小时.【考点】一元一次方程的应用.【分析】先算出第一批羊到家的时间,再算出马车赶回与第二批羊相遇的时间,设所有羊都到家的最短时间为x小时,根据题意,列出一元一次方程,解方程即可.【解答】解:第一批羊到家的时间为9.5÷12=小时.马车赶回来,与第二批羊相遇的时间为:(9.5﹣3×)÷(18+3),=(﹣)÷21,=÷21,=小时.设所有羊都到家的最短时间为x小时,根据题意有:12×(x﹣﹣)=9.5﹣3×(+),整理得12x﹣=,解得x=1.即所有羊都到家的最短时间为1小时.故答案为:1.【点评】本题考查了一元一次方程的应用,解题的关键是:先算出第一批羊到家时间和马车赶回与第二批羊相遇的时间,设出最短时间为x小时,列出方程即可.三、解答题(本题共2小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:(1)|﹣5|+(﹣3)2×(π﹣2015)0++(﹣1)2018(2).【考点】有理数的混合运算;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用乘方的意义及零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用乘方的意义计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=5+9+9+1=24;(2)原式=﹣1×8×+15﹣16+14=﹣18+15﹣16+14=﹣5.【点评】此题考查了有理数的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)2x+3(x﹣1)=2(x+3)(2)=1.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x+3x﹣3=2x+6,移项合并得:3x=9,解得:x=3;(2)去分母得:3x﹣3﹣x﹣2=6,移项合并得:2x=11,解得:x=5.5.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.四、解答题(本大题共4个小题,其中21、22题8分,其余2个小题每题10分,共36分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:5(3a﹣1)+(2+a)(2﹣a)+(a﹣3)2,其中a=﹣1.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用平方差公式及完全平方公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=15a﹣5+4﹣a2+a2﹣6a+9=9a+8,当a=﹣1时,原式=﹣9+8=﹣1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.每年5月的第2个星期日是母亲节.某班级就在今年母亲节当天以何种方式向母亲表达感谢面向全班同学开展了问卷调查,统计结果包含:仅用言语表达了对母亲的感谢、用行动表达对母亲的感谢、对母亲什么都没做三种结果,根据得到的数据绘制了如图所示的两幅不完整的统计图,请根据统计图所给的信息解答下列问题:(1)该班级一共有学生60名,请补全条形统计图;(2)求扇形统计图中“仅用言语表达感谢”所对应的圆心角度数;(3)用行动来表达对母亲的感谢的同学中有4人(其中女生有2名)选择的是在母亲节当天为母亲做早餐,班主任决定从这4名同学中随机选择2名听取这样做的用意,请用列表法或画树状图的方法求选出的2人恰好是1男1女的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由用行动表达对母亲的感谢的有15人,占25%,即可求得该班级的学生数,继而求得仅用言语表达了对母亲的感谢的人数,补全条形统计图;(2)首先求得“仅用言语表达感谢”的人数占的百分比,继而求得“仅用言语表达感谢”所对应的圆心角度数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出的2人恰好是1男1女的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵用行动表达对母亲的感谢的有15人,占25%,∴该班级一共有学生:15÷25%=60(名),∴仅用言语表达了对母亲的感谢的有:60﹣15﹣10=35(名);故答案为:60;如图:(2)求扇形统计图中“仅用言语表达感谢”所对应的圆心角度数为:360°×=210°;(3)画树状图得:∵共有12种等可能的结果,选出的2人恰好是1男1女的有8种情况,∴选出的2人恰好是1男1女的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.列方程解应用题:为喜迎“元旦节”,某商店购进某种气球200只,每只进价5元,在“元旦节”当天以11元的价格卖出气球150只,“元旦节”后,将剩下的气球全部降价销售,最终该商店从这批气球中共获利80%.求“元旦节”后此种气球每只降价多少元?【考点】一元一次方程的应用.【分析】设“元旦节”后此种气球每只降价x元,根据总收入﹣总成本=利润和已知条件,列出方程,求解即可.【解答】解:设“元旦节”后此种气球每只降价x元,根据题意得:[11×150+(11﹣x)×(200﹣150)]﹣200×5=200×50×80%,解得:x=8,答:“元旦节”后此种气球每只降价8元.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解;本题的等量关系是总收入﹣总成本=利润.24.如图,∠AOB=180°,∠BOC=80°,OD平分∠AOC,∠DOE=3∠COE,求∠BOE.【考点】角平分线的定义.【分析】根据邻补角和角平分线的定义可得∠COD=50°,由∠DOE=3∠COE知∠COE=∠COD=25°,可得∠BOE度数.【解答】解:∵∠AOB=180°,∠BOC=80°,∴∠AOC=100°,∵OD平分∠AOC,∴∠COD=∠AOC=50°,又∵∠DOE=3∠COE,∴∠COE=∠COD=25°,∴∠BOE=∠BOC﹣∠COE=55°.【点评】本题主要考查了角平分线的定义运用能力,能熟练根据题意将已知条件逐步推导到待求的角上来是关键.五、解答题(本大题共2个小题,其中25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.规定符号△(x)(x是正整数)满足下列性质:①当x为质数时,△(x)=1②对于任意两个正整数p和q,有△(pq)=p△(q)+q△(p)例如:△(9)=△(3×3)=3△(3)+3△(3)=3×1+3×1=6;△(15)=△(3×5)=3△(5)+5△(3)=3×1+5×1=8;△(30)=△(2×15)=2△(15)+15△(2)=2×8+15×1=31问:(1)填空:△(4)=4,△(16)=32,△(32)=80;(2)求△(2016).【考点】有理数的混合运算.【专题】计算题;新定义;实数.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式变形后,利用已知新定义计算即可得到结果.【解答】解:(1)△(4)=△(2×2)=2△(2)+2△(2)=4△(2)=4×1=4,△(16)=△(4×4)=4△(4)+4△(4)=8△(4)=8×4=32,△(32)=△(2×16)=16△(2)+2△(16)=16+64=80;(2)△(2016)=△(32×63)=63△(32)+32△(63)=63×80+32△(7×9)=5040+32×(9△(7)+7△(9))=5040+32×(9+42)=6672.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.26.已知某提炼厂10月份共计从矿区以每吨4000元价格购买了72吨某矿石原料,该提炼厂提炼矿石材料的相关信息如下表所示:提炼方式每天可提炼原材料的吨数提炼率提炼后所得产品的售价(元/吨)每提炼1吨原材料消耗的成本(元)粗提炼7 90% 30000 1000精提炼 3 60% 90000 3000注:①提炼率指提炼后所得的产品质量与原材料的比值;②提炼后的废品不产生效益;③提炼厂每天只能做粗提炼或精提炼中的一种.受市场影响,提炼厂能够用于提炼矿石原材料的时间最多只有12天,若将矿石原材料直接在市场上销售,每吨的售价为5000元,现有3种提炼方案:方案①:全部粗提炼;方案②:尽可能多的精提炼,剩余原料在市场上直接销售(直接销售的时间忽略不计);方案③:一部分粗提炼,一部分精提炼,且刚好12天将所有原材料提炼完.问题:(1)若按照方案③进行提炼,需要粗提炼多少天?(2)哪个提炼方案获得的利润最大?最大利润是多少?(3)已知提炼厂会根据每月的利润按照一定的提成比例来计算每个月需要给工厂员工发放的总提成,具体计算方法如下表:提炼厂利润不超过150万元的部分超过150万元但不超过200万元的部分超过200万元的部分提成比例8% a% 15%现知按照(2)问中的最大利润给员工发放的10月份的总提成为15.09万元,11月份和12月份提炼厂获得的总利润为480万元,11月份和12月份给员工的总提成为50.6万元,且12月份的利润比11月份的利润大,求提炼厂12月份的利润.【考点】一元一次方程的应用.【分析】(1)设粗提炼x天,则精提炼12﹣x天,根据题意列出方程,解方程即可得出结论;(2)根据题中给出的三个方案,讨论每个方案所获得的利润,即可得出结论;(3)依据(2)中的最大利润可以算出a=10,由12月份利润比11月份利润大,设出12月份利润为M万元,根据提成比例不同,分三种情况讨论,即可得出结论.【解答】解:(1)设需要粗提炼x天,则精提炼12﹣x天,根据题意,得7x+3×(12﹣x)=72,整理,得4x=36,。
七年级下册单元测试卷《第5章生活中的轴对称》测试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1、将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.2、如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处3、如图,已知△ABC是等边三角形,点D,E,F分明是边AB,BC,AC的中点,则图中等边三角形的个数是()A.2个B.3个C.4个D.5个4、如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50° B.70° C.75° D.80°5、如图,在正方体的两个面上画了两条对角线AB,AC,则∠BAC等于()A.60°B.75°C.90° D.135°6、图中序号(1)(2)(3)(4)对应的四个三角形,都是△ABC这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是()A.(1) B.(2)C.(3) D.(4)7、如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是()号.A.1 B.2 C.3 D.48、如图,在3×4的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置共有()A.7处 B.4处C.3处D.2处9、如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CEC.AD D.AC10、如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题6小题,每小题4分,共24分)11、如图,有一个英语单词,四个字母都关于直线l对称,请在试卷上补全字母,在答题卡上写出这个单词所指的物品__________.12、如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.13、下列轴对称图形中,只用一把无刻度的直尺能画出对称轴的序号是_________.①菱形②三角形③等腰梯形④正五边形14、如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为__________.15、如图,六边形ABCDEF的六个角都是120°,边长AB=1cm,BC=3cm,CD=3cm,DE=2cm,则这个六边形的周长是:______________.16、数学兴趣小组开展以下折纸活动:(1)对折矩形ABCD,使AD和BC重合,得到折痕EF,把纸片展平;(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.观察,探究可以得到∠ABM的度数是__________.三:解答题(一)(本大题共3题,每小题6分,共18分)17、生活中因为有美丽的图案,才显得丰富多彩,以下是来自现实生活中的两个图案(图1、2、).请在图3,图4中画出两个是轴对称图形的新图案.18、如图,在矩形ABCD 中,点E 为BC 的中点,点F 在CD 上,要使△AEF 的周长最小时,画图确定点F 的位置.19、如果一个图形有两条对称轴,如长方形,那么这两条对称轴夹角是多少度?其他有两条对称轴的图形的两条对称轴是否也具有这个特征?如果一个图形有三条对称轴,如正三角形,它的三条对称轴相邻两条的夹角是多少度?其他有三条对称轴的图形的三条对称轴是否也具有这个特征?如果一个图形有n 条对称轴,那么每相邻的两条对称轴的夹角为多少度?四、解答题(二)(本大题共3题,每小题7分,共21分)20、如图,直线AD 和CE 是△ABC 的两条对称轴,AD 和CE 相交于点O . (1)从边来看,△ABC 是什么三角形?说明理由.(2)OD 与OE 有什么数量关系?说明理由21、如图图,△ABC 中,∠C =090, ∠A =030.(1)作图:用尺规作线段AB 的中垂线DE,交AC 于点D,交AB 于点E,(保留作图痕迹,不要求写作法和证明)(2)连接BD ,请你判断BD 是否平分∠CBA ,并说明你的理由。
