2021届高三第四次月考数学试题
- 格式:pdf
- 大小:428.44 KB
- 文档页数:5
四川省成都市“五校联考”2025届高三下学期第四次月考试题数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.△ABC 中,AB =3,BC =AC =4,则△ABC 的面积是( )A.B.2C .3D .322.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有( ) A .12种B .24种C .36种D .48种3.各项都是正数的等比数列{}n a 的公比1q ≠,且2311,,2a a a 成等差数列,则3445a a a a ++的值为( )A.12- B.12C.12D.12或124.盒中有6个小球,其中4个白球,2个黑球,从中任取()1,2i i =个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数()1,2i X i =,则( )A .()()1233P X P X =>=,12EX EX >B .()()1233P X P X =<=,12EX EX >C .()()1233P X P X =>=,12EX EX <D .()()1233P X P X =<=,12EX EX < 5.已知向量(3sin ,2)a x =-,(1,cos )b x =,当a b ⊥时,cos 22x π⎛⎫+= ⎪⎝⎭( ) A .1213-B .1213C .613-D .6136.已知集合A {x x 0}︱=>,2B {x x x b 0}=-+=︱,若{3}A B ⋂=,则b =( )A .6-B .6C .5D .5-7.设i 是虚数单位,则()()2332i i +-=( ) A .125i +B .66i -C .5iD .138.直线1y kx =+与抛物线C :24x y =交于A ,B 两点,直线//l AB ,且l 与C 相切,切点为P ,记PAB 的面积为S ,则S AB -的最小值为( ) A .94-B .274-C .3227-D .6427-9.设a ,b ,c 为正数,则“a b c +>”是“222a b c +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不修要条件10.某几何体的三视图如图所示,则该几何体的最长棱的长为( )A .5B .4C .2D .2211.双曲线22221(0,0)x y a b a b -=>>的左右焦点为12,F F ,一条渐近线方程为:b l y x a=-,过点1F 且与l 垂直的直线分别交双曲线的左支及右支于,P Q ,满足11122OP OF OQ =+,则该双曲线的离心率为( ) A 10B .3C 5D .212.已知双曲线()222:10y C x b b-=>的一条渐近线方程为2y x =,1F ,2F 分别是双曲线C 的左、右焦点,点P在双曲线C 上,且13PF =,则2PF =( ) A .9B .5C .2或9D .1或5二、填空题:本题共4小题,每小题5分,共20分。
2021年高三第四次月考数学(理)试题参考公式:线性回归方程中系数计算公式:,其中表示样本均值.第Ⅰ卷一、选择题(本题共8小题;每小题5分,共40分)1.下列命题正确的是()A.B.C.是的充分不必要条件 D.若,则2.复数z=(a²-1)+(a+1)i,(a∈R)为纯虚数,则的取值是()A.3 B.-2 C.-1 D.13.在等腰中,,,则( )A.(-3,-1)B.(-3,1)C.D.(3,1)4.已知在等比数列中,,则等比数列的公比q的值为()A.B.C.2 D.85.为调查中山市中学生平均每人每天参加体育锻炼时间x(单位:分钟),按锻炼时间分下列四种情况统计:①0~10分钟;②11~20分钟;③21~30分钟;④30分钟以上.有10000名中学生参加了此项活动,下图是此次调查中某一项的流程图,其输出的结果是6200,则平均每天参加体育锻炼时间在0~20分钟内的学生的频率是()A.3800 B.6200 C.0.62D.0.386.已知直线,平面,且,给出下列命题:①若∥,则m⊥;②若⊥,则m∥;③若m⊥,则∥;④若m∥,则⊥其中正确命题的个数是()A.1 B.2 C.3 D.47.若,则的值为 ( ) A . B . C . D .8.已知是定义在上的函数,其图象是一条连续的曲线,且满足下列条件: ①的值域为M ,且M ⊆;②对任意不相等的,∈, 都有|-|<|-|.那么,关于的方程=在区间上根的情况是 ( )A .没有实数根B .有且仅有一个实数根C .恰有两个不等的实数根D .实数根的个数无法确定第Ⅱ卷二、填空题:(本题共7小题,考生作答6小题,每小题5分,满分30分) (一)必做题(9~13题)9.若实数x ,y 满足的最小值为3,则实数b 的值为10.某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 种(用数字作答). 11.抛物线的准线经过双曲线的一个焦点,则双曲线的离心率为 12.已知函数,对定义域内任意,满足,则正整数的取值个数是13.某商店经营一批进价为每件4元的商品,在市场调查时得到,此商品的销售单价x 与日销售量y 之间的一组数据满足:,,,,则当销售单价x 定为(取整数) 元时,日利润最大.(二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎪⎨⎪⎧x =3+cos θ,y =4+sin θ(θ为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________. 15.(几何证明选讲选做题)如图,∠B =∠D ,AE ⊥BC ,∠ACD =90°,且AB =6,AC =4,AD =12,则BE =________三、解答题(本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤.) 16.(本小题满分12分)设,且满足 (1)求的值.(2)求的值.17(本小题满分12分)某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为,(>),且不同种产品是否受欢迎相互独立。
2021年高三上学期第四次月考(数学文)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
把选项涂在答题卷相应的位置)1.设全集U=R,A=,则右图中阴影部分表示的集合为()A. B. C. D.2.已知命题p:“x∈R,x2+1>0”;命题q:“x∈R,sin x=2”则下列判断正确的是 ( )A.p或q为真,非p为真B. p或q为真,非p为假C.p且q为真,非p为真D.p且q为真,非p为假3.已知数列是等差数列,且又则= ()A.1 B.4 C.5 D.64.过点(1,0)且与直线平行的直线方程是()A.B.C.D.5.给定函数①,②,③,④,其中在区间(0,1)上单调递减的函数序号是()(A)①② (B)②③ (C)③④ (D)①④6.设a、b∈R+,且a + b = 4,则有().A. B. C. D.7.设α、β为两个不同的平面,m、n为两条不同的直线,则以下判断不正确...的是( )A.若α∥β,m⊥α,则m⊥βB.若m⊥α,n⊥α,则m∥nC.若α⊥β,α∩β=n,mα,m⊥n,则m⊥βD.若mα,nα,m∥β,n∥β,则α∥β8.平面上三点不共线,设,则的面积等于()A.B.C.D.9.已知函数,且,的导函数,函数的图象如图所示. 则平面区域所围成的面积是()A.2 B.4 C.5 D.810. 已知函数若互不相等,且,则的取值范围是()(A ) (B ) (C ) (D )二、填空题 (本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.)11.如图,在正方体ABCD -A ′B ′C ′D ′中,异面直线BD 与B ′C 所成角为 . ;直线A ′C 与平面ABCD 所成角的正弦值为 . .12.若某空间几何体的三视图如图所示,则该几何体的体积是 .13.如右图,在中,是的中点,,点在上,且满足,则的值等于 .14.给出下列命题:①函数y =cos ⎝ ⎛⎭⎪⎫23x +π2是奇函数;②存在实数α,使得si nα+cosα=32; ③若α、β是第一象限角且α<β,则tanα<tanβ;④x=π8是函数y =sin ⎝ ⎛⎭⎪⎫2x +5π4的一条对称轴方程; ⑤函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称图形.其中正确的序号为 。
浙江省稽阳联谊学校2021届高三数学下学期4月联考试题一、选择题:本大题10小题,每小题4分,共40分1.已知全集{2,1,0,1,2}U =--,{2,0,1}A =-,{1,0}B =-,则()U C A B =A .{2,1,1,2}--B .{2}C .{1,2}D .{0}2. 已知i 为虚数单位,其中(12)z i i +=-,则该复数的共轭复数是A .2155i + B .2155i - C .2155i -+ D .2155i --3.某几何体三视图如图所示,则该几何体的体积等于A .323π B .16643π- C .6416π- D .163π4.若,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =-的最大值是A .0B .2C .4D .55.已知函数()f x ax b =+的图象如图所示,则函数()log ()a f x x b =-+的图象是A .B .6.设0,0a b >>,则“2a b +≥”是“222a b +≥”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 7.设 10a <<,随机变量X的分布列为正视图则当a 在1(0,)3增大时,A .()D X 增大B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大8.已知椭圆:C 22221(0)x y a b a b +=>>,12,F F 为椭圆的左,右焦点,过2F 的直线交椭圆与,A B 两点,190AF B ∠=,2223AF F B =,则椭圆的离心率是ABD9.如图:ABC ∆中,AB BC ⊥,60ACB ︒∠=,D 为AC 中点,ABD ∆沿BD 边翻折过程中,直线AB 与直线BC 所成的最大角,最小角分别记为11,αβ,直线AD 与直线BC所成的最大角,最小角分别记为22,αβ,则有A .1212,ααββ<≤B .1212,ααββ<>C .1212,ααββ≥≤D .1212,ααββ≥>10.已知数列{}n a满足:11n n a a +=+ ,1a a =,则一定存在a ,使数列中: A .存在*n N ∈,有120n n a a ++<B .存在*n N ∈,有12(1)(1)0n n a a ++--<C .存在*n N ∈,有1255()()044n n a a ++--<D .存在*n N ∈,有1233()()022n n a a ++--<二、填空题:本大题共7小题,多空题6分,单空题每题4分,共36分11.双曲线2213y x -=的焦距是 _________,渐近线方程是____________. 12.已知角α的终边过点(1,2)-,则 tan α=_____________,sin 2α=____________.13.5展开式中常数项是___________,最大的系数..是___________. 14.已知ABC ∆中,3,5AB BC ==,D 为线段AC 上一点,AB BD ⊥ ,34AD CD =,则AC = ____________,ABC ∆的面积是___________ .15.已知函数2()2(0)f x x x a a =++< ,若函数(())y f f x = 有三个零点,则 a =__________.A DCBADCBA16.某学校高一学生2人,高二学生2人,高三学生1人,参加,,A B C 三个志愿点的活动,每个活动点至少1人,最多2人参与,要求同年级学生不去同一志愿点,高三学生不去A 志愿点,则不同的安排方法有__________________种(用数字作答). 17.如图:已知矩形ABCD 中,1,2AD AB ==,E 为边AB 的中点,P为边DC 上的动点(不包括端点),DP DC λ=(01λ<<),设线段AP 与DE 的交点为G ,则 AG AP ⋅的最小值是__________________.三、解答题:本大题共5小题,共74分。