2019-2020学年度北师大版数学七年级下册5 利用三角形全等测距离习题精选五十一第1题【单选题】一名工作人员不慎将一块三角形模具打碎成了三块,如图所示,他是否可以只带其中的一块碎片到商店去,就能买一块与原来一模一样的三角形模具呢?答案是肯定的,那么他该带哪款去?( )A、不能B、带①C、带②D、带③【答案】:【解析】:第2题【单选题】一块三角形玻璃被小红碰碎成四块,如图5,小红只带其中的两块去玻璃店,买了一块和以前一样的玻璃,你认为她带哪两块去玻璃店了( )A、带其中的任意两块B、带1,4或3,4就可以了C、带1,4或2,4就可以了D、带1,4或2,4或3,4均可【答案】:【解析】:第3题【单选题】如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )A、带①去B、带②去C、带③去D、带①②去【答案】:【解析】:第4题【填空题】野营活动中,小明用一张等腰三角形的铁皮代替锅,烙一块与铁皮形状、大小相同的饼,烙好一面后把饼翻身,这块饼能正好落在“锅”中.小丽有四张三角形的铁皮(如图所示),她想选择其中的一张铁皮代替锅,烙一块与所选铁皮形状、大小相同的饼,烙好一面后,将饼切一刀,然后将两小块都翻身,饼也能正好落在“锅”中.她的选择最多有______种.【答案】:【解析】:第5题【填空题】如图,要测量一条小河的宽度AB的长,可以在小河的岸边作AB的垂线MN,然后在MN上取两点C,D,使BC=CD,再画出MN的垂线DE,并使点E 与点A,C在一条直线上,这时测得DE的长就是AB 的长,其中用到的数学原理是:______【答案】:【解析】:第6题【填空题】如图所示,A、B在一水池放入两侧,若BE=DE,∠B=∠D=90°,CD=10m,则水池宽AB=______m.【答案】:【解析】:第7题【解答题】如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(-2,0),B(0,1).点C的坐标是______;将△ABC沿x轴正方向平移得到△A′ B′C′,且B,C两点的对应点B′,C′恰好落在反比例函数有误的图象上,求该反比例函数的解析式.【答案】:【解析】:第8题【解答题】在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,求旗杆的高度OM和玛丽在荡绳索过程中离地面的最低点的高度MN.【答案】:【解析】:第9题【解答题】如图1,ABCD为正方形,直线MN分别过AD边与BC边的中点,点P为直线MN上任意一点,连接PB、PC分别与AD边交于E、F两点,PC与BD交于点K,连接AK与PB交于点G.探索发现当点P落在AD边上时,如图2,试探究PB与AK的位置关系以及PB、PK、AK三者的数量关系(直接写出无需证明);延伸拓展当点P落在正方形外,如图1,以上两个结论是否仍然成立?如果成立请给出证明,如果不成立请说明你的理由;应用推广如图3,在等腰Rt△ABD中,其中∠BAD=90°,腰长为3,M、N分别为AD边与BD边的中点,K为线段DN中点,F为AD边上靠近于D的三等分点.连接KF并延长与直线MN交于点P,连接PB分别与AD、AK交于点E、G.试求四边形EFKG的周长及面积.【答案】:【解析】:第10题【解答题】如图:A、B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长.他叔叔帮他出了一个这样的主意:先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到E,使CD=AC;连接BC并延长到E,使CE=CB;连接DE并测量出DE=8m;问题:DE=AB吗?AB的长度是多少?请说明理由.【答案】:【解析】:第11题【综合题】如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.求证:①PE=PD;②PE⊥PD;设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.【答案】:【解析】:第12题【综合题】探究题【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】直接写出AM、AD、MC三条线段的数量关系:______;【拓展延伸】AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【答案】:【解析】:第13题【综合题】探究:如图①,在?ABCD中,AC,BD交于点O,过点O的直线交AD于E,交BC于F.求证:OE=OF.求证:四边形AEFB与四边形DEFC的周长相等;直线EF是否将?ABCD的面积二等分?应用:张大爷家有一块平行四边形的菜园,园中有一口水井P,如图②所示,张大爷计划把菜园平均分成两块,分别种植西红柿和茄子,且使两块地共用这口水井,请你帮助张大爷把地分开.【答案】:【解析】:第14题【综合题】某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:河的宽度是多少米?请你证明他们做法的正确性.【答案】:【解析】:第15题【综合题】如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.如图a,求证:△BCP≌△DCQ;如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.【答案】:【解析】:。
第3课时三角形的中线、角平分线、高1.如图,AE是△ABC的中线,已知EC=4,DE=2,则BD的长为(A)A.2 B.3 C.4 D.62.如图,在△ABC中,AD为BC边上的中线,若AB=5 cm,AC=3 cm,则△ABD的周长比△ACD的周长多(D)A.5 cm B.3 cm C.8 cm D.2 cm3.三角形的三条中线的交点的位置为(A)A.一定在三角形内B.一定在三角形外C.可能在三角形内,也可能在三角形外D.可能在三角形的一条边上4.三角形的重心是(A)A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条内角平分线的交点D.以上说法都不对5.三角形一边上的中线把原三角形分成两个(B)A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形6.如图,在△ABC中,D,E,F是BC边上的三点,且∠1=∠2=∠3=∠4,AE是哪个三角形的角平分线(D)A.△ABE B.△ADFC.△ABC D.△ABC,△ADF7.如图,(1)AD是△ABC的角平分线,则∠BAD=∠DAC=12∠BAC;(2)AE是△ABC的中线,则BE=EC=12BC .8.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B= 50° .9.如图,D是△ABC中BC上的一点,DE∥AC交AB于点E,DF∥AB交AC于点F,且∠ADE=∠ADF,AD是△ABC的角平分线吗?说明理由.解:AD是△ABC的角平分线.理由:因为DE∥AC,DF∥AB,所以∠ADE=∠DAF,∠ADF=∠EAD.又因为∠ADE=∠ADF,所以∠DAF=∠EAD,所以AD是△ABC的角平分线.10.(2019·北京石景山区二模)如图,在△ABC中,AB边上的高画法正确的是(B)11.三角形的高、中线、角平分线都是(B)A.直线B.线段C.射线D.以上情况都有12.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是(B)A.锐角三角形B.直角三角形C.钝角三角形D.不能确定13.如图.(1)在△ABC中,BC边上的高是AD;(2)在△AEC中,CE边上的高是AE;(3)在△BCF中,BC边上的高是BF .14.如图,AD⊥BC于点D,那么图中以AD为高的三角形有(D)A.3个 B.4个 C.5个 D.6个15.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是(C)A.AB=2BF B.∠ACE=12∠ACBC.AE=BE D.CD⊥BE16.下列说法中,正确的个数是(A)①三角形的三条角平分线、三条中线、三条高都在三角形内部;②直角三角形只有一条高;③三角形的三条角平分线、三条中线、三条高分别交于一点.A.0 B.1 C.2 D.317.如图.(1)在△ABC中,AD⊥BC,垂足为D,则AD是BC边上的高,∠ADB=∠ADC=90°;(2)若AE平分∠BAC,交BC于点E,则AE叫△BAC的角平分线,∠BAE=∠CAE=12∠BAC,AH叫△BAF的角平分线;(3)若AF=FC,则△ABC的中线是BF;(4)若BG=GH=HF,则AG是△BAH的中线,AH是△AGF的中线.18.(1)如图1,点D,E,F分别是BC,AB,AC的中点,若△ABC的面积为16,则△ABD 的面积是 8 ,△EBD的面积是 4 ;(2)如图2,点D,E,F分别是BC,AD,EC的中点,若△ABC的面积为16,求△BEF的面积是多少.解:(2)因为E是AD的中点,所以S△BCE =12S△ABC=8.因为F是CE的中点,所以S△BEF =12S△BCE=12×8=4.19.如图,在△ABC 中,AD ⊥BC 于点D ,AE 平分∠BAC . (1)若∠C =70°,∠B =40°,求∠DAE 的度数; (2)若∠C -∠B =30°,则∠DAE = 15° ;(3)若∠C -∠B =α(∠C >∠B ),求∠DAE 的度数(用含α的式子表示).解:(1)因为∠C =70°,∠B =40°,AD ⊥BC ,所以∠BAC =180°-40°-70°=70°,∠CAD =20°.因为AE 平分∠BAC ,所以∠EAC =12∠BAC =35°. 所以∠DAE =∠EAC -∠CAD =35°-20°=15°.(3)因为∠B +∠C +∠BAC =180°,所以∠BAC =180°-∠B -∠C .因为AE 平分∠BAC ,所以∠BAE =12∠BAC =12(180°-∠B -∠C )=90°-12(∠B +∠C ).因为AD ⊥BC ,所以∠ADE =90°,所以∠BAD =90°-∠B ,所以∠DAE =∠BAD -∠BAE =90°-∠B -⎣⎢⎡⎦⎥⎤90°-12(∠B +∠C )=12(∠C -∠B ).因为∠C -∠B =α,所以∠DAE =12α.20.已知:如图1,线段AB ,CD 相交于点O ,连接AD ,CB .如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于M ,N .试解答下列问题:(1)在图1中,请直接写出∠A ,∠B ,∠C ,∠D 之间的数量关系 ∠A +∠D =∠B +∠C ; (2)在图2中,若∠D =40°,∠B =30°,试求∠P 的度数;(写出解答过程)(3)如果图2中,∠D 和∠B 为任意值,其他条件不变,试写出∠P 与∠D ,∠B 之间的数量关系.(直接写出结论即可)解:(2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,所以∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P.又因为AP,CP分别平分∠DAB和∠BCD,所以∠1=∠2,∠3=∠4,所以∠P-∠D=∠B-∠P,2∠P=∠B+∠D,所以∠P=(40°+30°)÷2=35°.(3)2∠P=∠B+∠D.。
北师大版2019-2020学年第二学期七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a53.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.408.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm210.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.三、解答题(共55分)16.(6分)如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE∥BC(已知),所以∠3=∠EHC().因为∠3=∠B(已知),所以∠B=∠EHC().所以AB∥EH().所以∠2+=180°().因为∠1=∠4(),所以∠1+∠2=180°(等量代换).17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是,因变量是;(2)早餐店到小颖家的距离是千米,她早餐花了分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.2018-2019学年河南省郑州市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下面四个手机APP图标中,可看作轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A、是轴对称图形,故选项正确;B、不是轴对称图形,是中心对称图形,故选项错误;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:A.【点评】本题主要考查了轴对称图形的定义,正确理解定义是解题关键.2.(3分)下列计算正确的是()A.a2+a2=a4B.(2a)3=6a3C.a9÷a3=a3D.(﹣2a)2•a3=4a5【分析】根据单项式乘单项式的法则,合并同类项的法则,同底数幂的除法的法则,积的乘方和幂的乘方的法则计算即可.【解答】解:A、a2+a2=2a2,不符合题意;B、(2a)3=9a3,不符合题意;C、a9÷a3=a6,不符合题意;D、(﹣2a)2•a3=4a5,符合题意;故选:D.【点评】本题考查了单项式乘单项式,合并同类项,同底数幂的除法,积的乘方和幂的乘方,熟练掌握计算法则是解题的关键.3.(3分)小颖有两根长度为6cm和9cm的木条,桌上有下列长度的几根木条,从中选出一根,使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为()的木条.A.2cm B.3cm C.12cm D.15cm【分析】设木条的长度为xcm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为xcm,则9﹣6<x<9+6,即3<x<15,故她应该选择长度为12cm的木条.故选:C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.4.(3分)学习整式的乘法时,小明从图1边长为a的大正方形中剪掉一个边长为b的小正方形,将图1中阴影部分拼成图2的长方形,比较两个图中阴影部分的面积,能够验证的一个等式为(A.a(a+b)=a2+ab B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a﹣b)=a2﹣ab【分析】分别根据面积公式进行计算,根据图1的面积=图2的面积列式,即可得到平方差公式.【解答】解:图1阴影面积=a2﹣b2,图2拼剪后的阴影面积=(a+b)(a﹣b),∴得到的公式为:a2﹣b2=(a+b)(a﹣b),即(a+b)(a﹣b)=a2﹣b2,故选:B.【点评】本题考查了平方差公式的几何背景,利用图形的面积和作为相等关系列出等式即可验证平方差公式.5.(3分)如图,一把直尺的边缘AB经过一块三角板DCB的直角顶点B,交斜边CD于点A,直尺的边缘EF分别交CD,BD于点E,F,若∠D=60°,∠ABC=20°,则∠1的度数为()A.25°B.40°C.50°D.80°【分析】利用平行线的性质求出∠EDF,再利用三角形内角和定理求出∠DEF即可.【解答】解:∵∠CBD=90°,∴∠ABD=90°﹣∠ABC=70°,∵EF∥AB,∴∠DFE=∠ABD=70°,∴∠DEF=180°﹣∠D﹣∠DFE=50°,∴∠1=∠DEF=50°,故选:C.【点评】本题考查平行线的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3分)马老师带领的数学兴趣小组做“频率的稳定性”试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.掷一枚质地均匀的硬币,硬币落下后朝上的是正面B.一副去掉大小王的普通扑克牌(52张,四种花色)洗匀后,从中任抽一张牌,花色是梅花C.不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球D.在玩“石头、剪刀、布”的游戏中,小颖随机出的是“石头”【分析】利用折线统计图可得出试验的频率在0.5左右,进而得出答案.【解答】解:A、掷一枚质地均匀的硬币,硬币落下后朝上的是正面的概率为;符合题意;B、一副去掉大小王的普通扑克牌洗匀后,从中任意抽出一张的花色是红桃的概率为,不符合题意;C、不透明袋子中有1个红球和4个白球,每个球除颜色外都相同,从中任取一球是白球的概率为,不符合题意;D、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,不符合题意;故选:A.【点评】此题主要考查了利用频率估计概率,正确求出各试验的概率是解题关键.7.(3分)如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE =AD.再分别以点D、E为圆心,大于DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,若CG=4,AB=10,则△ABG的面积为()A.12B.20C.30D.40【分析】根据角平分线的性质得到GM=CG=4,根据三角形的面积公式计算即可.【解答】解:如图,作GM⊥AB于M,由基本尺规作图可知,AG是△ABC的角平分线,∵∠C=90°,GM⊥AB,∴GM=CG=4,∴△ABG的面积=×AB×GM=20,故选:B.【点评】本题考查的是三角形的面积,角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.(3分)等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为()A.40°B.70°C.40°或70°D.40°或140°【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角三角形时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角三角形时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.9.(3分)轩轩和凯凯在同一个数学学习小组,在一次数学活动课上,他们各自用一张边长为12cm的正方形纸片制作了一副七巧板,并合作设计了如图所示的作品请你帮他们计算图中圈出来的三块图形的面积之和为()A.12cm2B.24cm2C.36cm2D.48 cm2【分析】由七巧板的制作过程可知,这只小猫的头部是用正方形的四分之一拼成的,所以面积是正方形面积的四分之一.【解答】解:如图:小猫的头部的图形是abc,在右图中三角形h的一半与b全等,而由图中a+c+h的一半正好是正方形的四分之一,即阴影部分的面积是×12×12cm2=36cm2,故选:C.【点评】本题考查了正方形的性质,也考查了列代数式的内容,难度较大,还考查了学生的观察图形的能力.10.(3分)如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.【分析】分别判断点P在各条线段上面积的变化情形即可判断.【解答】解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.【点评】本题考查动点问题函数图象,解题的关键是理解题意灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每小题3分,共15分)11.(3分)被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证,新现的脉冲星自转周期为0.00519秒,将0.00519用科学记数法表示应为 5.19×10﹣3.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00519用科学记数法表示应为5.19×10﹣3.故答案为:5.19×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)如图,在4×4正方形网格中,已有4个小正方形被涂黑,现任意选取一个白色的小正方形并涂黑,使整个黑色部分构成一个轴对称图形的概率是.【分析】直接利用轴对称图形的性质得出符合题意的位置,进而得出答案.【解答】解:如图所示:选取白色的小正方形中1,2,3的位置3个涂黑,能使整个黑色部分构成一个轴对称图形,故使整个黑色部分构成一个轴对称图形的概率是:=.故答案为:.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.13.(3分)学习了平行线的相关知识后,学霸君轩轩利用如图所示的方法,可以折出“过已知直线外一点和已知直线平行”的直线.由操作过程可知他折平行线的依据可以是②③④.(把所有正确结论的序号都填在横线上)①平行于同一条直线的两条直线平行;②同位角相等,两直线平行;③内错角相等,两直线平行;④同旁内角互补,两直线平行.【分析】先根据折叠的性质得到折痕都垂直于过点P的直线,根据根据平行线的判定方法求解.【解答】解:如图,由题图(2)的操作可知PE⊥CD,所以∠PEC=∠PED=90°.由题图(3)的操作可知AB⊥PE,所以∠APE=∠BPE=90°,所以∠PEC=∠PED=∠APE=∠BPE=90°,所以可依据结论②,③或④判定AB∥CD,故答案为②③④.【点评】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线同时垂直于同一条直线,那么这两条直线平行.14.(3分)学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方,求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”.这个数字a=153.【分析】根据数字的变化规律取符合条件的数按规律计算即可求出一个固定数字.【解答】解:例如:33=27,23+73=351,33+53+13=153.故答案为153.【点评】本题考查了数字的变化类、有理数的混合运算,解决本题的关键是理解题意进行计算.15.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.点D为BC的中点,E为边AB上一动点(不与A、B点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条直角边DN与边AC交于点F(不与A、C点重合),分别连接AD、EF,下列结论中正结论是①②④.(把所有正确结论的序号都填在横线上)①BE=AF;②△DEF是等腰直角三角形;③无论点E、F的位置如何,总有EF=DF+CF成立;④四边形AEDF的面积随着点E、F的位置不同发生变化.【分析】由“SAS ”可证△BDE ≌△ADF ,可得BE =AF ,DE =DF ,S △BDE =S △ADF ,即可求解.【解答】解:∵∠BAC =90°,AB =AC .点D 为BC 的中点,∴AD =BD =CD ,∠∠BAD =∠CAD =∠B =∠C =45°,AD ⊥BC ,∵∠MDN =90°=∠ADB ,∴∠BDE =∠ADF ,且BD =AD ,∠B =∠DAF =45°,∴△BDE ≌△ADF (SAS )∴BE =AF ,DE =DF ,S △BDE =S △ADF ,∴S △BDE +S △ADE =S △ADF +S △ADE ,∴四边形AEDF 的面积=S △ABD =S △ABC ,故①④符合题意,∵DE =DF ,∠EDF =90°,∴△DEF 是等腰直角三角形,故②符合题意,当点F 在AC 中点时,可得EF =BC =AD ,DF +CF =AC ,∵AD ≠AC ,故③不合题意,故答案为①②④.【点评】本题考查了全等三角形的判定和性质,证明△BDE ≌△ADF 是本题的关键.三、解答题(共55分)16.(6分)如图,已知DE ∥BC ,∠3=∠B ,则∠1+∠2=180°.下面是王宁同学的思考过程,请你在括号内填上理由、依据或内容.思考过程:因为DE ∥BC (已知),所以∠3=∠EHC ( 两直线平行,内错角相等 ).因为∠3=∠B(已知),所以∠B=∠EHC(等量代换).所以AB∥EH(同位角相等,两直线平行).所以∠2+∠4=180°(两直线平行,同旁内角互补).因为∠1=∠4(对顶角相等),所以∠1+∠2=180°(等量代换).【分析】根据平行线的性质得出∠3=∠EHC,求出∠B=∠EHC,根据平行线的判定得出AB∥EH,根据平行线的性质得出∠2+∠4=180°,即可得出答案.【解答】解:∵DE∥BC(已知),∴∠3=∠EHC(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠EHC(等量代换),∴AB∥EH(同位角相等,两直线平行),∴∠2+∠4=180°(两直线平行,同旁内角互补),∵∠1=∠4(对顶角相等),∴∠1+∠2=180°(等量代换),故答案为:两直线平行,内错角相等,等量代换,同位角相等,两直线平行,∠4,两直线平行,同旁内角互补,对顶角相等.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.17.(6分)先化简,再求值.[(x+y)2+(x+y)(x﹣y)]÷(2x),其中x=﹣1,y=.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:原式=[x2+2xy+y2+x2﹣y2]÷2x=[2x2+2xy]÷2x=x+y,当x=﹣1,y=时,原式=﹣1+=﹣.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.18.(8分)如图所示,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长,请你利用三角形全等的相关知识带他设计一种方案测量出A、B 间的距离,写出具体的方案,并解释其中的道理.【分析】由题意知AC=DC,BC=EC,根据∠ACB=∠DCE即可证明△ABC≌△DEC,即可得AB=DE,即可解题.【解答】解:如图,先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE 的长度就是A、B间的距离.证明:由题意知AC=DC,BC=EC,且∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴DE=AB.∴量出DE的长,就是A、B两点间的距离.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形对应边相等的性质,本题中求证△ABC≌△DEC是解题的关键.19.(8分)暑假将至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动.活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止).大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表奖次特等奖一等奖二等奖三等奖不获奖圆心角10°30°80°120°促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:特等奖:山地越野自行车一辆等奖:双肩背包一个二等奖:洗衣液一桶三等奖:抽纸一盒根据以上信息,解答下列问题:(1)求不获奖的扇形区域圆心角度数是多少?(2)求获得双肩背包的概率是多少?(3)甲顾客购物520元,求他获奖的概率是多少?【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:(1)360°﹣10°﹣30°﹣80°﹣120°=120°,答:不获奖的扇形区域圆心角度数是120°;=,(2)P(获得双肩背包)答:获得双肩背包的概率是;=,(3)P(获奖)答:他获奖的概率是.【点评】本题考查了概率,正确运用概率公式是解题的关键.20.(8分)周六的早上,小颖去郑州图书大厦买书.她先走到早餐店吃早餐,然后又去图书大厦买书,最后又回到家.如图是小颖所用的时间x(分)和离家的距离y(千米)之间的示意图,请根据图象解答下列问题:(1)在上述变化过程中,自变量是所用的时间,因变量是离家的距离;(2)早餐店到小颖家的距离是 1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在干什么?(4)小颖从图书大厦回家的过程中,她的平均速度是多少?【分析】根据函数图象的横坐标,可得时间的变化,根据函数图象的纵坐标,可得距离的变化.【解答】解:(1)在上述变化过程中,自变量是小颖所用的时间x,因变量是离家的距离;故答案为:所用的时间;离家的距离;(2)早餐店到小颖家的距离是1.1千米,她早餐花了10分钟;(3)出发后37分到55分之间小颖在选书和买书;(4)小颖从图书大厦回家的过程中,她的平均速度是2÷(80﹣55)=0.08(千米/分钟)=80米/分钟.【点评】此题主要考查了函数图象与实际问题,根据已知图象获取正确信息是解题关键.解题时注意:速度=距离÷时间.21.(9分)如图,在正方形网格上有一个三角形ABC(三个顶点均在格点上).(1)画出△ABC关于直线DE对称的△A1B1C1(其中点A与点A1对应,点B与点B1对应,点C与点C1对应);(2)若每个小正方形的边长都是1,计算△A1B1C1的面积.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)利用分割法求三角形的面积即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)=4×7﹣×2×7﹣×2×5﹣×4×2=28﹣7﹣5﹣4=12.【点评】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(10分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图1,当点D在BC的延长线上移动时,请说明:△ABD≌△ACE;(2)①当点D在BC的延长线上移动时,α与β之间有什么数量关系?请直接写出你的结论;②当点D在直线BC上(不与B,C点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论,并在备用图上画出相应图形.【分析】(1)由“SAS”可证△ABD≌△ACE;(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可②α+β=180°或α=β,根据三角形外角性质求出即可.【解答】解:(1)∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,∴△ABD≌△ACE(SAS);(2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;②如图2,当D在线段BC上时,同理可证:△BAD≌△CAE,∴∠ADB=∠AEC,∵∠ABD+∠ADC=180°,∴∠ADC+∠AEC=180°,∴∠DCE+∠DAE=180°,∴α+β=180°;如图1或3,当点D在线段BC延长线或反向延长线上时,α=β.【点评】本题是三角形综合题,考查了全等三角形的性质和判定,三角形的外角性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
2019-2020年初中七年级上册数学5.4 应用一元一次方程——打折销售北师大版知识点练习八➢第1题【单选题】文具店老板以每个96元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是( )A、不赚不赔B、亏8元C、盈利3元D、亏损3元【答案】:【解析】:➢第2题【单选题】有x辆客车,若每辆客车乘50人,则还有10人不能上车,若每辆车乘52人,则车上只剩2个空位,下列方程中正确的是( )A、50x﹣10=52x﹣2B、50x+10=52x﹣2C、50x+10=52x+2D、50x﹣10=52x+2【答案】:【解析】:➢第3题【单选题】一件商品按成本价提高40%后标价,再打八折(标价的80%)销售,售价为240元.设这件商品的成本价为x元,根据题意,列方程正确的是( )A、x?40%×80%=240B、x(1+40%)×80%=240C、240×40×80%=xD、x?40%=240×80%【答案】:【解析】:➢第4题【单选题】超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )A、0.8x-10=90B、0.08x-10=90C、90-0.8x=10D、x-0.8x-10=90【答案】:【解析】:➢第5题【单选题】某商店在一次买卖中,同时卖出两种货物,每种货物的售价均为1200元.若按成本计算,一种货物盈利20%,另一种亏本20%,则这次交易商店( )A、赔100元B、赚50元C、赚100元D、不赔不赚【答案】:【解析】:➢第6题【单选题】某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A、0.7a元B、0.3a元C、元D、元【答案】:【解析】:➢第7题【单选题】某品牌的ipad机成本价是每台500元,10月份的销售价为每台625元。