最新高三(下)4月联考数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则(∁U A)∩B=()A.{2} B.{4,6} C.{l,3,5} D.{4,6,7,8}2.复数=()A.1+3i B.﹣1﹣3i C.﹣1+3i D.1﹣3i3.下列有关命题的说法正确的是()A.“f(0)=0”是“函数f(x)是奇函数”的充要条件B.若p:.则¬p:∀x∈R,x2﹣x﹣1<0C.若p∧q为假命题,则p,q均为假命题D.“若,则”的否命题是“若,则”4.若点(sin,cos)在角α的终边上,则sinα的值为()A.B. C.D.5.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001,002,…,699,700.从中抽取70个样本,如图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是()A.607 B.328 C.253 D.0076.若数列{a n}满足﹣=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列{}为调和数列,且x1+x2+…+x20=200,则x5+x16=()A.10 B.20 C.30 D.407.已知函数图象过点,则f(x)图象的一个对称中心是()A.B.C.D.8.如图,网格纸上正方形小格的边长为1cm,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积为()A.20πcm3B.16πcm3C.12πcm3D.9.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.4810.△ABC的外接圆的圆心为O,半径为2,且,且||=||,则向量在方向上的投影为()A.B.3 C.D.﹣311.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)12.已知函数f(x)=x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是()A.B. C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数f(x)=,则f[f()]= .14.已知A,B,C点在球O的球面上,∠BAC=90°,AB=AC=2.球心O到平面ABC的距离为1,则球O的表面积为.15.已知圆C:(x﹣1)2+(y﹣2)2=2,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为.16.已知△ABC中,角A,B,C所对的边分别是a,b,c,sinA+sinB﹣4sinC=0,且△ABC的周长L=5,面积S=﹣(a2+b2),则cosC= .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n}为等差数列,a2=3,a4=7;数列{b n}为公比为q(q>1)的等比数列,且满足集合{b1,b2,b3}={1,2,4}.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)求数列{a n+b n}的前n项和S n.18.某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.分数区间甲班频率乙班频率[0,30)0.1 0.2[30,60)0.2 0.2[60,90)0.3 0.3[90,120)0.2 0.2[120,150] 0.2 0.1优秀不优秀总计甲班乙班总计2.072 2.7063.841 5.024 6.635 7.879 10.828k00.15 0.10 0.05 0.025 0.010 0.005 0.001 P(K2≥k0)(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?19.如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,.(1)求证:平面BCF∥面AED;(2)若BF=BD=a,求四棱锥A﹣BDEF的体积.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=25,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过曲线C上的一点作两条直线分别交曲线于A,B两点,已知OA,OB的斜率互为相反数,求直线AB的斜率.21.已知函数f(x)=lnx﹣mx2,g(x)=mx2+x,m∈R,令F(x)=f(x)+g(x).(Ⅰ)当时,求函数f(x)的单调区间及极值;(Ⅱ)若关于x的不等式F(x)≤mx﹣1恒成立,求整数m的最小值.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.(1)求证:AD•AB=AE•AC;(2)求线段BC的长度.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2ρsin(θ+)=3,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.[选修4-5:不等式选讲]24.已知f(x)=2|x﹣2|+|x+1|(1)求不等式f(x)<6的解集;(2)设m,n,p为正实数,且m+n+p=f(2),求证:mn+np+pm≤3.高三(下)4月联考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则(∁U A)∩B=()A.{2} B.{4,6} C.{l,3,5} D.{4,6,7,8}【考点】交、并、补集的混合运算.【分析】由全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},知C U A={4,6,7,8},由此能求出(C u A)∩B.【解答】解:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴C U A={4,6,7,8},∴(C u A)∩B={4,6}.故选B.2.复数=()A.1+3i B.﹣1﹣3i C.﹣1+3i D.1﹣3i【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故选:B.3.下列有关命题的说法正确的是()A.“f(0)=0”是“函数f(x)是奇函数”的充要条件B.若p:.则¬p:∀x∈R,x2﹣x﹣1<0C.若p∧q为假命题,则p,q均为假命题D.“若,则”的否命题是“若,则”【考点】必要条件、充分条件与充要条件的判断.【分析】A.f(0)=0推不出函数f(x)是奇函数,例如f(x)=x2;函数f(x)是奇函数,例如f(x)=,则f(0)无意义,即可判断出结论;B.利用非命题的定义即可判断出真假;C.若p∧q为假命题,则p,q至少一个为假命题,即可判断出真假;D.利用否命题的定义即可判断出真假.【解答】解:A.f(0)=0推不出函数f(x)是奇函数,例如f(x)=x2;函数f(x)是奇函数,例如f(x)=,则f(0)无意义,因此.“f(0)=0”是“函数f(x)是奇函数”的既不充分也不必要条件,不正确;B.若p:.则¬p:∀x∈R,x2﹣x﹣1≤0,因此不正确;C.若p∧q为假命题,则p,q至少一个为假命题,因此不正确;D.“若,则”的否命题是“若,则”,正确.故选:D.4.若点(sin,cos)在角α的终边上,则sinα的值为()A.B. C.D.【考点】任意角的三角函数的定义.【分析】由条件利用任意角的三角函数的定义转化求解sinα的值.【解答】解:角α的终边上一点的坐标为(sin,cos)即(,),则由任意角的三角函数的定义,可得sinα=,故选:A.5.某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001,002,…,699,700.从中抽取70个样本,如图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是()A.607 B.328 C.253 D.007【考点】系统抽样方法.【分析】从第5行第6个数2的数开始向右读,依次为253,313,457,860,736,253,007,其中860,736不符合条件故可得结论.【解答】解:从第5行第6个数2的数开始向右读,第一个数为253,符合条件,第二个数为313,符合条件,第三个数为457,符合条件,以下依次为:860,736,253,007,328,其中860,736不符合条件且253与第一个重复了不能取,这样007是第四数,第五个数应为328.故第五个数为328..故选:B.6.若数列{a n}满足﹣=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列{}为调和数列,且x1+x2+…+x20=200,则x5+x16=()A.10 B.20 C.30 D.40【考点】数列的求和.【分析】由题意知道,本题是构造新等差数列的问题,经过推导可知{x n}是等差数列,运用等差数列的性质可求解答案.【解答】解:由题意知:∵数列{}为调和数列∴﹣=x n+1﹣x n=d∴{x n}是等差数列又∵x1+x2+…+x20=200=∴x1+x20=20又∵x1+x20=x5+x16∴x5+x16=20故选:B.7.已知函数图象过点,则f(x)图象的一个对称中心是()A.B.C.D.【考点】正弦函数的图象.【分析】由题意可得=2sinφ,结合(|φ|<)可得φ的值,由五点作图法令2x+=0,可解得:x=﹣,则可求f(x)的图象的一个对称中心.【解答】解:∵函数f(x)=2sin(2x+φ)(|φ|<)的图象过点(0,),∴=2sinφ,由(|φ|<),可得:φ=,∴f(x)=2sin(2x+),∴由五点作图法令2x+=0,可解得:x=﹣,则f(x)的图象的一个对称中心是(﹣,0).故选:B.8.如图,网格纸上正方形小格的边长为1cm,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积为()A.20πcm3B.16πcm3C.12πcm3D.【考点】由三视图求面积、体积.【分析】由三视图判断几何体的形状,通过三视图的数据求出几何体的体积,再计算原几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π;底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π;所以切削掉部分的体积为54π﹣34π=20πcm3.故选:A.9.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.48【考点】程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.10.△ABC的外接圆的圆心为O,半径为2,且,且||=||,则向量在方向上的投影为()A.B.3 C.D.﹣3【考点】平面向量数量积的运算.【分析】由题意可得,可得四边形OBAC是平行四边形,结合||=||可得四边形OBAC是边长为2的菱形,且∠ABO=∠AC0=60°,可得∠ACB=∠AC0=30°,由投影的定义可得.【解答】解:∵,∴,即,可得四边形OBAC是平行四边形,∵△ABC的外接圆的圆心为O,半径为2,∴||=||=||=2,∴四边形OBAC是边长为2的菱形,且∠ABO=∠AC0=60°,∴∠ACB=∠AC0=30°,∴向量在方向上的投影为:cos∠ACB=2cos30°=.故选:A11.过椭圆+=1(a>b>0)的左顶点A且斜率为k的直线交椭圆于另一个点B,且点B在x轴上的射影恰好为右焦点F,若0<k<,则椭圆的离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)【考点】椭圆的简单性质.【分析】作出图形,则易知|AF2|=a+c,|BF2|=,再由∠BAF2是直线的倾斜角,易得k=tan∠BAF2,然后通过0<k<,分子分母同除a2得0<<求解.【解答】解:如图所示:|AF2|=a+c,|BF2|=,∴k=tan∠BAF2=,又∵0<k<,∴0<<,∴0<<,∴<e<1.故选:D.12.已知函数f(x)=x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是()A.B. C.D.