北师大版2019-2020学年七年级下册第4章《三角形》单元测试题(满分120分)姓名:___________班级:___________成绩:___________一.选择题(共10小题,满分30分)1.以下列各组线段长为边,不能组成三角形的是()A.8cm,7cm,13cm B.6cm,6cm,12cmC.5cm,5cm,2cm D.10cm,15cm,17cm2.下面给出的四个三角形都有一部分被遮挡,其中不能确定三角形类型的是()A.B.C.D.3.若三角形三边长分别为2,x,3,且x为正整数,则这样的三角形个数为()A.2 B.3 C.4 D.54.如图,已知△ABC,下面甲、乙、丙、丁四个三角形中,与△ABC全等的是()A.甲B.乙C.丙D.丁5.如图,若AB=AC,则添加下列一个条件后,仍无法判定△ABE≌△ACD的是()A.∠B=∠C B.AE=AD C.BE=CD D.∠AEB=ADC 6.若线段AD、AE分别是△ABC的BC边上的中线和高线,则()A.AD≥AE B.AD>AE C.AD≤AE D.AD<AE7.如图,在△ABC中,CD平分∠ACB,DE∥AB.已知∠A=74°,∠B=46°,则∠BDC的度数为()A.104°B.106°C.134°D.136°8.如图,在△P AB中,∠A=∠B,M,N,K分别是P A,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°9.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD 于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠F AG=2∠ACF;④BH=CH.A.①②③④B.①②③C.②④D.①③10.如图,有一块直角三角板XYZ放置在△ABC上,三角板XYZ的两条直角边XY、XZ改变位置,但始终满足经过B、C两点.如果△ABC中∠A=52°,则∠ABX+∠ACX=()A.38°B.48°C.28°D.58°二.填空题(共8小题,满分24分)11.在△ABC中,∠A=50°,若∠B比∠A的2倍小30°,则△ABC是三角形.12.如图,已知AB=DC,∠A=∠D,则补充条件可使△ACE≌△DBF(填写你认为合理的一个条件).13.如图,在△ABC中,D在AC上,连结BD,且∠ABC=∠C=∠BDC,∠A=∠ABD,则∠A的度数为.14.如图,在△ABC中,∠C=78°,沿图中虚线截去∠C,则∠1+∠2.15.在△ABC中,已知∠B=50°,∠C=60°,AE⊥BC于E,AD平分∠BAC,则∠DAE 的度数是.16.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD的周长为15cm,则AC长为.17.已知一个三角形的两边长分别为2cm和3cm,它的第三边长是偶数,且其长度也是整数.则这个三角形的周长是cm.18.AD,BE是△ABC的高,这两条高所在的直线相交于点O,若BO=AC,则∠ABC =.三.解答题(共8小题,满分66分)19.点C是AE的中点,∠A=∠ECD,AB=CD,求证:△ABC≌△CDE.20.如图,AD是△ABC的高,BE平分∠ABC交AD于点E.若∠C=76°,∠BED=64°.求∠BAC的度数.21.已知,如图,在△ABC中,D是BC的中点,DE⊥AB于点E,DF⊥AC于点F,且BE =CF.求证:AB=AC.完成下面的证明过程证明:∵DE⊥AB,DF⊥AC∴∠BED=∠CFD=Rt∠∵D是BC的中点∴BD=又∵BE=CF∴Rt△BDE≌Rt△CDF∴∠B=∠C∴AB=AC22.如图,已知∠ABC,求作:(1)∠ABC的平分线BD(写出作法,并保留作图痕迹);(2)在BD上任取一点P,作直线PQ,使PQ⊥AB(不写作法,保留作图痕迹).23.如图,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),点D在BC上,AB与CE相交于点F.(1)如图1,直接写出AB与CE的位置关系;(2)如图2,连接AD交CE于点G,在BC的延长线上截取CH=DB,射线HG交AB 于K,求证:HK=BK.24.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为xcm/s,其他条件不变,当点P、Q运动到某处时,有△ACP与△BPQ全等,求出相应的x、t的值.25.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△AC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数.26.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=25°,则∠DCE=.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.参考答案一.选择题(共10小题)1.【解答】解:根据三角形的三边关系,得A、8+7>13,能组成三角形;B、6+6=12,不能组成三角形;C、2+5>5,能组成三角形;D、10+15>17,能组成三角形.故选:B.2.【解答】解:观察图象可知:选项B,D的三角形是钝角三角形,选项C中的三角形是锐角三角形,选项A中的三角形无法判定三角形的类型,故选:A.3.【解答】解:由题意可得,4﹣2<x<4+2,解得2<x<6,∵x为整数,∴x为4、5、3,∴这样的三角形个数为3.故选:B.4.【解答】解:A.△ABC和甲所示三角形根据SA无法判定它们全等,故本选项错误;B.△ABC和乙所示三角形根据SAS可判定它们全等,故本选项正确;C.△ABC和丙所示三角形根据SA无法判定它们全等,故本选项错误;D.△ABC和丁所示三角形根据AA无法判定它们全等,故本选项错误;故选:B.5.【解答】解:A、根据ASA(∠A=∠A,∠C=∠B,AB=AC)能推出△ABE≌△ACD,正确,故本选项错误;B、根据SAS(∠A=∠A,AB=AC,AE=AD)能推出△ABE≌△ACD,正确,故本选项错误;C、两边和一角对应相等的两三角形不一定全等,错误,故本选项正确;D、根据AAS(∠A=∠A,AB=AC,∠AEB=∠ADC)能推出△ABE≌△ACD,正确,故本选项错误;故选:C.6.【解答】解:如图所示:故选:A.7.【解答】解:∵∠A=74°,∠B=46°,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=∠ACD=∠ACB=×60°=30°,∴∠BDC=180°﹣∠B﹣∠BCD=104°,故选:A.8.【解答】解:∵P A=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.9.【解答】解:∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠F AG=2∠ACF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.10.【解答】解:连接AX,∵∠BXC=90°,∴∠AXB+∠AXC=360°﹣∠BXC=270°,∵∠A=52°,∴∠BAX+∠CAX=52°,∵∠ABX+∠BAX+∠AXB=180°,∠ACX+∠CAX+∠AXC=180°,∴∠ABX+∠ACX=360°﹣270°﹣52°=38°,故选:A.二.填空题(共8小题)11.【解答】解:∵∠B比∠A的2倍小30°,∴∠B=2×50°﹣30°=70°,∴∠C=180°﹣∠A﹣∠B=180°﹣50°﹣70°=60°,∴△ABC是锐角三角形,故答案为:锐角.12.【解答】解:添加条件∠ECA=∠FBD,理由如下:∵AB=DC,∴AB+BC=CD+BC,即AC=BD,在△EAC和△FDB中,∴△EAC≌△FDB(ASA).故答案为:∠ECA=∠FBD(答案不唯一).13.【解答】解:设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∵∠A+∠ABC+∠C=180°,∴5x=180°,∴∠A=36°,故答案为36°.14.【解答】解:如图,∵∠1=∠C+∠4,∠2=∠C+∠3,∴∠1+∠2=∠C+(∠3+∠4+∠C)=78°+180°=258°,故答案为=258°.15.【解答】解:∵在△ABC中,∠B=50°,∠C=60°,∴∠BAC=180°﹣50°﹣60°=70°.∵AD平分∠BAC,∴∠CAD=∠BAC=35°.∵AE⊥BC于E,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=35°﹣30°=5°.故答案为:5°.16.【解答】解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15﹣6﹣5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21﹣6﹣8=7cm.故AC长为7cm,故答案为:7cm.17.【解答】解:设第三边长为x,则3﹣2<x<2+3,即1<x<5.又x为偶数,因此x=2或4,故这个三角形的周长是:2+2+3=7(cm)或2+3+4=9(cm).故答案为:7或9.18.【解答】解:如图1,∵AD、BE是锐角△ABC的高,∴∠AEO=∠BDO=90°,∵∠AOE=∠BOD,∴∠DBO=∠DAC,∵BO=AC,∠BDO=∠ADC=90°∴△BDO≌△ADC(ASA),∴∠ABC=∠BAD=45°,如图2,同理证得△BDO≌△ADC(ASA),∴BD=AD,∴∠ABD=∠BAD=45°,∴∠ABC=135°,故答案为:45°或135°.三.解答题(共8小题)19.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ACB与△CED中,∴△ABC≌△CDE(SAS).20.【解答】解:∵AD是△ABC的高,∠C=76°,∴∠DAC=14°,∵BE平分∠ABC交AD于E,∴∠ABE=∠EBD,∵∠BED=64°,∴∠ABE+∠BAE=64°,∴∠EBD+64°=90°,∴∠EBD=∠ABE=26°,∴∠BAE=38°,∴∠BAC=∠BAE+∠CAD=38°+14°=52°.21.【解答】解:∵DE⊥AB,DF⊥AC(已知)∴∠BED=∠CFD=Rt∠(垂直的定义)∵D是BC的中点,∴BD=CD,又∵BE=CF,∴在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL)∴∠B=∠C(全等三角形的对应角相等)∴AB=AC(在同一个三角形中,等角对等边).故答案:已知;CD;HL;全等三角形的对应角相等;在同一个三角形中,等角对等边.22.【解答】解:(1)作法:①以B点为圆心,任意长为半径画弧分别交BA、BC于M、N 点;②再以M、N为圆心,以大于它们之间的距离的二分之一为半径画弧,两弧在∠ABC内相交于E,则BD为所作;(2)如图,PQ为所作.23.【解答】解:(1)AB与CE的位置关系是垂直,AB⊥CE(2)证明:∵Rt△ABC≌Rt△CED∴AC=CD,BC=ED,∠E=∠B又∵∠ACB=90°∴∠ADC=45°又∵∠CDE=90°∴∠EDG=∠HDG=45°∵CH=DB∴CH+CD=DB+CH即HD=CB∴HD=ED在△HGD和△EGD中∴△HGD≌△EGD(SAS)∴∠H=∠E又∵∠E=∠B∴∠H=∠B∴HK=BK24.【解答】解:(1)△ACP≌△BPQ,∵AC⊥AB,BD⊥AB∴∠A=∠B=90°∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,,∴△ACP≌△BPQ;∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)存在x的值,使得△ACP与△BPQ全等,①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.25.【解答】解:(1)如图(1),∠BDC=∠BAC+∠B+∠C,理由是:过点A、D作射线AF,∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,即∠BDC=∠BAC+∠B+∠C;(2)①∵∠X=90°,由(1)知:∠A+∠ABX+∠ACX=∠X=90°,∵∠A=40°,∴∠ABX+∠ACX=50°,故答案为:50;②如图(3),∵∠A=40°,∠DBE=130°,∴∠ADE+∠AEB=130°﹣40°=90°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=∠ADB,∠AEC=∠AEB,∴∠ADC+∠AEC==45°,∴∠DCE=∠A+∠ADC+∠AEC=40°+45°=85°.26.【解答】(1)解:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=25°,∴∠DCE=25°,故答案为:25°;(2)解:当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠,北师大版∵∠BAC=α,∠DCE=β,∴α=β;(3)解:当D在线段BC上时,α+β=180°,当点D在线段BC延长线或反向延长线上时,α=β.。
2图形的全等1.下列各组的两个图形属于全等图形的是 (D)2.下列图形与如图所示的图形全等的是(D)3.下列说法正确的有(C)①用一张底片冲洗出来的10张1寸相片是全等图形;②我国国旗上的4颗小五角星是全等图形;③所有的长方形是全等图形;④全等图形的面积一定相等.A.1个 B.2个 C.3个 D.4个4.如图,四边形ABCD≌四边形A′B′C′D′,则∠D′=120°,∠A= 70°,B′C′= 12 ,A′B′= 10 .5.如图所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应顶点、对应边与对应角,并说出图中标的a,b,c,e,α各字母所表示的值.解:对应顶点:A和G,E和F,D和J,C和I,B和H;对应边:AB和GH,AE和GF,ED和FJ,CD和IJ,BC和HI;对应角:∠A和∠G,∠B和∠H,∠C和∠I,∠D和∠J,∠E和∠F.因为两个五边形全等,所以a=12,b=10,c=8,e=11,α=90°.6.如图,△ABC≌△DEF,则EF= 5 .7.表示全等的符号“≌”是由“∽”和“=”两部分组成的,其中“=”表示两个全等图形的大小相等,那么“∽”表示两个全等图形的形状相同.8.下列说法正确的是(C)A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等9.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B= 120° .10.如图,已知△ACE≌△DBF,CE=BF,AE=DF,AD=8,BC=2.(1)求AC的长度;(2)试说明CE∥BF.解:(1)因为△ACE≌△DBF,所以AC=BD,所以AB=DC.因为BC=2,所以2AB+2=8,解得AB=3.所以AC=AB+BC=3+2=5.(2)因为△ACE≌△DBF,所以∠ECA=∠FBD.所以CE∥BF.易错点有公共边时容易找不准对应顶点11.如图1,两个三角形全等可表示为△ABC≌△CDA;如图2,两个三角形全等可表示为△ABD≌△ACD.12.如图所示,已知△ABC≌△DEF,则图中相等的线段有(D)A.1组 B.2组 C.3组 D.4组13.如图,△ABC≌△CDE,其中AB=CD,那么下列结论中,不正确的是(C)A.AC=CE B.∠BAC=∠ECDC.∠ACB=∠ECD D.∠B=∠D14.下列说法错误的是(B)A.全等三角形对应边上的中线相等B.面积相等的两个三角形是全等三角形C.全等三角形对应边上的高相等D.全等三角形对应角平分线相等15.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为(C)A.45° B.60° C.90° D.100°16.已知△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x-2,2x-1,3.若这两个三角形全等,则x= 3 .17.如图,请沿图中的虚线,用三种方法将下列图形划分为两个全等图形.解:如图所示(答案不唯一).18.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,求∠2的度数.解:因为∠CMD=70°,所以∠AME=70°.又因为∠E=90°,所以∠1=180°-∠E-∠AME=180°-90°-70°=20°.因为△ABE≌△ACF,所以∠BAE=∠CAF,即∠1+∠BAC=∠2+∠BAC,所以∠1=∠2,所以∠2=20°.19.如图,A,D,E三点在同一条直线上,且△BAD≌△ACE.(1)你能说明BD,DE,CE之间的数量关系吗?(2)请你猜想△ABD满足什么条件时,BD∥EC?解:(1)BD=DE+CE.理由如下:因为△BAD≌△ACE,所以BD=AE,AD=CE,所以BD=AE=AD+DE=CE+DE.即BD=DE+CE.(2)当△ABD满足∠ADB=90°时,BD∥EC.因为△BAD≌△ACE,所以∠ADB=∠E.因为∠ADB=90°,所以∠BDE=∠E=90°,所以BD∥EC.。