【考点】利用导数研究曲线上某点切线方程.【分析】分别求出函数f(x)的导数,函数g(x)的导数.由于两曲线y=f(x),y=g(x)有公共点,设为P(x0,y0),则有f(x0)=g(x0),且f′(x0)=g′(x0),解出x0=a,得到b关于a的函数,构造函数,运用导数求出单调区间和极值、最值,即可得到b的最大值.【解答】解:函数f(x)的导数为f'(x)=x+2a,函数g(x)的导数为,由于两曲线y=f(x),y=g(x)有公共点,设为P(x0,y0),则,由于x0>0,a>0则x0=a,因此构造函数,由h'(t)=2t(1﹣3lnt),当时,h'(t)>0即h(t)单调递增;当时,h'(t)<0即h(t)单调递减,则即为实数b的最大值.故选D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数f(x)=,则f[f()]= .【考点】函数的值.【分析】根据分段函数的表达式,直接代入进行求解即可.【解答】解:由分段函数可知,f()=log,f(﹣1)=,故答案为:.14.已知A,B,C点在球O的球面上,∠BAC=90°,AB=AC=2.球心O到平面ABC的距离为1,则球O的表面积为12π.【考点】球的体积和表面积.【分析】由∠BAC=90°,AB=AC=2,得到BC,即为A、B、C三点所在圆的直径,取BC的中点M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMB中,OM=1,MB=,则OA可求,再由球的表面积公式即可得到.【解答】解:如图所示:取BC的中点M,则球面上A、B、C三点所在的圆即为⊙M,连接OM,则OM即为球心到平面ABC的距离,在Rt△OMB中,OM=1,MB=,∴OA==,即球的半径R为,∴球O的表面积为S=4πR2=12π.故答案为:12π.15.已知圆C:(x﹣1)2+(y﹣2)2=2,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为2.【考点】圆的标准方程.【分析】得到圆心坐标和半径.等边△PAB的一边AB为圆C的一条弦,可得|PC|的最大值为直径,即可得出结论.【解答】解:由圆C:(x﹣1)2+(y﹣2)2=2,∴圆心坐标C(1,2),半径r=.∵等边△PAB的一边AB为圆C的一条弦,∴|PC|的最大值为直径2.故答案为:2.16.已知△ABC中,角A,B,C所对的边分别是a,b,c,sinA+sinB﹣4sinC=0,且△ABC的周长L=5,面积S=﹣(a2+b2),则cosC= .【考点】余弦定理.【分析】利用正弦定理化简已知的第一个等式,得到a+b=4c,代入第二个等式中计算,即可求出c的长,利用三角形的面积公式表示出三角形ABC的面积S,代入已知的等式中,利用完全平方公式变形后,将a+b=4代入化简,即可求出cosC的值.【解答】解:△ABC中,∵sinA+sinB﹣4sinC=0,∴a+b=4c,∵△ABC的周长L=5,∴a+b+c=5,∴c=1,a+b=4.∵面积S=﹣(a2+b2),∴absinC=﹣(a2+b2)=﹣[(a+b)2﹣2ab]=ab,∴sinC=,∵c<a+b,C是锐角,∴cosC==.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n}为等差数列,a2=3,a4=7;数列{b n}为公比为q(q>1)的等比数列,且满足集合{b1,b2,b3}={1,2,4}.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)求数列{a n+b n}的前n项和S n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)通过联立a2=3、a4=7计算可知等差数列{a n}的首项和公差,从而可得其通项公式;通过等比数列{b n}成公比大于1的等比数列可确定b1=1、b2=2、b3=4,进而可求出首项和公比,从而可得通项公式;(Ⅱ)通过(I),利用分组求和法计算即得结论.【解答】解:(Ⅰ)设等差数列的首项和公差分别为a1、d,∵a2=3,a4=7,∴a1+d=3,a1+3d=7,解得:a1=1,d=2,∴a n=1+2(n﹣1)=2n﹣1,∵等比数列{b n}成公比大于1的等比数列且{b1,b2,b3}={1,2,4},∴b1=1,b2=2,b3=4,∴b1=1,q=2,∴b n=2n﹣1;(Ⅱ)由(I)可知S n=(a1+a2+…+a n)+(b1+b2+…+b n)=+=n2+2n﹣1.18.某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.分数区间甲班频率乙班频率[0,30)0.1 0.2[30,60)0.2 0.2[60,90)0.3 0.3[90,120)0.2 0.2[120,150] 0.2 0.1优秀不优秀总计甲班乙班总计2.072 2.7063.841 5.024 6.635 7.879 10.828k00.15 0.10 0.05 0.025 0.010 0.005 0.001 P(K2≥k0)(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?【考点】独立性检验;古典概型及其概率计算公式.【分析】(Ⅰ)由图表得到乙班参加测试的90分以上的同学有6人,记为A、B、C、D、E、F.成绩优秀的记为A、B.然后利用枚举法得到从这六名学生随机抽取两名的基本事件个数,进一步得到恰有一位学生成绩优秀的事件个数,由古典概型概率计算公式得答案;(Ⅱ)直接由公式求出K的值,结合图表得答案.【解答】解:(Ⅰ)乙班参加测试的90分以上的同学有6人,记为A、B、C、D、E、F.成绩优秀的记为A、B.从这六名学生随机抽取两名的基本事件有:{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F}共15个,设事件G表示恰有一位学生成绩优秀,符合要求的事件有:{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F}共8个,∴;(Ⅱ)优秀不优秀总计甲班 4 16 20乙班 2 18 20总计 6 34 40.在犯错概率小于0.1的前提下,没有足够的把握说明学生的数学成绩是否优秀与班级有关系.19.如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,.(1)求证:平面BCF∥面AED;(2)若BF=BD=a,求四棱锥A﹣BDEF的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面平行的性质.【分析】(1)证明FB∥平面AED,BC∥平面AED,利用面面平行的判定定理可得结论;(2)连接AC,AC∩BD=O,证明AO⊥面BDEF,即可求出四棱锥A﹣BDEF的体积.【解答】(1)证明:∵ABCD是菱形,∴BC∥AD,∵BC⊄面ADE,AD⊂面ADE,∴BC∥面ADE…∵BDEF是矩形,∴BF∥DE,∵BF⊄面ADE,DE⊂面ADE,∴BF∥面ADE,∵BC⊂面BCF,BF⊂面BCF,BC∩BF=B,∴面BCF∥面ADE…(2)解:连接AC,AC∩BD=O∵ABCD是菱形,∴AC⊥BD∵ED⊥面ABCD,AC⊂面ABCD,∴ED⊥AC,∵ED,BD⊂面BDEF,ED∩BD=D,∴AO⊥面BDEF,…∴AO为四棱锥A﹣BDEF的高由ABCD是菱形,,则△ABD为等边三角形,由BF=BD=a,则,∵,∴…20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=25,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过曲线C上的一点作两条直线分别交曲线于A,B两点,已知OA,OB的斜率互为相反数,求直线AB的斜率.【考点】直线与圆的位置关系.【分析】(Ⅰ)设圆P的半径为r,由题意得|PM|+|PN|=(1+r)+(5﹣r)=6,从而曲线C是以(﹣1,0),(1,0)为焦点,长轴长为6的椭圆,由此能求出曲线C的方程.(Ⅱ)设直线QA、QB的斜率分别为k,﹣k,则A(1+λ,),B(1+μ,),由此能求出直线AB的斜率.【解答】解:(Ⅰ)∵圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=25,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C,设圆P的半径为r,由题意得|PM|+|PN|=(1+r)+(5﹣r)=6,∴曲线C是以(﹣1,0),(1,0)为焦点,长轴长为6的椭圆,∴曲线C的方程为.(Ⅱ)设直线QA、QB的斜率分别为k,﹣k,则直线QA、QB的一个方向向量为(1,k),(1,﹣k),则=λ(1,k),=μ(1,﹣k),∴A(1+λ,),B(1+μ,),代入=1,并整理,得,两式相减,得:λ﹣μ=﹣,两式相加,得:λ+μ=﹣,∴直线AB的斜率k AB==.21.已知函数f(x)=lnx﹣mx2,g(x)=mx2+x,m∈R,令F(x)=f(x)+g(x).(Ⅰ)当时,求函数f(x)的单调区间及极值;(Ⅱ)若关于x的不等式F(x)≤mx﹣1恒成立,求整数m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(Ⅱ)法一:令,求出函数的导数,通过讨论m的范围求出函数的单调区间,从而求出m的最小值即可;法二:分离参数,得到恒成立,令,根据函数的单调性求出函数h(x)的最大值,从而求出m的最小值即可.【解答】解:(Ⅰ),所以.…令f′(x)=0得x=1;…由f′(x)>0得0<x<1,所以f(x)的单调递增区间为(0,1).由f′(x)<0得x>1,所以f(x)的单调递增区间为(1,+∞).…所以函数,无极小值…(Ⅱ)法一:令.所以.…当m≤0时,因为x>0,所以G′(x)>0所以G(x)在(0,+∞)上是递增函数,又因为.所以关于x的不等式G(x)≤mx﹣1不能恒成立.…当m>0时,.令G′(x)=0得,所以当时,G′(x)>0;当时,G′(x)<0.因此函数G(x)在是增函数,在是减函数.…故函数G(x)的最大值为.令,因为.又因为h(m)在m∈(0,+∞)上是减函数,所以当m≥2时,h(m)<0.所以整数m的最小值为2.…法二:由F(x)≤mx﹣1恒成立知恒成立…令,则…令φ(x)=2lnx+x,因为,φ(1)=1>0,则φ(x)为增函数故存在,使φ(x0)=0,即2lnx0+x0=0…当时,h′(x)>0,h(x)为增函数当x0<x时,h′(x)<0,h(x)为减函数…所以,而,所以所以整数m的最小值为2.…请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.(1)求证:AD•AB=AE•AC;(2)求线段BC的长度.【考点】与圆有关的比例线段;圆內接多边形的性质与判定.【分析】(1)推导出B,C,D,E四点在以BC为直径的圆上,由割线定理能证明AD•AB=AE •AC.(2)过点F作FG⊥BC于点G,推导出B,G,F,D四点共圆,F,G,C,E四点共圆,由此利用割线定理能求出BC的长.【解答】证明:(1)由已知∠BDC=∠BEC=90°,所以B,C,D,E四点在以BC为直径的圆上,由割线定理知:AD•AB=AE•AC.…解:(2)如图,过点F作FG⊥BC于点G,由已知,∠BDC=90°,又因为FG⊥BC,所以B,G,F,D四点共圆,所以由割线定理知:CG•CB=CF•CD,①…同理,F,G,C,E四点共圆,由割线定理知:BF•BE=BG•BC,②…①+②得:CG•CB+BG•BC=CF•CD+BF•BE,即BC2=CF•CD+BF•BE=3×5+3×5=30,…所以BC=.…[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是2ρsin(θ+)=3,射线OM:θ=与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.【考点】简单曲线的极坐标方程;点的极坐标和直角坐标的互化.【分析】解:(I)利用cos2φ+sin2φ=1,即可把圆C的参数方程化为直角坐标方程.(II)设(ρ1,θ1)为点P的极坐标,由,联立即可解得.设(ρ2,θ2)为点Q的极坐标,同理可解得.利用|PQ|=|ρ1﹣ρ2|即可得出.【解答】解:(I)利用cos2φ+sin2φ=1,把圆C的参数方程为参数)化为(x﹣1)2+y2=1,∴ρ2﹣2ρcosθ=0,即ρ=2cosθ.(II)设(ρ1,θ1)为点P的极坐标,由,解得.设(ρ2,θ2)为点Q的极坐标,由,解得.∵θ1=θ2,∴|PQ|=|ρ1﹣ρ2|=2.∴|PQ|=2.[选修4-5:不等式选讲]24.已知f(x)=2|x﹣2|+|x+1|(1)求不等式f(x)<6的解集;(2)设m,n,p为正实数,且m+n+p=f(2),求证:mn+np+pm≤3.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)利用零点分段法去掉绝对值符号,转化为不等式组,解出x的范围;(2)由基本不等式,可以解得m2+n2+p2≥mn+mp+np,将条件平方可得(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,代入m2+n2+p2≥mn+mp+np,即可证得要求证得式子.【解答】(1)解:①x≥2时,f(x)=2x﹣4+x+1=3x﹣3,由f(x)<6,∴3x﹣3<6,∴x<3,即2≤x<3,②﹣1<x<2时,f(x)=4﹣2x+x+1=5﹣x,由f(x)<6,∴5﹣x<6,∴x>﹣1,即﹣1<x <2,③x≤﹣1时,f(x)=4﹣2x﹣1﹣x=3﹣3x,由f(x)<6,∴3﹣3x<6,∴x>﹣1,可知无解,综上,不等式f(x)<6的解集为(﹣1,3);(2)证明:∵f(x)=2|x﹣2|+|x+1|,∴f(2)=3,∴m+n+p=f(2)=3,且m,n,p为正实数∴(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,∵m2+n2≥2mn,m2+p2≥2mp,n2+p2≥2np,∴m2+n2+p2≥mn+mp+np,∴(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9≥3(mn+mp+np)又m,n,p为正实数,∴可以解得mn+np+pm≤3.故证毕.2016年10月19日。