1认识三角形第1课时三角形及其内角和1.下面是一位同学用三根木棒拼成的图形,其中符合三角形概念的是(D)2.在△ABC中,BC边的对角是(A)A.∠A B.∠BC.∠C D.∠D3.如图,△ABC中,AB与BC的夹角是∠B,∠A的对边是BC,∠A,∠C的公共边是AC .4.如图,以点A为顶点的三角形有 4 个,它们分别是△ABC,△ADC,△ABE,△ADE .5.在△ABC中,若∠C=100°,∠B=10°,则∠A= 70° .6.在△ABC中,若∠A=80°,∠B=∠C,则∠B= 50° .7.在△ABC中,若∠C=40°,∠B=4∠A,则∠A等于(B)A.30° B.28° C.26° D.40°8.如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于(C)A.70° B.80° C.90° D.100°9.在△ABC中,∠B比∠A大36°,∠C比∠A小36°,求△ABC的各内角的度数.解:设∠A=x,则∠B=x+36°,∠C=x-36°.根据题意,得x+x+36°+x-36°=180°,解得x=60°,所以x+36°=96°,x-36°=24°.所以∠A=60°,∠B=96°,∠C=24°.10.如图,如果把△ABC的一边BA延长,可以得到∠CAD,像这样,三角形的一边与另一边的延长线组成的角,我们把它称作三角形的外角.它的一个性质定理是三角形的一个外角等于和它不相邻的两个内角的和.如果∠C=50°,∠B=30°,则∠CAD的度数是(A)A.80° B.90° C.100° D.110°11.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B等于(C)A.45° B.55° C.65° D.75°12.(2019·湖北襄阳保康模拟)下列图形中,能确定∠1>∠2的是(C)13.三角形按角分类可以分为(A)A.锐角三角形、直角三角形、钝角三角形B.等腰三角形、等边三角形、不等边三角形C.直角三角形、等边三角形D.以上答案都不正确14.(教材P82,议一议改编)下面给出的四个三角形都有一部分被遮挡,其中不能判断三角形的形状的是(C)15.(2019·上海徐汇区月考)已知在△ABC中,∠A=45°,∠B=46°,那么△ABC的形状为(A)A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形16.(2019·江苏徐州期中)在△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则△ABC的形状是(A)A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形17.如图,已知∠ACB=90°,CD⊥AB于点D,那么图中与∠A相等的角是∠BCD .18.如图,图中三角形的个数有(B)A.6个 B.8个 C.10个 D.12个19.如图所示,在△ABC中,∠ACB是钝角,让点C在射线BD上向右移动,则(D)A.△ABC将先变成直角三角形,然后再变成锐角三角形,而不会再是钝角三角形B.△ABC将变成锐角三角形,而不会再是钝角三角形C.△ABC将先变成直角三角形,然后再变成锐角三角形,接着又由锐角三角形变为钝角三角形D.△ABC先由钝角三角形变为直角三角形,再变为锐角三角形,接着又变为直角三角形20.(2019·江苏无锡江阴期中)如图,在△ACB中,∠ACB=90°,∠A=24°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′的度数为(A)A.42° B.40° C.30° D.24°21.如图,在△ABC中,∠C=78°,沿图中虚线截去∠C,则∠1+∠2=(D)A.282° B.180° C.360° D.258°22.一副三角尺按如图所示的方式叠放在一起,则图中∠α等于(A)A.105° B.115° C.120° D.135°23.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B=∠C.其中能确定△ABC是直角三角形的条件有①②③ (填序号).24.如图,已知DF⊥AB于点F,∠A=40°,∠D=50°,求∠ACB的度数.解:因为DF⊥AB,所以∠GF A=90°.因为∠A=40°,所以∠AGF=50°.所以∠DGC=50°.又∠D=50°,所以∠ACB=∠D+∠DGC=100°.25.阅读材料:如图1所示的图形,像我们常见的学习用品——圆规.我们不妨把这样的图形叫做“规形图”.解决问题:(1)观察“规形图”,试探究∠BDC与∠A,∠B,∠C之间的数量关系,并说明理由.(2)请你直接利用以上结论,解决以下两个问题:①如图2,把一块三角尺DEF放置在△ABC上,使三角尺的两条直角边DE,DF恰好经过点B,C,若∠A=40°,则∠ABD+∠ACD= 50 °;②如图3,BD平分∠ABP,CD平分∠ACP,若∠A=64°,∠BPC=142°,求∠BDC的度数.解:(1)如图,连接AD并延长至点F.根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又因为∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,所以∠BDC=∠BAC+∠B+∠C.(2)②由(1)得∠BPC=∠BAC+∠ABP+∠ACP,∠BDC=∠BAC+∠ABD+∠ACD,所以∠ABP+∠ACP=∠BPC-∠BAC=142°-64°=78°. 又因为BD平分∠ABP,CD平分∠ACP,所以∠ABD+∠ACD=12(∠ABP+∠ACP)=39°,所以∠BDC=64°+39°=103°.。
精选2019-2020年初中数学七年级上册1.3 截一个几何体北师大版练习题第五十篇第1题【单选题】用一个平面去截一个正方体,截面的形状不可能是( )A、梯形B、五边形C、六边形D、七边形【答案】:【解析】:第2题【单选题】如图中,几何体的截面形状是( )A、B、C、D、【答案】:【解析】:第3题【单选题】用平面去截一个几何体,如果截面是圆形,则原几何体可能是( )A、正方体、球B、圆锥、棱柱C、球、长方体D、圆柱、圆锥、球【答案】:【解析】:第4题【单选题】下列说法不正确的是( )A、用一个平面去截一个正方体可能截得五边形B、五棱柱有10个顶点C、沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆柱D、将折起的扇子打开,属于“线动成面”的现象【答案】:【解析】:第5题【单选题】长方体的截面中,边数最多的多边形是( ).A、四边形B、五边形C、六边形D、七边形【答案】:【解析】:第6题【单选题】用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是( )A、圆锥B、球体C、圆柱D、以上都有可能【答案】:【解析】:第7题【单选题】用一个平面去截一个几何体,得到的截面是八边形,这个几何体可能是( )A、四棱柱B、五棱柱C、六棱锥D、七棱柱【答案】:【解析】:第8题【单选题】用一个平面去截一个圆锥,截面图形不可能是( )A、B、C、D、【答案】:【解析】:第9题【填空题】用一个平面去截几何体,若截面是三角形,这个几何体可能是______,______和______ 【答案】:【解析】:第10题【填空题】如图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②几何体的体积为______ .(结果保留π)【答案】:【解析】:第11题【解答题】在如图所示的一个正方体截出一角后,剩下的几何体有多少条棱?多少个面?多少个顶点?【答案】:【解析】:第12题【解答题】将如图所示的长方体用过ABCD的平面切割,得到两个什么几何体?说出它们的名称.【答案】:【解析】:第13题【解答题】如图所示,说出下列几何体截面(阴影部分)的形状.【答案】:【解析】:第14题【作图题】如图是一个正方体被截去一个直三棱柱得到的几何体,请画出该几何体的三视图.A、解:如图所示:【答案】:【解析】:第15题【综合题】如图,有一个立方体,它的表面涂满了红色,在它每个面上切两刀,得到27个小立方体,而且凡是切面都是白色.问:小立方体中三面红的有几块?两面红的呢?一面红的呢?没有红色的面呢?""如果每面切三刀,情况又怎样呢?""每面切n刀呢?""【答案】:【解析】:。
3简单的轴对称图形第1课时等腰三角形的性质1.已知等腰三角形顶角的度数是30°,则底角的度数为(D)A.60°B.65°C.70°D.75°2.(2019·广东广州荔湾区一模)如图,在△ABC中,AC=AD=DB,∠C=70°,则∠CAB的度数为(A)A.75°B.70°C.40°D.35°3.(2019·贵州贵阳花溪区一模)小明在AB=AC的等腰三角形中,以点B为圆心,BC长为半径画弧交AC于点D,得到如图所示的图形,则下列结论中一定正确的是(D)A.AD=CD B.AD=BDC.∠ABD=∠CBD D.∠BAD=∠CBD4.在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,求∠AED的度数.解:因为在△ABC中,AB=AC,∠BAC=120°,所以∠B=∠C=1×(180°-∠BAC)=1×(180°-120°)=30°.因为BD =BE ,所以∠BED =∠BDE =12×(180°-∠B )=12×(180°-30°)=75°,所以∠AED =180°-75°=105°.5.等腰三角形中一个角为100°,则它的底角的度数为( A ) A .40° B .80° C .40°或80° D .50°6.若一个等腰三角形有一个角为30°,求这个等腰三角形的顶角. 解:分两种情况: ①30°的角本身为顶角;②当30°的角为底角时,顶角为180°-30°×2=120°. 因此这个等腰三角形的顶角为30°或120°.7.(2019·江苏徐州泉山区二模)如果等腰三角形的两边长分别是3和6,求它的周长. 解:因为等腰三角形的两边长分别是3和6,所以①当腰长为6时,三角形的周长为6+6+3=15; ②当腰长为3时,3+3=6,三角形不成立. 所以此等腰三角形的周长是15.8.(2019·福建漳州期末)等腰三角形的周长为22,其中一边长是8,求其余两边的长. 解:因为等腰三角形的周长为22,所以当腰长为8时,它的底边长为22-8-8=6,8+6>8,能构成等腰三角形; 当底边长为8时,它的腰长为(22-8)÷2=7,7+7>8,能构成等腰三角形. 故它的另外两边长分别为8,6或者7,7.9.(2019·四川遂宁期末)已知等腰三角形一腰上的中线将它的周长分成6 cm 和12 cm 两部分,求等腰三角形的底边的长.解:设等腰三角形的底边的长为x cm ,如图所示.若C △ACD -C △BCD =6,则AC -BC =6,所以x +x +6+x +6=12+6,所以x =2.因为8+2>8,所以可构成三角形.此时底边的长为2 cm.若C △BCD -C △ACD =6,则BC -AC =6, 所以x +x -6+x -6=12+6,所以x =10. 因为4+4<10,不能构成三角形, 故等腰三角形的底边的长为2 cm.10.下列说法中错误的是( C ) A .等腰三角形是轴对称图形 B .等腰三角形的两个底角相等C .等腰三角形的角平分线、中线和高互相重合D .有两条边相等的三角形是等腰三角形11.下列各线中,不属于等腰三角形“三线合一”的线的是( C ) A .顶角的平分线 B .底边上的中线 C .腰上的中线D .底边上的高12.如图,在△ABC 中,AB =AC ,D 是BC 的中点,∠B =40°,则∠BAD =( C )A .100°B .80°C .50°D .40°13.如图,在△ABC 中,AB =AC ,AD 平分∠BAC ,请将等腰三角形“三线合一”定理的推理过程补充完整.解:因为AD 平分∠BAC , 所以 ∠BAD = ∠CAD . 在△ABD 和△ACD 中,⎩⎨⎧ AB =AC , ∠BAD =∠CAD ,AD =AD ,所以△ABD≌△ACD( SAS ),所以BD=DC( 全等三角形的对应边相等 ).所以∠ADB=∠ADC=12×180°=90°,即AD是BC边上的中线,也是BC边上的高.14.(2019·山东济南天桥区期末)如图,在3×3的网格中,点A,B在格点处,以AB为一边,点P在格点处,则使△ABP为等腰三角形的点P有(D)A.2个 B.3个 C.4个 D.5个15.(2019·山西中考)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b 上,直线a交AB于点D,交AC于点E.若∠1=145°,则∠2的度数是(C)A.30° B.35° C.40° D.45°16.用尺规作图“已知底边a和底边上的高线h(如图),作等腰三角形”,有下列作法:①作线段BC=a;②作线段BC的中点D,过点D作BC的垂线m;③在直线m上截取DA=h,连接AB,AC.这样作图的根据是(A)A.等腰三角形三线合一B.等腰三角形两底角相等C.等腰三角形两腰相等D.等腰三角形的轴对称性17.(2019·湖南长沙雨花区三模)如图,在△ABC中,AB=AC,点D是BC边上的中点,点E在AD上,那么下列结论不一定正确的是(D)A.AD⊥BC B.∠EBC=∠ECBC.∠ABE=∠ACE D.AE=BE18.(2019·浙江衢州一模)如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1;在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2;….按此规律作下去,若∠A1B1O=α,则∠A10B10O=(B)A.α210 B.α29C.α20 D.α1819.如图,AD,CE分别为△ABC的中线与角平分线,若AB=AC,∠CAD=20°,则∠ACE 的度数是 35° .20.(2019·山东济南市中区期末)等腰三角形中,有一个角是40°,求一条腰上的高与底边的夹角.解:当顶角为40°时,如图1,则∠B=∠ACB=70°.因为CD⊥AB,所以∠ACD=50°,所以∠BCD=20°.当底角为40°时,如图2,则∠B=∠ACB=40°.因为CD⊥AB,所以∠BCD=50°.综上,∠BCD=20°或50°.21.(2019·重庆中考A卷改编)如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)试说明∠FBE=∠FEB.解:(1)因为AB=AC,所以∠C=∠ABC=36°.因为D是BC边上的中点,所以BD=CD.因为AB=AC,所以AD⊥BC(等腰三角形三线合一),所以∠ADB=90°,所以∠BAD=90°-36°=54°.(2)因为BE平分∠ABC,所以∠ABE=∠CBE=12∠ABC.因为EF∥BC,所以∠FEB=∠CBE,所以∠FBE=∠FEB.22.如图1,在△ABC中,AB=AC,D为BC边上一点,DE⊥AB于E,DF⊥AC于F. 作图:请作出AC边上的高BG.探究:(1)请你通过观察、测量找到DE,DF,BG之间的数量关系:BG=DE+DF .(2)为了说明DE,DF,BG之间的数量关系,小嘉是这样做的:连接AD,则S△ADC =12AC·DF,S△ABD=12AB·DE .所以S△ABC =12AC·DF+12AB·DE .S△ABC还可以表示为12AC·BG .……请你帮小嘉完成上述填空.拓展:当D在如图2所示的位置时,上面DE,DF,BG之间的数量关系是否仍然成立?(3)如图3,若将题目改成点P是等边△ABC内部一点,作PD⊥AB,PE⊥BC,PF⊥AC,垂足分别为D,E,F,过A作AH⊥BC于H,则AH,PD,PE,PF之间有怎样的数量关系?并说明理由.解:(2)拓展结论仍然成立,即BG=DE+DF.(3)因为S△ABC=S△ABP+S△ACP+S△BCP,所以12AH·BC=12PD·AB+12PF·AC+12PE·BC.因为△ABC是等边三角形,所以AB=AC=BC,所以AH=PD+PE+PF.。