湖南2024届高三月考试卷(四)数学(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数12z i =+,其中i 为虚数单位,则复数2z 在复平面内对应的点的坐标为()A.()4,5- B.()4,3 C.()3,4- D.()5,4【答案】C 【解析】【分析】根据题意得234i z =-+,再分析求解即可.【详解】根据题意得:()22212i 14i 4i 34i z =+=++=-+,所以复数2z 在复平面内对应的点的坐标为:()3,4-.故选:C.2.若随机事件A ,B 满足()13P A =,()12P B =,()34P A B ⋃=,则()P A B =()A.29B.23C.14D.16【答案】D 【解析】【分析】先由题意计算出()P AB ,再根据条件概率求出()P A B 即可.【详解】由题意知:()3()()()4P A B P A P B P AB ==+- ,可得1131()32412P AB =+-=,故()1()1121()62P AB P A B P B ===.故选:D.3.设{}n a 是公比不为1的无穷等比数列,则“{}n a 为递减数列”是“存在正整数0N ,当0n N >时,1n a <”的()A.充分而不必要条件B.必要而不充分条件C .充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】根据充分条件、必要条件的定义判断即可.【详解】解:因为{}n a 是公比不为1的无穷等比数列,若{}n a 为递减数列,当11a >,则01q <<,所以11n n a a q -=,令111n n a a q -=<,则111n qa -<,所以1111log log qq n a a ->=-,所以11log q n a >-时1n a <,当101a <<,则01q <<,所以111n n a a q -=<恒成立,当11a =,则01q <<,所以11n n a a q -=,当2n ≥时1n a <,当10a <,则1q >,此时110n n a a q -=<恒成立,对任意N*n ∈均有1n a <,故充分性成立;若存在正整数0N ,当0n N >时,1n a <,当10a <且01q <<,则110n n a a q -=<恒成立,所以对任意N*n ∈均有1n a <,但是{}n a 为递增数列,故必要性不成立,故“{}n a 为递减数列”是“存在正整数0N ,当0n N >时,1n a <”的充分不必要条件;故选:A4.设π(0,2α∈,π(0,)2β∈,且1tan tan cos αβα+=,则()A.π22αβ+=B.π22αβ-=C.π22βα-= D.π22βα+=【答案】D 【解析】【分析】根据给定等式,利用同角公式及和角的正弦公式化简变形,再利用正弦函数性质推理即得.【详解】由1tan tan cos αβα+=,得sin sin 1cos cos cos αβαβα+=,于是sin cos cos sin cos αβαββ+=,即πsin()sin()2αββ+=-,由π(0,)2α∈,π(0,2β∈,得20π,0<ππ2αββ<+-<<,则π2αββ+=-或ππ2αββ++-=,即π22βα+=或π2α=(不符合题意,舍去),所以π22βα+=.故选:D5.若52345012345(12)(1)(1)(1)(1)(1)x a a x a x a x a x a x -=+-+-+-+-+-,则下列结论中正确的是()A.01a = B.480a =C.50123453a a a a a a +++++= D.()()10024135134a a a a a a -++++=【答案】C 【解析】【分析】利用二项式定理,求指定项的系数,各项系数和,奇次项系数和与偶数项系数和.【详解】由()52345012345(12)1(1)(1)(1)(1)x a a x a x a x a x a x -=+-+-+-+-+-,对于A 中,令1x =,可得01a =-,所以A 错误;对于B 中,[]55(12)12(1)x x -=---,由二项展开式的通项得44145C (2)(1)80a =⋅-⋅-=-,所以B 错误;对于C 中,012345a a a a a a +++++与5(12(1))x +-的系数之和相等,令11x -=即50123453a a a a a a +++++=,所以C 正确;对于D 中,令2x =,则50123453a a a a a a +++++=-,令0x =,则0123451a a a a a a -+-+-=,解得5024312a a a -+++=,5135312a a a --++=,可得()()10024135314a a a a a a -++++=,所以D 错误.故选:C.6.函数()()12cos 2023π1f x x x ⎡⎤=++⎣⎦-在区间[3,5]-上所有零点的和等于()A.2B.4C.6D.8【答案】D【分析】根据()y f x =在[]3,5-的零点,转化为11y x =-的图象和函数2cosπy x =的图象在[]3,5-交点的横坐标,画出函数图象,可得到两图象关于直线1x =对称,且()y f x =在[]3,5-上有8个交点,即可求出.【详解】因为()()112cos 2023π2cosπ11f x x x x x ⎡⎤=++=-⎣⎦--,令()0f x =,则12cosπ1x x =-,则函数的零点就是函数11y x =-的图象和函数2cosπy x =的图象在[]3,5-交点的横坐标,可得11y x =-和2cosπy x =的函数图象都关于直线1x =对称,则交点也关于直线1x =对称,画出两个函数的图象,如图所示.观察图象可知,函数11y x =-的图象和函数2cosπy x =的图象在[]3,5-上有8个交点,即()f x 有8个零点,且关于直线1x =对称,故所有零点的和为428⨯=.故选:D7.点M 是椭圆()222210x y a b a b+=>>上的点,以M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于P ,Q ,若PQM 是钝角三角形,则椭圆离心率的取值范围是()A.(0,2B.0,2⎛⎫⎪ ⎪⎝⎭ C.,12⎛⎫⎪ ⎪⎝⎭D.(2-【解析】【分析】依据题目条件可知圆的半径为2b a ,画出图形由PQMc >,即可求得椭圆离心率的取值范围.【详解】依题意,不妨设F 为右焦点,则(),M c y ,由圆M与x 轴相切于焦点F ,M 在椭圆上,易得2b y a =或2b y a =-,则圆的半径为2b a.过M 作MN y ⊥轴垂足为N ,则PN NQ =,MN c =,如下图所示:PM ,MQ 均为半径,则PQM为等腰三角形,∴PN NQ ==∵PMQ ∠为钝角,∴45PMN QMN ∠=∠> ,即PN NQ MN c =>=c >,即4222b c c a ->,得()222222a a c c ->,得22a c ->,故有210e -<,从而解得6202e <<.故选:B8.已知函数22,0,()414,0,x x f x x x ⎧⎪=⎨-++<⎪⎩ 若存在唯一的整数x ,使得()10f x x a -<-成立,则所有满足条件的整数a 的取值集合为()A.{2,1,0,1}--B.{2,1,0}--C.{1,0,1}-D.{2,1}-【答案】A 【解析】【分析】作出()f x 的图象,由不等式的几何意义:曲线上一点与(,1)a 连线的直线斜率小于0,结合图象即可求得a 范围.【详解】作出()f x 的函数图象如图所示:()10f x x a-<-表示点()(),x f x 与点(),1a 所在直线的斜率,可得曲线()f x 上只有一个点()(),x f x (x 为整数)和点(),1a 所在直线的斜率小于0,而点(),1a 在动直线1y =上运动,由()20f -=,()14f -=,()00f =,可得当21a -≤≤-时,只有点()0,0满足()10f x x a -<-;当01a ≤≤时,只有点()1,4-满足()10f x x a-<-.又a 为整数,可得a 的取值集合为{}2,1,0,1--.故选:A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分、9.已知双曲线C过点(,且渐近线方程为3y x =±,则下列结论正确的是()A.C 的方程为2213x y -= B.CC.曲线21x y e -=-经过C 的一个焦点D.直线10x --=与C 有两个公共点【答案】AC 【解析】【分析】由双曲线的渐近线为3y x =±,设出双曲线方程,代入已知点的坐标,求出双曲线方程判断A ;再求出双曲线的焦点坐标判断B ,C ;联立方程组判断D .【详解】解:由双曲线的渐近线方程为33y x =±,可设双曲线方程为223x y λ-=,把点代入,得923λ-=,即1λ=.∴双曲线C 的方程为2213x y -=,故A 正确;由23a =,21b =,得2c ==,∴双曲线C3=,故B 错误;取20x -=,得2x =,0y =,曲线21x y e -=-过定点(2,0),故C 正确;联立221013x x y ⎧-=⎪⎨-=⎪⎩,化简得220,0y -+-=∆=,所以直线10x -=与C 只有一个公共点,故D 不正确.故选:AC .10.已知向量a ,b 满足2a b a += ,20a b a ⋅+= 且2= a ,则()A.2b =B.0a b +=C.26a b -= D.4a b ⋅=【答案】ABC 【解析】【分析】由2a b a += ,得20a b b ⋅+= ,又20a b a ⋅+= 且2= a ,得2b = ,4a b ⋅=- ,可得cos ,1a b a b a b⋅==- ,,πa b = ,有0a b += ,26a b -= ,可判断各选项.【详解】因为2a b a += ,所以222a b a += ,即22244a a b b a +⋅+= ,整理可得20a b b ⋅+= ,再由20a b a ⋅+= ,且2= a ,可得224a b == ,所以2b = ,4a b ⋅=- ,A 选项正确,D 选项错误;cos ,1a b a b a b⋅==- ,即向量a ,b 的夹角,πa b = ,故向量a ,b 共线且方向相反,所以0a b += ,B 选项正确;26a b -=,C 选项正确.故选:ABC11.如图,正方体1111ABCD A B C D -的棱长为2,点M 是其侧面11ADD A 上的一个动点(含边界),点P是线段1CC 上的动点,则下列结论正确的是()A.存在点,P M ,使得二面角--M DC P 大小为23πB.存在点,P M ,使得平面11B D M 与平面PBD 平行C.当P 为棱1CC 的中点且PM =时,则点M 的轨迹长度为23πD.