北师大版2019-2020初中数学七年级上学期《第3章整式及其加减》单元测试卷(2)一.选择题(共23小题)1.下列各式符合代数式书写规范的是()A.a9B.m﹣5元C.D.1x2.代数式的正确解释是()A.a与b的倒数的差的平方B.a的平方与b的倒数的差C.a的平方与b的差的倒数D.a与b的差的平方的倒数3.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是()A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c4.沿河两地相距S千米,船在静水中的速度为a千米/时,水流速度为b千米/时,船往返一次所需时间是()A.小时B.小时C.()小时D.()小时5.已知m2+2mn=384,2n2+3mn=560,则代数式2m2+13mn+6n2﹣430的值是()A.2018B.2019C.2020D.20226.已知a2﹣3a﹣7=0,则3a2﹣9a﹣1的值为()A.18B.19C.20D.217.按照如图所示的运算程序,若输入的x的值为1,则输出的结果是()A.7B.37C.127D.1878.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A.7个B.6个C.5个D.4个9.下列代数式是整式的有()①﹣mn;②y3﹣5y+;③;④+c;⑤;⑥;⑦m;⑧x2+2x+A.3个B.4个C.5个D.6个10.在代数式a+b,x2,,﹣m,0,,中,单项式的个数是()A.6B.5C.4D.311.下面说法正确的是()A.﹣9的倒数是B.有理数包括整数和分数C.|﹣3|的相反数是3D.单项式﹣πab2的系数和次数为和4E.单项式﹣πab2的系数和次数为和412.若单项式﹣的系数、次数分别是m、n,则()A.m=,n=6B.m=,n=6C.m=﹣,n=5D.m=,n=5 13.单顶式的系数与次数分别是()A.B.C.D.14.多项式x3﹣x2+2x﹣3的常数项是()A.x3B.﹣x2C.2x D.﹣315.下列说法错误的是()A.单项式的系数是B.单项式3a2b2的次数是4C.多项式a3﹣1的常数项是1D.多项式4x2﹣3是二次二项式16.下列说法正确的是()A.﹣的系数是﹣2B.ab3的次数是3次C.2x2+x﹣1的常数项为1D.是多项式17.下列结论中正确的是()A.单项式的系数是,次数是4B.单项式m的次数是l,没有系数C.多项式2x2+xy2+3是二次三项式D.在,2x+y,,,,0中整式有4个18.下列各组中的两项,不是同类项的是()A.﹣2a和2a B.a3bc和ba3c C.3x2和3x3D.2和0.1 19.若﹣2a m b4与5a n﹣2b2m是同类项,则m n的值是()A.16B.6C.4D.2 20.若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2B.﹣1C.2D.1 21.如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.0 22.若2个单项式3x2a﹣b y2与2x4y a﹣b的和仍是单项式,则ab的值为()A.0B.3C.﹣3D.2 23.下列各运算中,计算正确的是()A.4xy+xy=5xy B.x+2x=2x2C.5xy﹣3xy=2D.x+y=xy 二.解答题(共11小题)24.4ab2﹣3a2b+3ab2﹣5a2b25.去括号,并合并同类项:3(5m﹣6n)+2(3m﹣4n).26.两个多项式A和B,A=▄▄▄,B=x2+4x+4.A﹣B=3x2﹣4x﹣20.其中A被墨水污染了.(1)求多项式A;(2)x取其中适合的一个数:2,﹣2,0,求的值.27.化简(1)3a3+a2﹣2a3﹣4a2(2)(2x2﹣1+3x)﹣4(x﹣x2+)28.先化简,再求值:2(x2y+3xy)﹣3(x2y﹣1)﹣2xy﹣2,其中x=﹣2,y=2.29.先化简2(3x2﹣2xy﹣y)﹣4(2x2﹣xy﹣y),再求值其中x=﹣3,y=1.30.已知A=3x2+3y2﹣2xy,B=xy﹣2y2﹣2x2,(1)求2A﹣3B;(2)若|2x﹣3|=1,y2=9,且|x﹣y|=y﹣x,求2A﹣3B的值.31.计算、化简求值(1)(+﹣)×(﹣12)(运用运算律)(2)(1+)×(﹣)2÷+(﹣1)3(3)求2x﹣[2(x+4)﹣3(x+2y)]﹣2y的值,其中x=,y=.32.观察以下等式:第1个等式:=+,第2个等式:=+,第3个等式:=+,第4个等式:=+,第5个等式:=+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.33.先观察下列式子的变形规律:=1﹣;=;=;然后解答下列问题:(1)类比计算:=.(2)归纳猜想:若n为正整数,那么猜想=.(3)知识运用:运用上面的知识计算+++……+的结果.(4)知识拓展:试着写出+++的结果.(只要结果,不用写步骤).34.观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子,第⑩个式子;(2)请用含n(n为正整数)的式子表示上述的规律,并证明:(3)求值:(1+)(1+)(1+)(1+)…(1+).参考答案与试题解析一.选择题(共23小题)1.【解答】解:A、代数式为9a,不符合题意;B、代数式为(m﹣5)元,不符合题意;C、代数式为,符合题意;D、代数式为x,不符合题意,故选:C.2.【解答】解:代数式的正确解释是:a的平方与b的倒数的差;故选:B.3.【解答】解:依题意,得:b=a+1,c=a+7,d=a+8.A、∵a﹣d=a﹣(a+8)=﹣8,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+8)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+8)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+8)=2a+8,b+c=a+1+(a+7)=2a+8,∴a+d=b+c,选项D不符合题意.故选:A.4.【解答】解:顺流速度=静水速度+水流速度,逆流速度=静水速度﹣水流速度.故船往返一次的时间为()小时.故选:D.5.【解答】解:∵m2+2mn=384,∴2(m2+2mn)=2×384,即2m2+4mn=768①又∵2n2+3mn=560,∴上式乘以3得:9mn+6n2=1680②①+②得:2m2+13mn+6n2=2448,∴2m2+13mn+6n2﹣430=2018.故选:A.6.【解答】解:∵a2﹣3a﹣7=0,∴a2﹣3a=7,则原式=3(a2﹣3a)﹣1=21﹣1=20,故选:C.7.【解答】解:1×5+2=5+2=77<37,7×5+2=35+2=37∴输出的结果是37.故选:B.8.【解答】解:在代数式π(单项式),x2+(分式),x+xy(多项式),3x2+nx+4(多项式),﹣x(单项式),3(单项式),5xy(单项式),(分式)中,整式共有6个,故选:B.9.【解答】解:①﹣mn;②y3﹣5y+;③;④+c;⑤;⑥;⑦m;⑧x2+2x+,整式有:①﹣mn;③;⑤;⑦m;⑧x2+2x+共5个.故选:C.10.【解答】解:x2,﹣m,0是单项式,故选:D.11.【解答】解:A、﹣9的倒数是﹣,故选项错误;B、有理数包括整数和分数,故选项正确;C、|﹣3|的相反数是﹣3,故选项错误;D、单项式﹣πab2的系数和次数为π和3,故选项错误;故选:B.12.【解答】解:单项式﹣的系数、次数分别是﹣、6,故m=,n=6.故选:A.13.【解答】解:的系数与次数分别是:﹣π,4,故选:D.14.【解答】解:多项式x3﹣x2+2x﹣3的常数项是﹣3.故选:D.15.【解答】解:A、单项式的系数是,不符合题意;B、单项式3a2b2的次数是4,不符合题意;C、多项式a3﹣1的常数项是﹣1,符合题意;D、多项式4x2﹣3是二次二项式,不符合题意,故选:C.16.【解答】解:A.﹣的系数是﹣,此选项错误;B.ab3的次数是4次,此选项错误;C.2x2+x﹣1的常数项为﹣1,此选项错误;D.是多项式,此选项正确;故选:D.17.【解答】解:A、单项式的系数是的系数是π,次数是3,不符合题意;B、单项式m的次数是1,系数是1,不符合题意;C、多项式2x2+xy2+3是三次三项式,不符合题意;D、在,2x+y,,,,0中整式有2x+y,,,0,一共4个,符合题意.故选:D.18.【解答】解:A、﹣2a和2a,是同类项,故本选项不合题意;B、a3bc和ba3c,是同类项,故本选项不合题意;C、3x2和3x3,不是同类项,故本选项符合题意;D、2和0.1,是同类项,故本选项不合题意;故选:C.19.【解答】解:∵﹣2a m b4与5a n﹣2b2m是同类项,∴n﹣2=m,2m=4.解得:n=4,m=2.∴m n=24=16.故选:A.20.【解答】解:由3a2+m b3和(n﹣2)a4b3是同类项,得2+m=4,解得m=2.由它们的和为0,得3a4b3+(n﹣2)a4b3=(n﹣2+3)a4b3=0,解得n=﹣1.mn=﹣2,故选:A.21.【解答】解:根据题意,得:2m﹣1=m+1,解得:m=2.故选:A.22.【解答】解:∵单项式3x2a﹣b y2与2x4y a﹣b的和仍是单项式,∴单项式3x2a﹣b y2与2x4y a﹣b是同类项,则,解得,∴ab=0,故选:A.23.【解答】解:(B)原式=3,故B错误;(C)原式=2xy,故C错误;(D)原式=x+y,故D错误;故选:A.二.解答题(共11小题)24.【解答】解:原式=4ab2+3ab2﹣3a2b﹣5a2b=7ab2﹣8a2b.25.【解答】解:3(5m﹣6n)+2(3m﹣4n)=15m﹣18n+6m﹣8n=21m﹣26n26.【解答】解:(1)∵B=x2+4x+4.A﹣B=3x2﹣4x﹣20,∴A=x2+4x+4+3x2﹣4x﹣20=4x2﹣16;(2)当x=0时,==﹣.27.【解答】解:(1)原式=a3﹣3a2;(2)原式=2x2﹣1+3x﹣4x+4x2﹣2=6x2﹣x﹣3;28.【解答】解:原式=2x2y+6xy﹣3x2y+3﹣2xy﹣2=﹣x2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.29.【解答】解:原式=6x2﹣4xy﹣2y﹣8x2+4xy+4y =﹣2x2+2y当x=﹣3,y=1时,原式=﹣2×9+2×1=﹣1630.【解答】解:(1)2A﹣3B=2(3x2+3y2﹣2xy)﹣3(xy﹣2y2﹣2x2)=6x2+6y2﹣4xy﹣3xy+6y2+6x2=12x2+12y2﹣7xy;(2)由题意可知:2x﹣3=±1,y=±3,∴x=2或1,y=±3,由于|x﹣y|=y﹣x,∴y﹣x≥0,∴y≥x,当y=3,x=2时,原式=12(x2+y2)﹣7xy=12(x2+2xy+y2﹣2xy)﹣7xy=12(x+y)2﹣31xy=12×25﹣31×6=114,当y=3,x=1时,原式=12×16﹣31×3=99.31.【解答】解:(1)()×(﹣12)==(﹣2)+(﹣6)+1=﹣7;(2)(1)×(﹣)2÷+(﹣1)3==2+(﹣1)=1;(3)原式=2x﹣2x﹣8+3x+6y﹣2y=3x+4y﹣8,当x=,y=时,原式=1+2﹣8=﹣5.32.【解答】解:(1)第6个等式为:,故答案为:;(2)证明:∵右边==左边.∴等式成立,故答案为:.33.【解答】解:(1)=,故答案为:;(2)=,故答案为:;(3)+++……+=1﹣=1﹣=;(4)+++====.34.【解答】解:(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102,故答案为:4×6+1=52,9×11+1=102;(2)第n个式子为(n﹣1)(n+1)+1=n2,证明:左边=n2﹣1+1=n2,右边=n2,∴左边=右边,即(n﹣1)(n+1)+1=n2.(3)原式=×××…×=×××……×==.。
2019-2020学年度北师大版数学七年级上册5.4 应用一元一次方程——打折销售拔高训练第四十六篇第1题【单选题】一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( )A、106元B、105元C、118元D、108元【答案】:【解析】:第2题【单选题】某书店把一本新书按标价的八折出售,仍获利20%,若该书进价为20元,则标价( )A、24元B、26元C、28元D、30元【答案】:【解析】:第3题【单选题】某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A140B、120C、160D、100【答案】:【解析】:第4题【单选题】某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,如果要使得利润率为5%,那么销售时应该打( )A、6折B、7折C、8折D、9折【答案】:【解析】:第5题【单选题】一件风衣,按成本价提高50%后标价,后因季节关系按标价的8折出售,每件卖180元,这件风衣的成本价是( )A、150元B、80元C、100元D、120元【答案】:【解析】:第6题【单选题】某种衬衫的进价为400元,出售时标价为550元,由于换季,商店准备打折销售,但要保持利润不低于10%,那么至多打( )A、9折B、8折C、7折D、6折【答案】:【解析】:第7题【单选题】一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( )A、106元B、105元C、118元D、108元【答案】:【解析】:第8题【填空题】在小学里我们已经学过,方程是指含有未知数的等式,请你运用已学的知识,根据下列问题中的条件,分别列出方程.(1)一件衣服按8折销售的售价为72元,这件衣服的原价是多少元?设这件衣服的原价为x元,可列出方程:______.(2)物体在水下,水深每增加10.33米承受的压力就会增加1个大气压.当“蛟龙”号下潜至3500米时,它承受的压力约为340个大气压,问它承受压力增加到500个大气压时,它又继续下潜了多少米?设它又继续下潜了x米,可列出方程:______.(3)小强、小杰.张明参加投篮比赛,每人投20次,小强投进10个球,小杰比张明多投进2个,三人平均每人投进14个球,问小杰和张明各投进多少个?设张明投进x个,可列出方程:______.观察你所列的方程,这些方程之间有哪些共同的特点?【答案】:【解析】:第9题【填空题】某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是______.【答案】:【解析】:第10题【填空题】一件商品按成本价提高80%后标价,然后再打9折销售,仍能获利6.2元,问这件商品的成本价是多少?若设这件商品的成本价为x元,则根据题意可列出方程为______【答案】:【解析】:第11题【填空题】某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件______ 元.【答案】:【解析】:第12题【综合题】为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,预算本次购买资金不超过84万元,预计二期工程完成后每月将产生不少于1300吨污水.请你计算每台甲型设备和每台乙型设备的价格各是多少元?请你求出用于二期工程的污水处理设备的所有购买方案;若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)【答案】:【解析】:第13题【综合题】为了丰富小学生的课余生活,某小学购买了甲乙两种图书共100本,其中甲种图书6元/本,乙种图书9元/本.如果购买这两种图书共用780元,求甲、乙两种图书各购买多少本?该校准备再次购买这两种图书(不包括已购买的100本),使乙种图书数量是甲种图书数量的2倍,且所需费用不多于1200元(不包括780元),求甲种图书最多能再购买多少本?【答案】:【解析】:第14题【综合题】某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的有误倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?该超市第二次以第一次的进价又购进甲、乙两种商品.其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?【答案】:【解析】:第15题【综合题】列方程解应用题在“十一”期间,小明等同学随家长共15人到游乐园游玩,成人门票每张50元,学生门票是6折优惠.他们购票共花了650元,求一共去了几个家长、几个学生?甲、乙两人骑自行车同时从相距65千米的两地出发相向而行,甲的速度是每小时17.5千米,乙的速度是每小时15千米,求经过几小时甲、乙两人相距32.5千米?【答案】:【解析】:。
2019-2020有理数混合运算专题(含答案)一、解答题1.(1)计算:16÷(﹣2)3﹣(﹣12)3×(﹣4)+2.5;(2)计算:(﹣1)2017+|﹣22+4|﹣(12﹣14+18)×(﹣24) 2.计算: ()()241110.5123⎡⎤---⨯⨯--⎣⎦3.计算: (1)514166÷×÷8357⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)-3-3510.225⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦; (3)114332⎛⎫- ⎪⎝⎭ ×(-2)-221÷32⎛⎫- ⎪⎝⎭; (4)2711150(6)9126⎡⎤⎛⎫--+⨯- ⎪⎢⎥⎝⎭⎣⎦÷(-7)2.4.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.5.计算:(1)6(4)(2)-+--- (2)310.1252(8)73⎛⎫⎛⎫-⨯⨯-⨯- ⎪ ⎪⎝⎭⎝⎭(3)(-225)-(+4.7)-(-0.4)+ (-3.3) (4)35344⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭(5)3412757⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(6)(12-59+712)×(-36) (7)113(5)77(7)12()3322-⨯+⨯--÷-(8)—2391224⨯6.计算:(1)2125824(3)3-+-+÷-⨯;(2)20171313[2()24]5(1)2864-+-⨯÷⨯-.7.计算:()()232415123262⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭.8.计算:(1)0.36+(-7.4)+0.3+(-0.6)+0.64;(2)313+(-237)+523+(-847); (3)(-103)+(+134)+(-97)+(+100)+(-114); (4)(-212)+(-0.38)+(-12)+(+0.38); (5)(-9512)+1534+(-314)+(-22.5)+(-15712);(6)[(+1317)+(-3.5)+(-6)]+[(+2.5)+(+6)+(+417)].9.计算:(1)8×|-6-1|+2612×653;(2) (−14−12+23)×|−24|−54×(−2.5)×(−8).10.计算:(1)2+(-8)-(-7)-5; (2)312+223+12⎛⎫-⎪⎝⎭-13⎛⎫- ⎪⎝⎭;(3)(-3)×6÷(-2)×12;(4)34⎛⎫-⎪⎝⎭×12⎛⎫-⎪⎝⎭÷124⎛⎫-⎪⎝⎭.11.计算(1)1142()(2)(2)(3)5353++----+(2)(﹣2)3×3﹣(﹣3)+6﹣|﹣5|12.计算:(1)514-(-223)+(-314)-(+423);(2)(-3594812-+)×(-24);(3)(-3)÷34×43×(-15);(4)-14+|(-2)3-10|-(-3)÷(-1)2017.13.计算:(1)-32-|(-5)3|×22()5--18÷|-(-3)2|; (2)3571()491236--+÷. 14.计算题:(1)(-20)-(+3)-(-5) (2) 51192533812812-+-- (3) |-3|×(-5)÷(-213) (4) 75336964-+-⨯() (5) (1)0572-+÷-⨯ (6)(159916-)×4 (7) 222222792777()()()-⨯-+⨯--⨯- (8) 22018112(1)()663--÷-⨯ 15.计算:(12)﹣2÷(π﹣3.14)0+42018×(﹣0.25)2017 16.计算:()()241110.4263⎡⎤---÷⨯--⎣⎦; 17.计算:(1)()222202--÷- (2)()()1178245122-÷-+⨯--÷⨯ (3)()2012111 1.2512123⎛⎫--⨯+- ⎪⎝⎭ (4)()()()2221231x x x x x -+--++- 18.观察下列等式111111111,,,12223233434=-=-=-⨯⨯⨯将以上三个等式两边分别相加得: 1111111113111223342233444++=-+-+-=-=⨯⨯⨯. ⑴.猜想并写出:()11n n =+ ;⑴.直接写出下列各式的计算结果: ⑴.111112233420162017++++=⨯⨯⨯⨯ ; ⑴. ()11111223341n n ++++=⨯⨯⨯⨯+ ; ⑴.探究并计算:1111144771020112014++++⨯⨯⨯⨯. 19.阅读下列材料:计算:112÷(13–14+112). 解:原式的倒数为(13–14+112)÷112 =(13–14+112)×12 =13×12–14×12+112×12 =2.故原式=12. 请仿照上述方法计算:(–142)÷(16–314+23–27). 20.计算题(1)32215-545353⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭(2)17-8-24-3÷+⨯()()(3)3511760--461512⎛⎫⨯+ ⎪⎝⎭ (4)2133124⎡⎤⎛⎫-÷-+- ⎪⎢⎥⎝⎭⎣⎦(5)()()20093111 2.75241238⎛⎫+-⨯-+--- ⎪⎝⎭(6)()311252525424⎛⎫⨯--⨯+⨯- ⎪⎝⎭参考答案1.(1)0;(2)8.【解析】试题分析:(1)先计算乘方,然后再计算乘除,最后计算加减即可;(2)先分别进行乘方、绝对值化简、乘法分配律,然后再按运算顺序进行计算即可.试题解析:(1)原式=16÷(-8)-18×4+2.5=-2-0.5+2.5=-2+2=0;(2)原式=-1+0+12-6+3=8.2.-0.5【解析】分析:按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.详解:原式=111[14]23--⨯⨯-=﹣1﹣16×(﹣3)=﹣1+1 2=-0.5.点睛:本题要注意正确掌握运算顺序以及符号的处理.3.(1)-12;(2) 11425;(3) 323;(4)1.【解析】【分析】根据有理数混合运算法则即可解题.【详解】解:(1)514166÷×÷8357⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=53167×÷81456⎛⎫⎛⎫⎛⎫-⨯-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=12-; (2)-3-3510.225⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦=-3-2215252-+⨯() =-3-(-5+1125) =-3+5-1125=2-1125=14125; (3)114332⎛⎫- ⎪⎝⎭ ×(-2)-221÷32⎛⎫- ⎪⎝⎭ =(13732-)×(-2)823-⨯-() =53-+163=113=323; (4)()271115069126⎡⎤⎛⎫--+⨯- ⎪⎢⎥⎝⎭⎣⎦÷(-7)2=[50-(79)36⨯+(1112)36⨯-(16)36⨯]÷49 =(50-28+33-6)÷49 =49÷49=1.【点睛】本题考查了有理数的混合运算,属于简单题,熟悉有理数运算法则和运算优先级是解题关键.4.(1)7;(2)9【解析】【分析】(1)注意运算顺序,先算乘除再算加减,减去一个数等于加上这个数的相反数,减法变为加法;(2)注意运算顺序,先算乘方再算乘除最后算加减.注意()201811-=,1-的偶次方为1,奇次方为1-.【详解】(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.【点睛】本题考查了有理数的混合运算,注意:要正确掌握运算顺序,即乘方运算叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.5.(1)-8;(2)-1;(3)-10;(4)-1;(5)-0.2;(6)-19;(7)0;(8)-119.5.【解析】【分析】(1)先去括号,再按照从左到右的顺序计算即可,特别要注意符号的变化; (2)先把小数化为分数,再按照从左到右的顺序计算即可;(3)先去括号,再按照有理数加减法进行计算即可;(4)先去括号和绝对值,再按照有理数加减法进行计算;(5)先确定积的符号,然后把除法转化为乘法,按照有理数乘法法则进行计算; (6)依据乘法分配律进行计算即可;(7)原式逆用乘法分配律计算即可得到结果;(8)把—23924写成1-1024,再依据乘法分配律进行计算即可. 【详解】(1)()()642-+---=-6-4+2=-10+2=-8; (2)()310.1252873⎛⎫⎛⎫-⨯⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=(-37)×18×(-73)×(-8)=1×(-1)=-1; (3)(-225)-(+4.7)-(-0.4)+ (-3.3)=-2.4-4.7+0.4-3.3=-2.4-4.7-3.3+0.4=-10.4+0.4=-10 (4)35344⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭=35+44-3=2-3=-1 (5)3412757⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-3471=-75125⨯⨯ (6)(12-59+712)×(-36) =157-36--36+-362912⨯⨯⨯()()()=-18-(-20)-21=-18-21+20=-39+20=-19 (7)()1135777123322⎛⎫⎛⎫-⨯+⨯--÷- ⎪ ⎪⎝⎭⎝⎭=-5×713+7×(-713)-12×(-713)=713×(-5-7+12)=0; (8)—2391224⨯=(1-1024)×12=124×12-10×12=0.5-120=-119.5【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算顺序,此题比较简单,但计算时要特别细心,不然很容易出错. 6.(1)−113(2)−32【解析】(1)()212582433-+-+÷-⨯=−4+3+(−8)×13=−1−83=−113. (2)()20171313224512864⎡⎤⎛⎫-+-⨯÷⨯- ⎪⎢⎥⎝⎭⎣⎦()131312242424128645⎡⎤=-⨯-⨯+⨯⨯⨯-⎢⎥⎣⎦()519418125⎡⎤=--+⨯⨯-⎢⎥⎣⎦ ()515125⎡⎤=+⨯⨯-⎢⎥⎣⎦ ()51151255⎡⎤=⨯+⨯⨯-⎢⎥⎣⎦()1112⎡⎤=+⨯-⎢⎥⎣⎦=32×(−1)=−32.7.1 3 -.【解析】【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的即可.【详解】原式=14 1[2274]625 -+⨯+-⨯=14 125625 -+⨯⨯=2 13 -+=13 -.【点睛】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.8.(1)-6.7;(2)-2;(3)-9912;(4)-3;(5)-35;(6)0【解析】【分析】根据有理数的加法运算律进行运算即可.【详解】解:(1)原式=(0.36+0.3+0.64)+[(-7.4)+(-0.6)].=1.3-8=-6.7;(2)3+(-2)+5+(-8).=3+5+.=9+(-11).=-2;(3)原式=[(-103)+(-97)]++100.=-200++100=-99;(4)(-2)+(-0.38)+(-)+(+0.38).=+[(-0.38)+(+0.38)].=-3+0.=-3;(5)原式=[(-9)+(-15)]+[15+(-3)]+(-22.5).=[(-9)+(-15)+(-)+(-)]+[15+(-3)++(-)]+(-22.5).=-25+12.5+(-22.5).=-25+[12.5+(-22.5)].=-25+(-10)=-35;(6)+[(+2.5)+(+6)+(+)].=(+)+(-3.5)+(-6)+(+2.5)+(+6)+(+).=+[-3.5+(+2.5)]+[(-6)+(+6)].=1+(-1)+0.=0.【点睛】本题主要考查了有理数的加法,牢牢掌握有理数的加法运算律是解答本题的关键.9.(1)59;(2)-27.【解析】【分析】(1)去掉绝对值号,再把带分数化为假分数,然后根据有理数的乘法和加法运算法则进行计算;(2) 先去掉绝对值号,并把小数化为分数,然后利用乘法分配律与有理数的乘法运算法则进行计算.