当M 为1A D 中点时,四棱锥M ABCD-外接球的体积为3【答案】BC 【解析】【分析】由题意,证得1,CD MD CD DD ⊥⊥,得到二面角--M DC P 的平面角1π0,2MDD ⎡∠∈⎤⎢⎥⎣⎦,可得判定A 错误;利用线面平行的判定定理分别证得11//B D 平面BDP ,1//MB 平面BDP ,结合面面平行的判定定理,证得平面//BDP 平面11MB D ,可判定B 正确;取1DD 中点E ,证得PE ME ⊥,得到2ME ==,得到点M 在侧面11ADD A 内运动轨迹是以E 为圆心、半径为2的劣弧,可判定C 正确;当M 为1AD 中点时,连接AC 与BD 交于点O ,求得OM OA OB OC OD ====,得到四棱锥M ABCD -外接球的球心为O ,进而可判定D 错误.【详解】在正方体1111ABCD A B C D -中,可得CD ⊥平面11ADD A,因为MD ⊂平面11ADD A ,1DD ⊂平面11ADD A ,所以1,CD MD CD DD ⊥⊥,所以二面角--M DC P 的平面角为1∠MDD ,其中1π0,2MDD ⎡∠∈⎤⎢⎥⎣⎦,所以A 错误;如图所示,当M 为1AA 中点,P 为1CC 中点时,在正方体1111ABCD A B C D -中,可得11//B D BD ,因为11B D ⊄平面BDP ,且BD ⊂平面BDP ,所以11//B D 平面BDP ,又因为1//MB DP ,且1MB ⊄平面BDP ,且DP ⊂平面BDP ,所以1//MB 平面BDP ,因为1111B D MB B = ,且111,B D MB ⊂平面11MB D ,所以平面//BDP 平面11MB D ,所以B 正确;如图所示,取1DD 中点E ,连接PE ,ME ,PM ,在正方体1111ABCD A B C D -中,CD ⊥平面11ADD A ,且//CD PE ,所以PE ⊥平面11ADD A ,因为ME ⊂平面11ADD A ,可得PE ME ⊥,则2==ME ,则点M 在侧面11ADD A 内运动轨迹是以E 为圆心、半径为2的劣弧,分别交AD ,11A D 于2M ,1M ,如图所示,则121π3D E D M M E ∠=∠=,则21π3M M E ∠=,劣弧12M M 的长为π3π223⨯=,所以C 正确当M 为1A D 中点时,可得AMD 为等腰直角三角形,且平面ABCD ⊥平面11ADD A ,连接AC 与BD 交于点O ,可得OM OA OB OC OD =====,所以四棱锥M ABCD -外接球的球心即为AC 与BD 的交点O ,所以四棱锥M ABCD -,其外接球的体积为348233π⨯=,所以D 错误.故选:BC.12.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()2f x x R x =∈,()()10g x x x=<,()2ln h x e x =(e 为自然对数的底数),则()A.()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增;B.()f x 和()g x 之间存在“隔离直线”,且b 的最小值为4-;C.()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]4,1-;D.()f x 和()h x 之间存在唯一的“隔离直线”y e =-.【答案】ABD 【解析】【分析】令()()()m x f x g x =-,利用导数可确定()m x 单调性,得到A 正确;设()f x ,()g x 的隔离直线为y kx b =+,根据隔离直线定义可得不等式组22010x kx b kx bx ⎧--≥⎨+-≤⎩对任意(),0x ∈-∞恒成立;分别在0k =和0k <两种情况下讨论b 满足的条件,进而求得,k b 的范围,得到B 正确,C 错误;根据隔离直线过()f x 和()h x 的公共点,可假设隔离直线为y kx e =-;分别讨论0k =、0k <和0k >时,是否满足()()e 0f x kx x ≥->恒成立,从而确定k =,再令()()e G x h x =--,利用导数可证得()0G x ≥恒成立,由此可确定隔离直线,则D 正确.【详解】对于A ,()()()21m x f x g x x x=-=-,()212m x x x '∴=+,()3321221m x x x ⎛⎫''=-=- ⎪⎝⎭,当x ⎛⎫∈ ⎪⎝⎭时,()0m x ''>,()m x '∴单调递增,()2233220m x m ⎛'∴>-=--+= ⎝,()m x ∴在x ⎛⎫∈ ⎪⎝⎭内单调递增,A 正确;对于,B C ,设()f x ,()g x 的隔离直线为y kx b =+,则21x kx bkx bx ⎧≥+⎪⎨≤+⎪⎩对任意(),0x ∈-∞恒成立,即22010x kx b kx bx ⎧--≥⎨+-≤⎩对任意(),0x ∈-∞恒成立.由210kx bx +-≤对任意(),0x ∈-∞恒成立得:0k ≤.⑴若0k =,则有0b =符合题意;⑵若0k <则有20x kx b --≥对任意(),0x ∈-∞恒成立,2y x kx b =-- 的对称轴为02kx =<,2140k b ∆+∴=≤,0b ∴≤;又21y kx bx =+-的对称轴为02bx k =-≤,2240b k ∴∆=+≤;即2244k b b k⎧≤-⎨≤-⎩,421664k b k ∴≤≤-,40k ∴-≤<;同理可得:421664b k b ≤≤-,40b ∴-≤<;综上所述:40k -≤≤,40b -≤≤,B 正确,C 错误;对于D , 函数()f x 和()h x 的图象在x =处有公共点,∴若存在()f x 和()h x 的隔离直线,那么该直线过这个公共点.设隔离直线的斜率为k,则隔离直线方程为(y e k x -=,即y kx e =-+,则()()e 0f x kx x ≥->恒成立,若0k =,则()2e 00x x -≥>不恒成立.若0k <,令()()20u x x kx e x =-+>,对称轴为02k x =<()2u x x kx e ∴=-+在(上单调递增,又0ue e =--=,故0k <时,()()e 0f x kx x ≥->不恒成立.若0k >,()u x 对称轴为02kx =>,若()0u x ≥恒成立,则()(22340k e k ∆=-=-≤,解得:k =.此时直线方程为:y e =-,下面证明()h x e ≤-,令()()2ln G x e h x e e x =--=--,则()x G x x-'=,当x =时,()0G x '=;当0x <<()0G x '<;当x >()0G x '>;∴当x =()G x 取到极小值,也是最小值,即()min 0G x G==,()()0G x e h x ∴=--≥,即()h x e ≤-,∴函数()f x 和()h x 存在唯一的隔离直线y e =-,D 正确.故选:ABD .【点睛】本题考查导数中的新定义问题的求解;解题关键是能够充分理解隔离直线的定义,将问题转化为根据不等式恒成立求解参数范围或参数值、或不等式的证明问题;难点在于能够对直线斜率范围进行准确的分类讨论,属于难题.三、填空题:本题共4小题,每小题5分,共20分.13.已知函数()y f x =的图像在点()()11M f ,处的切线方程是122y x =+,则()()11f f '+=______.【答案】3【解析】【分析】根据导数的几何意义,可得'(1)f 的值,根据点M 在切线上,可求得(1)f 的值,即可得答案.【详解】由导数的几何意义可得,'1(1)2k f ==,又()()11M f ,在切线上,所以15(1)1222f =⨯+=,则()()11f f '+=3,故答案为:3【点睛】本题考查导数的几何意义的应用,考查分析理解的能力,属基础题.14.如图,由3个全等的钝角三角形与中间一个小等边三角形DEF 拼成的一个较大的等边三角形ABC ,若3AF =,33sin 14ACF ∠=,则DEF 的面积为________.【解析】【分析】利用正弦定理以及余弦定理求得钝角三角形的三边长,根据等边三角形的性质以及面积公式,可得答案.【详解】因为EFD △为等边三角形,所以60EFD ∠= ,则120EFA ∠= ,在AFC △中,由正弦定理,则sin sin AF ACACF AFC=∠∠,解得sin 7sin 23314AF AC AFC ACF =⋅∠==∠,由余弦定理,则2222cos AC AF FC AF FC AFC =+-⋅⋅∠,整理可得:21499232FC FC ⎛⎫=+-⨯⋅⋅- ⎪⎝⎭,则23400FC FC +-=,解得5FC =或8-(舍去),等边EFD △边长为532-=,其面积为122sin 602⨯⨯⋅=o .15.已知数列{}n a 的首项132a =,且满足1323n n n a a a +=+.若123111181n a a a a +++⋅⋅⋅+<,则n 的最大值为______.【答案】15【解析】【分析】应用等差数列定义得出等差数列,根据差数列通项公式及求和公式求解计算即得.【详解】因为12312133n n n n a a a a ++==+,所以1112,3n n a a +=+,即11123n n a a +-=,且1123a =,所以数列1n a ⎧⎫⎨⎬⎩⎭是首项为23,公差为23的等差数列.可求得()12221333n nn a =+-=,所以()()1232211111212222333n n n n n n a a a a ++⨯+⨯++⨯+++⋅⋅⋅+===,即()()181,12433n n n n +<+<且()*1,N n n n +∈单调递增,1516240,1617272⨯=⨯=.则n 的最大值为15.故答案为:15.16.在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则|1||A F EF +的最小值为___________.【答案】6【解析】【分析】以点D 为原点,建立空间直角坐标系,由线面垂直的判定定理,证得1A C ⊥平面1BC D ,记1AC 与平面1BC D 交于点H ,连接11A C ,1,C O ,AC ,得到12A H HC =,结合点()13,0,3A 关于平面1BC D 对称的点为()1,4,1G --,进而求得1A F EF +的最小值.【详解】以点D 为原点,1,,DA DC DD所在直线分别为,,x y z 轴,建立空间直角坐标系D xyz -,如图所示,则()13,0,3A ,()3,2,3E ,()0,3,0C,因为BD AC ⊥,1BD A A ⊥,且1AC A A A ⋂=,则BD ⊥平面1A AC ,又因为1AC ⊂平面1A AC ,所以1BD A C ⊥,同理得1BC ⊥平面11A B C ,因为1AC ⊂平面11A B C ,所以11BC A C ^,因为1BD BC B = ,且1,BD BC ⊂平面1BC D ,所以1A C ⊥平面1BC D ,记1AC 与平面1BC D 交于点H ,连接11A C ,1C O ,AC ,且AC BD O = ,则11121A H A C HC OC ==,可得12A H HC =,由得点()13,0,3A 关于平面1BC D 对称的点为()1,4,1G --,所以1A F EF +的最小值为6EG ==.故答案为:6.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()23sin 2cos 2xf x x m ωω=++的最小值为2-.(1)求函数()f x 的最大值;(2)把函数()y f x =的图象向右平移6πω个单位,可得函数()y g x =的图象,且函数()y g x =在0,8π⎡⎤⎢⎥⎣⎦上为增函数,求ω的最大值.【答案】(1)2(2)4【解析】【分析】(1)化简函数为()2sin 16f x x m πω⎛⎫=+++ ⎪⎝⎭,再根据函数()f x 的最小值为2-求解;(2)利用平移变换得到()2sin g x x ω=的图象,再由()y g x =在0,8π⎡⎤⎢⎥⎣⎦上为增函数求解.【小问1详解】解:()23sin 2cos 2xf x x m ωω=++,3sin cos 1x x m ωω=+++,2sin 16x m πω⎛⎫=+++ ⎪⎝⎭,函数()f x 的最小值为2-212m ∴-++=-,解得1m =-,则()2sin 6f x x πω⎛⎫=+⎪⎝⎭,∴函数()f x 的最大值为2.【小问2详解】由(1)可知:把函数()2sin 6f x x πω⎛⎫=+ ⎪⎝⎭向右平移6πω个单位,可得函数()2sin y g x x ω==的图象.()y g x = 在0,8π⎡⎤⎢⎥⎣⎦上为增函数,∴函数()g x 的周期22T ππω=4ω∴ ,即ω的最大值为4.18.为了丰富在校学生的课余生活,某校举办了一次趣味运动会活动,学校设置项目A “毛毛虫旱地龙舟”和项目B “袋鼠接力跳”.甲、乙两班每班分成两组,每组参加一个项目,进行班级对抗赛.第一个比赛项目A 采取五局三胜制(即有一方先胜3局即获胜,比赛结束);第二个比赛项目B 采取领先3局者获胜。
荆州2021级高三下学期5月第四次适应性考试数学试题(答案在最后)本试卷满分150分,考试用时120分钟。
一、选择题:本大题共8小题,每一小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数()tan(2)3f x x π=+的最小正周期为A .πB .π2C .π3D .π62.已知椭圆C :2218x y k+=的一个焦点为()0,2,则k 的值为A .4B .8C .10D .123.已知集合{}()21,{}A xx B x x a a =<=>∈R ∣∣,若A B =∅ ,则a 的取值范围为A.(,1]-∞B .(1,)+∞C .(,1)-∞D .[1,)+∞4.已知()202422024012202431a a x a x a x x =+++-+L ,则122024a a a +++L 被3除的余数为A.3B .2C .1D .05.L 的图形.图中四边形ABCD 的对角线相交于点O ,若DO OB λ=,则λ=A .1BC .2D 6.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤7.根据变量Y 和x 的成对样本数据,由一元线性回归模型()()20,Y bx a eE e D e σ=++⎧⎨==⎩得到经验回归模型ˆˆˆybx a =+,求得如右图所示的残差图.模型误差A.满足一元线性回归模型的所有假设B.不满足一元线性回归模型的()0E e =的假设C.不满足一元线性回归模型的2()D e σ=假设D.不满足一元线性回归模型的()0E e =和2()D e σ=的假设8.任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).如取正整数6m =,根据上述运算法则得出6→3→10→5→16→8→4→2→1,共需经过8个步骤变成1(简称为8步“雹程”).我们记一个正整数()1n n ≠经过()K n 次上述运算法则后首次得到1(若 n 经过有限次上述运算法则均无法得到1,则记()K n =+∞),以下说法正确的是A.()K n 可看作一个定义域和值域均为*N 的函数B .()K n 在其定义域上不单调,有最小值,有最大值C .对任意正整数()1n n ≠,都有()()()221K n K K n =-D .()()2121n nK K -≤+三、填空题:本大题共3小题,每小题5分,共15分.把答案填在答题卡中的横线上.12.已知双曲线C :2221(0)x y a a-=>经过点(2,1),则C 的渐近线方程为_______.13.若实数0,,,6x y 成等差数列,11,,,,28a b c --成等比数列,则y xb-=_______.14.设π02αβ<<<,tan tan m αβ=,()3cos 5αβ-=,若满足条件的α与β存在且唯一,则m =_______,tan tan αβ=_______.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数()f x x=(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求证:函数()y f x =的图象位于直线y x =的下方;16.(15分)如图在四面体A BCD -中,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =.(1)求证:PQ ∥平面BCD ;(2)2,AB AD BC CD AC BD ======求直线DQ 与平面ACP 所成角的正弦值.17.(15分)宜昌市是长江三峡起始地,素有“三峡门户”、“川鄂咽喉”之称.为了合理配置旅游资源,管理部门对首次来宜昌旅游的游客进行了问卷调查,据统计,其中14的人计划只参观三峡大坝,另外34的人计划既参观三峡大坝又游览三峡人家.每位游客若只参观三峡大坝,则记1分;若既参观三峡大坝又游览三峡人家,则记2分.假设每位首次来宜昌旅游的游客计划是否游览三峡人家相互独立,视频率为概率.(1)从游客中随机抽取2人,记这2人的合计得分为X ,求X 的分布列和数学期望;(2)从游客中随机抽取n 人()n N *∈,记这n 人的合计得分恰为1n +分的概率为nP ,求1nii P =∑;(3)从游客中随机抽取若干人,记这些人的合计得分恰为n 分的概率为n a ,随着抽取人数的无限增加,n a是否趋近于某个常数?若是,求出这个常数;若不是,请说明理由.18.(17分)从抛物线28y x =上各点向x 轴作垂线段,垂线段中点的轨迹为Γ.(1)求Γ的轨迹方程;(2),,A B C 是Γ上的三点,过三点的三条切线分别两两交于点,,D E F ,①若//AC DF ,求BD BF的值;②证明:三角形ABC 与三角形DEF 的面积之比为定值.19.(17分)对于数列{}n x ,如果存在一个正整数m ,使得对任意()*N n n ∈,都有n m n x x +=成立,那么就把这样的一类数列{}n x 称作周期为m 的周期数列,m 的最小值称作数列{}n x 的最小正周期,简称周期.(1)判断数列122,1sin π3,231,n n n n x y n n y n y n --+⎪=⎧⎪===⎨-≥⎩和是否为周期数列.如果是,写出该数列的周期,如果不是,说明理由;(2)设(1)中数列{}n y 前n 项和为n S ,试问是否存在,p q ,使对任意*N n ∈,都有(1)n n Sp q n≤-⋅≤成立,若存在,求出,p q 的取值范围,若不存在,说明理由.(3)若数列{}n a 和{}n b 满足1n n n b a a +=-,且()12121,1,N n n n b b a b b n n b ++==⎧⎪⎨=≥∈⎪⎩,是否存在非零常数a ,使得{}n a 是周期数列?若存在,请求出所有满足条件的常数a ;若不存在,请说明理由.绝密★启用前5月适应性考试数学参考答案1.【详解】由周期公式得ππ2T ω==.故选:B2.【详解】由题意得,24c =,2a k =,28b =,所以4812k =+=.故选:D .3.【详解】由题意知{|11}A x x =-<<,又(){}B x x a a =>∈R ∣且A B =∅ ,故1a ≥,即a 的取值范围为[1,)+∞.故选D.4.【详解】令0x =,得01a =,令1x =,得202401220242a a a a ++++=L ,两式相减,101212202441a a a +++=- .因为()1012010121101110111012101210121012101231C C C 33C 3+=++++ ,其中010*******1011101210121012C 3C 3C 3+++L 被3整除,所以()101231+被3除的余数为1,从而122024a a a +++L 能被3整除.故选D.5.【详解】延长AB 、DC 交于点E ,取CE 的中点F ,连接BF ,易知ABC 为等腰直角三角形,则90ABC ACD ∠=∠= ,45ACB ∠= ,所以,ACE 90∠= ,90CBE ∠=o ,45BCE ACE ACB ∠=∠-∠= ,故BCE 为等腰直角三角形,且1BE BC AB ===,则CE =因为B 、F 分别为AE 、CE 的中点,则//BF AC ,且122CF CE ==,所以,DO CDOB CF=λ=故选:B.6.【详解】由题意可知圆C 的圆心坐标为()0,m ,半径为1.因为直线l 与圆C 有公共点,所以直线l 与圆C 相切或相交,所以圆心()0,C m 到直线l 的距离1d =,解得112m -≤≤.其必要不充分条件是把m 的取值范围扩大,所以选项中只有11m -≤≤是112m -≤≤的必要不充分条件.故选:A7.【详解】解:用一元线性回归模型2()0,()Y bx a e E e D e σ=++⎧⎨==⎩得到经验回归模型ˆˆˆy bx a =+,根据对应的残差图,残差的均值()0E e =不可能成立,且残差图中的点分布在一条拋物线形状的弯曲带状区域上,说明残差与坐标轴变量有二次关系,2()D e σ=不满足一元线性回归模型,故选D.8.【详解】依题意,()K n 的定义域是大于1的正整数集,A 错误;由(4)2,(5)5,(8)3K K K ===,得()K n 在其定义域上不单调,而(2)1K =,()N K n *∈,则()K n 有最小值1,由 n 经过有限次角谷运算均无法得到1,记()K n =+∞,得()K n 无最大值,B 错误;对任意正整数()1n n ≠,(2)()1K n K n =+,而(2)1K =,因此()(2)()(2)1K n K K n K n ==-,C 正确;由22(21)(3)7,(21)(5)5K K K K -==+==,知()()2121n nK K -≤+不正确,D 错误.故选:C9.【详解】复数()()211i z m m m =-++∈R 的实部为21m -,虚部为1m +,复数z 在复平面内对应的点的坐标为()21,1m m -+,对于A :若z 为纯虚数,则21010m m ⎧-=⎨+≠⎩,解得1m =,故A 错误;对于B :若z 为实数,则10m +=,解得1m =-,则0z =,故B 正确;对于C :若z 在复平面内对应的点在直线2y x =上,所以()2121m m +=-,解得1m =-或32m =,故C 错误;对于D :令21010m m ⎧-<⎨+<⎩,即111m m -<<⎧⎨<-⎩,不等式组无解,所以z 在复平面内对应的点不可能在第三象限,故D 正确.10.【详解】A 选项,连接,BD EF ,由对称性可知,EF ⊥平面ABCD ,且,EF BD 相交于点O ,O 为BD 和EF 的中点,又2BE DE BF DF ====,故四边形BFDE 为菱形,故//BE DF ,又DF ⊂平面ADF ,BE ⊄平面ADF ,所以//BE 平面ADF ,A 正确;对于B ,将△EBC 和△F BC 展开至同一平面,由余弦定理得:2222π2cos73FP CF CP CF CP =+-⋅=,FP ∴=,B 正确;C 选项,F ADP A FDP V V --=,其中A 到平面FDP 的距离为AO =设菱形BFDE 的面积为S ,则11422S BD EF =⋅=⨯=,122FDP S S == ,若点P 为棱EB 上的动点,则三棱锥F ADP -的体积为定值133FDP S = ,C 错误.对于D ,易得以O 为球心,1为半径的球与各条棱均切于中点处,故每个侧面的交线即侧面正三角形的内切圆,以2可得内切圆半径r 82πL r =⨯=D 正确.故选ABD11.【详解】由()()()()++-=f x y f x y f x f y ,令1x =,0y =,有(1)(1)(1)(0)f f f f +=,可得()02f =,故A 正确;令0x =,则()()()(0)()2f y f y f f y f y +-==,则()()f y f y =-,()11f =,令1y =,则()()(1)(1)()1f x f x f x f f x ++-==,所以(1)()(1)f x f x f x +=--,则()(1)(2)f x f x f x =---,(1)[(1)(2)](1)(2)f x f x f x f x f x +=-----=--,所以()(3)(6)f x f x f x =--=-,则()f x 周期为6,C 正确.由于()f x 为偶函数且周期为6,故()()()333f x f x f x ==-+-,()f x 关于3x =轴对称,B 错误,函数()f x 是偶函数且周期为6,()02f =,()11f =,故D 正确.12.【详解】因为双曲线C :2221(0)x y a a-=>经过点(2,1),所以1a b ==,渐近线方程为b y x x a =±=.13.【详解】实数0,,,6x y 成等差数列,则6023y x --==,11,,,,28a b c --成等比数列,则211121616b ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭.由于等比数列奇数项同号,所以0b <,所以14b =-.则8y xb-=-.故答案为8-.14.