【详解】解:(1)8×|-6-1|+2612×653=8×|-7|+532×653=56+3 =59;(2) (−14−12+23)×|−24|−54×(−2.5)×(−8)= (−14−12+23)×24-54×(-52)×(-8),=-14×24−12×24+23×24-54×52×8=-6-12+16-25,=-43+16,=-27.【点睛】本题考查有理数的混合运算,解题关键是运算顺序和运算法则的运用.10.(1)-4;(2) 6;(3) 92;(4)-16.【解析】【分析】(1)根据有理数加减法法则进行计算即可.(2)根据有理数加法结合律和交换律进行计算即可.(3)、(4)根据有理数乘除法法则进行计算即可【详解】(1)原式=2-8+7-5=9-13=-4.(2)原式=312-12+223+13=3+3=6.(3)原式=3×6×12×12=9 2 .(4)原式=314429⎛⎫⎛⎫⎛⎫-⨯-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-1 6.【点睛】本题考查了有理数的混合运算,熟练掌握并灵活运用运算法则是解题关键. 11.(1)-3 (2)-20【解析】试题分析:(1)根据有理数的加减法法则进行计算即可;(2)先计算乘方,然后进行乘法运算,最后按运算顺序进行计算即可.试题解析:(1)原式=11422235353-+-=14122235533+--=3-6=-3;(2)原式=-8×3+3+6-5=-24+9-5=-20.12.(1)0;(2)15;(3)80;(4)14【解析】分析:(1)将减法转化为加法,再利用加法的交换律和结合律简便计算可得;(2)运用乘法的分配律计算可得;(3)将除法转化为乘法,再计算乘法即可得;(4)根据有理数的混合运算顺序和法则计算可得.详解:解:(1)原式=514+223﹣314﹣423=514﹣314+223﹣423=2﹣2 =0;(2)原式=34×24+58×24﹣912×24=18+15﹣18 =15;(3)原式=(﹣3)×43×43×(﹣15)=4×4×5=80;(4)原式=﹣1+|﹣8﹣10|﹣(﹣3)÷(﹣1)=﹣1+18﹣3=14.点睛:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:−−得+,−+得−,++得+,+−得−,能利用运算定律的利用运算定律更加简便.13.(1) -31;(2)-26【解析】【分析】(1)根据幂的乘方、有理数的乘除法和减法可以解答本题;(2)先把除法转化为乘法,再根据乘法分配律即可解答本题.【详解】(1)-32-|(-5)3|×225-()-18÷|-(-3)2|=-9-125×425-18÷9=-9-20-2=-31,故答案为-31; (2)3571491236⎛⎫--+÷ ⎪⎝⎭=(3574912--+)×36=34-×3659-×36712+×36=-27-20+21=-26,故答案为-26.【点睛】本题主要考查了的乘方、有理数的乘除法和减法的基本性质. 14.(1)-18;(2)-5;(3)9;(4)-25;(5)-15;(6)-39934;(7)0;(8)40. 【解析】 【分析】根据有理数的运算法则可解答本题. 【详解】解:(1)原式=(-20)+(-3)+5 =-23+5 =-18 (2)原式= 51925133881212--+-+()=-6+1 =-5(3)原式=3×(-5)35⨯-() =3⨯535⨯ =9 (4) =原式=7369-⨯+53363664⨯-⨯ =-28+30-27 =-25(5)()10572-+÷-⨯ =-1+0-14 =-15(6)原式=(-100+1416⨯) =-400+14=-39934(7)原式=227927-⨯-+- =227-⨯0 =0(8) ()201821121663⎛⎫--÷-⨯ ⎪⎝⎭=4-166⨯-⨯() =4+36 =40 【点睛】本题考查了有理数的加、减、乘、除、乘方的运算及它们的混合运算,正确理解运算法则及运算顺序是解题的关键. 15.0【解析】【分析】直接利用负指数幂的性质以及零指数幂的性质和积的乘方运算法则分别计算得出答案.【详解】(12)﹣2÷(π﹣3.14)0+42018×(﹣0.25)2017=4+[4×(﹣0.25)]2017×4=4﹣4=0.【点睛】此题主要考查了积的乘方运算、负指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.16.2.6【解析】【分析】根据含乘方的有理数混合运算法则计算即可.【详解】原式=10.63(46)--⨯⨯-=1 1.8(2)--⨯-=﹣1+3.6=2.6.【点睛】本题考查了含乘方的有理数混合运算,解答本题的关键是明确含乘方的有理数混合运算的计算方法.17.(1)原式9=-;(2)原式34=;(3)原式0=;(4)原式23x x =--+. 【解析】【分析】1.(1)-(3)根据有理数的运算法则进行计算:先算乘方,再算乘除,最后算加减,有括号的先算括号里面的,注意灵活运用运算律.2.(4)先去括号,再合并同类项.【详解】(1)原式4204459=--÷=--=-(2)原式()()1113174201174202244=--+--⨯⨯=+--= (3)原式31512121211841510234=⨯-⨯-⨯+=--+= (4)原式2222222313x x x x x x x =-++-+-=--+【点睛】本题考核知识点:有理数运算和整式运算. 解题关键点:掌握有理数运算法则和整式运算法则.18.⑴. 111n n -+;⑴. 20162017,1n n +;⑴.6712014【解析】【分析】(1)观察所给算式,根据观察到的规律写出即可;(2)⑴、⑴都是根据得出的规律展开,再合并,最后求出结果即可;(3)根据观察到的规律展开,然后合并,即可求出结果.【详解】(1)()1n n 1=+ 11n n 1-+, 故答案为:11n n 1-+; (2)⑴原式=11111122334-+-+-+…+1120162017-=1-1201620172017=; ⑴原式=11111122334-+-+-+…+111n n -+=1-111n n n =++, 故答案为:20162017,n n 1+; (3)原式=3×1111111144771020112014⎛⎫-+-+-++- ⎪⎝⎭=3×112014⎛⎫- ⎪⎝⎭=6712014. 【点睛】本题考查了有理数的混合运算,能根据已知算式得出()1n n 1=+ 11n n 1-+这一规律是解题的关键. 19.–114. 【解析】【分析】 根据阅读材料介绍的方法,利用乘法分配律求出原式倒数的值,即可求出原式的值.【详解】(16–314+23–27)÷(–142) =(16–314+23–27)×(–42)=(–42)×16–(–42)×314+(–42)×23–(–42)×27=–7+9–28+12=–14,故原式=–114. 【点睛】本题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(1)4;(2)9;(3)16(4)4(5)22;(6)25【解析】试题分析:(1)根据有理数的加法法则计算即可;(2)根据有理数的加减乘除运算法则计算即可;(3)根据有理数的混合运算法则和运算律计算即可,解题时注意预算符号的变换(4)先算括号里面和乘方运算,然后按照有理数的混合运算法则和运算律计算即可;(5)先算括号里面和乘方运算,然后按照有理数的混合运算法则和运算律计算即可(6)根据乘法分配律计算即可.试题解析:(1)532215-545353⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭=(535+425)+(-523-13) =10-6=4;(2)17-8-24-3÷+⨯()()=17+4-12(3)3511760--461512⎛⎫⨯+ ⎪⎝⎭=60×34+60×56-60×1115-60×712=45+50-44-35=16.(4)2133124⎡⎤⎛⎫-÷-+- ⎪⎢⎥⎝⎭⎣⎦=-9÷(-94) =9×49=4;(5)()()20093111 2.75241238⎛⎫+-⨯-+--- ⎪⎝⎭ =43×(-24)+18×(-24)-2.75×(-24)-1-23 =-32-3+66-1-8=22;(6)()311252525424⎛⎫⨯--⨯+⨯- ⎪⎝⎭ =25×34+25×12-25×14=25×(34+12-14) =25×1。
第一章阶段性水平测试(B)(时间:45分钟满分100分)一、选择题(每小题5分,共30分)1.(2016·阴平月考)在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球2.(2016•涞水期末)下列几何图形中,属于圆锥的是()3.(2015·六盘水中考)如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对B.相邻C.相隔D.重合4.(2015·眉山中考)下列四个图形中是正方体的平面展开图的是()A.B.C.D.5.(2015·恩施中考)如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A.0 B.2 C.数D.学6.(2016•宜兴市一模)图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()二、填空题(每小题5分,共30分)7.(2015·西宁中考)写出一个在三视图中从上面看与从正面看完全相同的几何体.8.(2016•曲阜期末)用一个平面截长方体、五棱柱、圆柱和圆锥,不能截出三角形的是.9.(2016•薛城实验月考)笔尖在纸上写字说明;车轮旋转时看起来象个圆面,这说明;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明.10.(2016•枣庄41中北校月考)5个棱长为1的正方体组成,如图的几何体,该几何体的表面积是.11.(2016•葫芦岛月考)把一个正方体截去一个角(顶点)后,剩下的几何体的角(顶点)有个.12. (2016·云南中考)如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于144或384π.三、解答题(共40分)13.(10分)如图所示,请将下列几何体分类.14.(10分)(2016•连云港期末)如图,在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体.(1)这个几何体由个小正方体组成.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色.(3)这个几何体喷漆的面积为cm2.15.(10分)(2015•永登县期末)如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).16.(10分)一个几何体的三个视图如图所示(单位:cm).(1)写出这个几何体的名称:;(2)若从上面看到的图形为正方形,根据图中数据计算这个几何体的表面积.附答案:一、选择题1.【解析】选C. A.长方体是由6个面围成;B.圆柱体是由3个面围成; C.圆锥体是由2个面围成;D.球是由1个面围成.2.【解析】选D.A是正方体;B是三棱锥;C是球体;D是圆锥.3.【解析】选B.正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面,“我”与“祖”是相对面,“爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻.4.【解析】选B.A、不是正方体的平面展开图;B、是正方体的平面展开图;C、不是正方体的平面展开图;D、不是正方体的平面展开图.5.【解析】选A.正方体的表面展开图,相对的面之间一定相隔一个正方形,“数”相对的字是“1”;“学”相对的字是“2”;“5”相对的字是“0”.6.【解析】选C.动手操作可知,画出所有的切割线的是图形C.二、填空题7.【解析】球从上面看与从正面看都为圆;正方体从上面看与从正面看都为正方形.答案:球或正方体(答案不唯一).8.【解析】长方体沿体面对角线截几何体可以截出三角形;五棱柱沿顶点截几何体可以截得三角形;圆柱不能截出三角形;圆锥沿顶点可以截出三角形.故不能截出三角形的几何体是圆柱.答案:圆柱.9.【解析】笔尖在纸上写字说明点动成线;车轮旋转时看起来象个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.答案:点动成线;线动成面;面动成体.10.【解析】因为正方体的棱长为1,所以1个正方形的面积为1,因为该几何体的表面有22个正方形构成,所以该几何体的表面积22.答案:22.11.【解析】如图,把一个正方体截去一个角(顶点)后,剩下的几何体的角(顶点)有7或8或9或10个.答案:7或8或9或10.12.【解析】①底面周长为6,高为16π,π×()2×16π=π××16π=144;②底面周长为16π高为6,π×()2×6=π×64×6=384π.答案:144或384π.三、解答题13.解:方法一:(1)、(3)、(5)是一类,都是柱体;(2)是锥体;(4)是球体.方法二:(1)、(3)是一类,全是由平面构成的;(2)、(5)是一类,既有平面,又有曲面;(4)是一类,只有曲面.14.解:(1)这个几何体由10个小正方体组成.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有1个正方体只有一个面是黄色,有2个正方体只有两个面是黄色,有3个正方体只有三个面是黄色.(3)露出表面的面一共有32个,则这个几何体喷漆的面积为3200cm2,答案:10;1,2,3;3200.15.解:答案如下:16.解:(1)根据三视图可得这个几何体是长方体;(2)由三视图知,几何体是一个长方体,长方体的底面是边长为3的正方形,高是4,则这个几何体的表面积是2×(3×3+3×4+3×4)=66(cm2).答:这个几何体的表面积是66cm2.。
2019-2020年七年级 数学 北师大版 参考答案
题号 1 2 3 4 5 6 答案
D
C
D
C
B
A
(3)CD ∥PQ, CD=PQ.………………8分 20. (1)50, 72; ………………4分
(2)补图略; ………………6分 (3)因为
330110050
15
=⨯. 所以估计有330名学生参加文学类社团. …………9分 21.解:设大型车缴纳了x 元,则小型车缴纳了()x -210元,……1分 由题意,得
504
2106=-+x x . …………5分 解得30=x . …………8分
180********=-=-x . …………9分
答:大型车缴纳了30元,小型车缴纳了180元.…………10分 22. ⑴因为AC = 6cm , 点M 是AC 的中点,
所以CM =2
1
AC = 3cm . …………1分
因为BC = 4cm , 点N 是BC 的中点,
所以CN =2
1BC = 2cm . …………2分 所以MN=CM +CN = 5cm .
所以线段MN 的长度为5cm . …………3分 ⑵2
b
a MN +=
. …………5分
⑶ 当点C 在线段AB 上时,图略.由⑵知2
b
a MN +=
.…6分 当点C 在线段AB 的延长线时,如图, 则AC =a >BC =b .
因为AC = a , 点M 是AC 的中点,
所以C M =2
1AC =a 2
1.
因为BC = b , 点N 是BC 的中点,
所以CN =2
1BC =b 2
1.
所以MN=CM -CN = 2
b
a -. ………8分
当点C 在线段BA 的延长线时,如图, 则AC =a <BC =b .
同理可求:CM =21AC =a 21,
CN = 21BC = b 2
1
,
所以MN=CN -CM = 2
a
b -.
综上所述,2
b a MN +=, 2
b a MN -=,2
a b MN -=. …………10分
N M
C
B A
N
M
C
B
A。