【详解】由tan tan m αβ=,得sin sin cos cos m αβαβ=,即sin cos cos sin m αβαβ=,由于()3cos 5αβ-=,所以()()sin cos cos s 5in 1cos s n i i n 4s m βααβαβαβ=--=-=-,所以()4cos sin 51m αβ=--,所以()4sin cos cos sin 51mm m αβαβ==--,所以()()()41sin sin cos cos sin 51m m αβαβαβ-++=+=-,因为π,0,2αβ⎛⎫∈ ⎪⎝⎭,所以()0,παβ+∈,因为满足条件的α与β存在且唯一,所以αβ+唯一,所以()()()41sin 151m m αβ-++==-,所以19m =,经检验符合题意,所以1tan tan 9αβ=,则()24tan tan tan 9tan tan 31tan tan 19tan αβαααβαβα---=-==++,解得1tan 3α=,所以2tan tan 9tan 1αβα==.15.【详解】(1)()f x x=',则()11f '=,又()10f =,所以曲线在点()()1,1f 处的切线方程为1y x =-;..................................................5分(2)因为0x >0>,要证明()f x x <,只需要证明ln x <ln 0x <,令()ln h x x =()1h x x=='..................................................8分当04x <<时,()0h x '>,此时()h x 在()0,4上单调递增;当>4x 时,()0h x '<,此时()h x 在()4,∞+上单调递减,..................................................11分故()h x 在4x =取极大值也是最大值,故()()4ln420h x h ≤=-<,所以ln 0x <恒成立,即原不等式成立,所以函数()y f x =的图象位于直线y x =的下方;..................................................13分16.【详解】(1)过点P 作PE ∥AD 交BD 于点E ,过点Q 作QF ∥AD 交CD 于点F ,则PE ∥QF ,因为M 是AD 的中点,P 是BM 的中点,所以14PE AD =,因为3AQ QC =,由平行线分线段成比例定理得:14QF AD =,所以PE =QF ,所以四边形PEFQ 为平行四边形,所以PQ ∥EF ,又PQ ⊄平面BCD ,EF ⊂平面BCD ,所以PQ ∥平面BCD ;..................................................6分(2)因为BD =所以1,AE CE ==又AC =所以120,AEC ∠= 因为,AB AD E =为中点,所以AE BD ⊥,同理CE BD ⊥,又因为AE CE E = ,所以BD ⊥平面ACE ,又因为BD ⊂平面BCD ,所以平面BCD ⊥平面,ACM作AH CE ⊥交CE 延长线于点,H 则AH ⊥平面BCD 且,2AH =如图,以EB 为x 轴,EC 为y 轴,z 轴//AH 建立空间直角坐标系....................................8分)()()13313530,,,3,0,0,0,1,0,3,0,0,(,,),(0,,)2828488A B C D P Q ⎛-- ⎝⎭,333330,,,,,3954888,228AC P DQ C ⎛⎫⎛⎫⎫=-=-= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎭设面ACP 的一个法向量为(),,n x y z =033003930n AC y z n CP y z ⎧⎧⋅=-=⎪⎪⇒⇒⎨⎨⋅=-+=⎪⎪⎩⎩3,x =则1,3y z ==所以3,1,3n =...........................13分设直线DQ 与平面ACP 所成角为,θ516385s 3in |co |8s ,DQ n θ=<>=所以直线AB 与平面ACD 取成线面角的正弦值为385385...................................................15分17.【详解】(1)X 的可能取值为2,3,4,211(2)(416P X ===,12136(3)4416P X C ==⨯⨯=,239(4)()416P X ===所以X 的分布列如下表所示:X234P116616916所以1697()2341616162E X =⨯+⨯+⨯=..................................................5分(2)因为这n 人的合计得分为1n +分,则其中只有1人计划既参观三峡大坝又游览三峡人家,所以11313(444n n n n n P C -=⋅⋅=,231332333...4444ni n i n P =⨯⨯=++++∑,则234111332333...44444n i n i n P +=⨯⨯⨯=++++∑由两式相减得,2311111333333334 (14444444414)nn i n n n i n n P ++=-⨯=++++-=⨯--∑所以141(1344ni n n i nP ==--∑..................................................10分(3)在随机抽取的若干人的合计得分为1n -分的基础上再抽取1人,则这些人的合计得分可能为n 分或1n +分,记“合计得n 分”为事件A ,“合计得1n +分”为事件B ,A 与B 是对立事件.因为()n P A a =,13()4n P B a -=,所以131(2)4n n a a n -+=≥,即1434()(2)747n n a a n --=--≥.因为114a =,则数列4{}7n a -是首项为928-,公比为34-的等比数列,所以1493((1)7284n n a n --=--≥,所以1493()(1)7284n n a n -=--≥所以随着抽取人数的无限增加,n a 趋近于常数47...................................................15分18.【详解】(1)设垂线段中点坐标为(,)x y ,抛物线上点坐标为(,2)x y ,代入抛物线方程,则2(2)8y x =,即22y x =.................3分(2)①如图,,,A B C 是Γ上的三点,过三点的三条切线分别两两交于点,,D E F ,设()()()223121234455662,,,,,,,,,,,222y y y A y B y C y D x y E x y F x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,...........4分则抛物线22y x =上过点A 的切线方程为()2112y x t y y -=-,将切线方程与抛物线方程联立,得:联立()211222y x t y y y x ⎧-=-⎪⎨⎪=⎩,消去x ,整理得2211220y ty ty y -+-=,所以()()2222211111Δ(2)4248440t ty y t ty y t y =---=-+=-=,从而有1t y =,所以抛物线上过点A 的切线方程为2112y x y y =-,................................................5分同理可得抛物线上过点,B C 的切线方程分别为223223,22y y x y y x y y =-=-,两两联立,可以求得交点,,D E F 的纵坐标分别为132312456,,222y y y y y y y y y +++===,.................................................7分则121141213124523222y y y AD y y y y y y y y DE y y y y +---===++---,同理可得12122323,EF y y DB y y FC y y BF y y --==--,即AD EF DB DE FC BF ==,...............................................9分当//AC DF 时,AD CF DE FE =,故EF FCFC EF =,即EF FC =,因此1BD EF BF FC==......................10分②易知12221212222AB y y k y y y y -==+-,则直线AB 的方程为2111222y y x y y y ⎛⎫-=- ⎪+⎝⎭,化简得1212,2y y y x y y +=+即1212()2x y y y y y ++=且()22222121212212221y A y B y y y y y y ⎛⎫+⎛⎫=-+-=+- ⎪ ⎪⎝⎭⎝⎭,点323,2y C y ⎛⎫ ⎪⎝⎭到直线AB 的距离为()()231323123231122121222122212y y y y y y y y y y d y y y y y +-+--==++⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,则三角形ABC 的面积()()()112131321124S AB d y y y y y y =⋅=---..............................................14分由(2)①知切线DE 的方程为2112y x y y =-131323231212(,),(,),(,)222222y y y y y y y y y y y y D E F +++可知32DE y ==-,点F 到直线ED的距离为2d =则外切三角形DEF 的面积()()()222131321128S ED d y y y y y y =⋅=---.故122S S ==.因此三角形ABC 与外切三角形DEF 的面积之比为定值2..............17分19.【详解】(1){}{}n n x y 、均是周期数列,理由如下:因为()1sin 1π0sin πn n x n n x +=+===,所以数列{}n x 是周期数列,其周期为1.因为321211,1n n n n n n y y y y y y +++++=-+=-+,所以32n n y y +=-+.则632n n y y ++=-+,所以6n ny y +=所以数列{}n y 是周期数列,其周期为6..............................................4分(2)由(1)可知,{}n y 是周期为6的数列.计算数列为:2,3,2,0,1,0,2,3...-故,661,613,62,4,633,641,65n n n k n n k n n k S k N n n k n n k n n k =+⎧⎪+=+⎪⎪+=+=∈⎨+=+⎪⎪+=+⎪+=+⎩,.............................................6分当66n k =+时,(1)1n n Sn-⋅=,故1,1p q ≤≥;当61n k =+时,12(1)1n n S n n n +-≤-⋅=-<-,故2,1p q ≤-≥-;当62n k =+时,351(1)2n n S n n n +<-⋅=≤,故51,2p q ≤≥当63n k =+时,74(1)13n n S n n n +-≤-⋅=-<-,故7,13p q ≤-≥-当64n k =+时,371(1)4n n S n n n +<-⋅=≤,故71,4p q ≤≥当65n k =+时,61(1)15n n S n n n +-≤-⋅=-<-,故6,15p q ≤-≥-综上所述:存在,且75,32p q ≤-≥.............................................10分(3)解:假设存在非零常数a ,使得{}n a 是周期为T 的数列,所以n T n a a +=,即0n T n a a +-=所以,11,n T n n T n a a a a ++++==,即110n T n n T n a a a a ++++-=-=所以,11n T n T n n a a a a ++++-=-,即11n T n T n T n n n b a a a a b +++++=-=-=,所以数列{}n b 是周期为T 的周期数列,.............................................12分因为()()()()11113221T T T T T a a a a a a a a a a ++--=-+-++-+- 1210T T b b b b -=++++= ,即10Ti i b ==∑,因为()12121,1,N n n n b b a b b n n b ++==⎧⎪⎨=≥∈⎪⎩,所以,35243456123411,1,,b b b b b a b b b b b b a b a ========,6787895671,,,b b b b b a b a b b b ====== ..................15分所以数列{}n b 是周期为6T =,所以612220i i b a a ==++=∑,即22131024a a a ⎛⎫++=++= ⎪⎝⎭,显然方程无解,所以,不存在非零常数a ,使得{}n a 是周期数列..............................................17分。
陕西省榆林市米脂中学2021-2022学年高三上学期第四次模拟文科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知全集{1U =,2,3,4,5},{2A =,4,5},{3B =,5},则()U A B =⋃ð()A .{3}B .{2,4}C .{1,2,3,4}D .{1,2,4,5}2.命题p :“x ∃∈R ,()214204x a x +-+≤”,则p ⌝为()A .x ∀∈R ,()214204x a x +-+>B .x ∀∈R ,()214204x a x +-+≤C .x ∃∈R ,()214204x a x +-+≥D .x ∃∈R ,()214204x a x +-+>3.下列四个函数中,在区间π0,2⎛⎫ ⎪⎝⎭上为增函数的是()A .sin y x =-B .cos y x =C .tan y x=D .tan y x=-4.若函数()1,012,02x x f x x ⎧⎪=⎨+<⎪⎩,则()()1f f -=()A .-2B .-1C .0D .15.已知函数()()1xf x a a a =->,则函数()f x 的图像不经过()A .第一象限B .第二象限C .第三象限D .第四象限6.若命题p :函数()()log 11a f x x =-+(0a >且1a ≠的图像过定点()2,1,命题q :函数()2xg x =的值域为[)0,∞+,则下列命题是真命题的是()A .p q ∧B .p q ∨C .()p q⌝∧D .()()p q ⌝∧⌝7.函数()()sin x xf x e e x -=+的图象可能是()A.B.C.D.8.已知x∈R,则“x>”是“22x>”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.若0.70.5a=,0.50.7b=,0.11.1c=,则a,b,c的大小关系是()A.a b c>>B.c b a>>C.c a b>>D.a c b>>10.函数()()πsin0,2f x xωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,将函数()f x的图象向右平移π6个单位长度,得到函数()g x的图象,则()A.()sin2g x x=B.()cos2g x x=C.()2πsin23g x x⎛⎫=+⎪⎝⎭D.()2πcos23g x x⎛⎫=+⎪⎝⎭11.给出定义:若函数()f x在区间D上可导,即()f x'存在,且导函数()f x'在D上也可导,则称()f x在D上存在二阶导函数.记()()()f x f x''''=,若()0f x''<在D上恒成立,则称()f x在D上为凸函数.若()2ln5axg x x=+在()0,1上是凸函数,则实数a可取的最大整数值为()A.0B.1C.2D.312.已知定义在()0,+¥的函数()f x满足:()()()0,,0x f xx f x'+∞-∀∈<,其中()f x¢为()f x的导函数,则不等式()()()(231)123x f x x f x-+>+-的解集为()A .3,42⎛⎫ ⎪⎝⎭B .()4,+∞C .()1,4-D .(),4-∞二、填空题13.函数()()1lg 12f x x x =++-的定义域为______.14.若1tan 42⎛⎫-=- ⎪⎝⎭πα,则tan 2α=______.15.设()f x 是定义域为R 的奇函数,且()()1f x f x +=-,则()21f -=______.16.数学中处处存在着美,机械学家莱洛沷现的莱洛三角形就给人以对称的美感.莱洛三角形的画法:先画等边三角形ABC ,再分别以点A ,B ,C 为圆心,线段AB 长为半径画圆弧,便得到莱洛三角形.若线段AB 长为2,则莱洛三角形的面积是________.三、解答题17.设函数()()sin cos R f x x x x =∈.(1)求函数()f x 的最小正周期;(2)求函数π6f x ⎛⎫- ⎪⎝⎭图象的对称中心的坐标.18.已知函数()32f x ax bx =+在1x =时取得极大值3.(1)求a ,b 的值;(2)求曲线()y f x =在点()()1,1f --处的切线方程.19.某商场经营一批进价是每件30元的商品,在市场试销中发现,该商品销售单价x (不低于进价,单位:元)与日销售量y (单位:件)之间有如下关系:x 4550y2712(1)确定x 与y 的一个一次函数关系式y =f (x )(注明函数定义域).(2)若日销售利润为P 元,根据(1)中的关系式写出P 关于x 的函数关系式,并指出当销售单价为多少元时,才能获得最大的日销售利润?20.已知ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,()sin 2b A a B =-.(1)求B ;(2)若D 为BC 边的中点AD =,BC =ABC 的面积.21.已知函数()232log f x x =-,()2log g x x =.(1)当[]2,8x ∈时,求函数()()()1h x f x g x =+⋅⎡⎤⎣⎦的值域(2)如果对任意的[]2,8x ∈,()()22f x fk gx ⋅>⋅恒成立,求实数k 的取值范围.22.已知函数()e 1xf x ax =--,其中e 为自然对数的底数.(1)求()f x 的单调区间:(2)若函数()f x 在区间()0,1上存在零点,求实数a 的取值范围.参考答案:1.D【分析】根据并集和补集的知识求得正确答案.【详解】 全集{1U =,2,3,4,5},{3B =,5},{1U B ∴=ð,2,4},{2A = ,4,5},(){1U A B ∴=⋃ð,2,4,5},故选:D 2.A【分析】根据命题的否定的定义,直接选出答案即可.【详解】写出命题的否定,则“x ∃∈R ,()214204x a x +-+≤”的否定为,p ⌝为:x ∀∈R ,()214204x a x +-+>故选:A 3.C【分析】根据正弦、余弦、正切函数的单调性判断即可.【详解】对A ,因为sin y x =在π0,2⎛⎫ ⎪⎝⎭上递增,所以sin y x =-在π0,2⎛⎫ ⎪⎝⎭上单调递减,故A 错误;对B ,cos y x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,故B 错误;对C ,tan y x =在π0,2⎛⎫ ⎪⎝⎭上单调递增,故C 正确;对D ,由C 知,tan y x =-在π0,2⎛⎫ ⎪⎝⎭上单调递减,故D 错误.故答案为:C 4.C【分析】首先求()1f -,再代入求()()1f f -的值.【详解】()111212f --=+=,所以()()()1110f f f -===.故选:C 5.B【分析】根据函数()1xy a a =>的单调性和函数平移规则分析.【详解】()1xy a a =>是单调递增的函数,经过()0,1,渐近线为0y =,当0x =时,()000f a a =-<,()10f a a =-=,渐近线为y a=-,所以图像如下图:故选:B.6.B【分析】根据函数过点可以判断命题p 的真假,由函数的值域可以判断命题q ,然后逐项判断命题的真假即可.【详解】命题p :当2x =时,()()2log 2111a f =-+=,函数过定点()2,1,所以p 为真命题;命题q :由x ∈R ,所以()20xg x =>,所以值域为:()0,∞+,所以命题q 为假命题,选项A:p 为真命题,q 为假命题,故p q ∧为假命题,所以A 错误;选项B:p 为真命题,q 为假命题,故p q ∨为真命题,所以B 正确;选项C:p 为真命题,p ⌝为假命题,故()p q ⌝∧为假命题,所以C 错误;选项D:p 为真命题,q 为假命题,所以p ⌝为假命题,q ⌝为真命题故()()p q ⌝∧⌝为假命题,故选:B.7.B【分析】分析函数()f x 的奇偶性及2f π⎛⎫⎪⎝⎭与2的大小关系,结合排除法可得出合适的选项.【详解】函数()()sin x xf x e e x -=+的定义域为R ,()()()()()sin sin x x x x f x e e x e e x f x---=+-=-+=-,即函数()f x 为奇函数,排除CD 选项;2222f e e e πππ-⎛⎫=+>> ⎪⎝⎭,排除A 选项.故选:B.8.A【分析】利用充分性和必要性的定义求解即可.【详解】由22x >解得x >或x <所以“x >是“22x >”的充分不必要条件,故选:A 9.B【分析】根据指数函数和幂函数的单调性,将a ,b ,c 与中间值0,1进行比较,即可得出.【详解】解:0.5x y = 在R 上是减函数,0.70.50.50.05<∴<,0.5y x = 在[)0,∞+上是增函数,0.7x y =在R 上是减函数,0.50.500.50.70.71∴<<=,则0.70.50.50.7<,即01a b <<<,又 1.1x y =在R 上是增函数,0.101.111.1>=∴,即1c >,综上所述,可知c b a >>,故选:B.10.A【分析】先由图像中周期求得ω,再由点代入求得ϕ,从而利用三角函数图像平移求得()g x 的解析式即可.【详解】结合图像,易得17πππ41234T =-=,则πT =,所以由2πT ω=得2ππω=,所以2ω=,又0ω>,所以2ω=,则()()sin 2f x x ϕ=+,又因为7π,112⎛⎫- ⎪⎝⎭落在()f x 上,所以7πsin 2112ϕ⎛⎫⨯+=- ⎪⎝⎭,即7πsin 16ϕ⎛⎫+=- ⎪⎝⎭,所以7π3π2π,Z 62k k ϕ+=+∈,得ππ,Z k k ϕ=+∈23,因为π2ϕ<,所以当且仅当0k =时,π3ϕ=满足要求,所以()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,因为将函数()f x 的图象向右平移π6个单位长度,得到函数()g x 的图象,所以()ππsin 2sin 263x g x x ⎡⎤⎛⎫-+= ⎪⎢⎥⎣⎦=⎝⎭.故选:A.11.C【分析】根据题意求得()g x '',将问题转化为()0g x ''<在()0,1x ∈恒成立,解出不等式即可得到结果.【详解】因为()215a g x x x '=+,()2215a g x x ''=-由凸函数的定义可得,()0g x ''<在()0,1x ∈恒成立,即22215052a a x x-<⇒<在()0,1x ∈恒成立,且当1x =时,2min 5522x ⎛⎫< ⎪⎝⎭,所以52a ≤,则实数a 可取的最大整数值为2故选:C.12.A【分析】先构造函数()()f x g x x=,由()()()0,,0x f x x f x '+∞-∀∈<可得()g x 在()0,+¥上单调递增,则所求的不等式等价于()()123123f x f x x x +->+-,列出不等式组,解出x 的范围即可.【详解】设()()()()()2,f x xf x g x g x f x x x ''==-,因为()()()0,,0x f x x f x '+∞-∀∈<,所以在()0,+¥上()0g x ¢>,所以()g x 在()0,+¥上单调递增,由已知,()f x 的定义域为()0,+¥,所以10,230x x +>->,所以()()23 11 2)()3(x f x x f x -+>+-等价于()()123123f x f x x x +->+-,即(()13)2g g x x >-+,所以10230123x x x x +>⎧⎪->⎨⎪+>-⎩,解得342x <<,所以原不等式的解集是3,42⎛⎫⎪⎝⎭.故选:A.13.()()1,22,-⋃+∞【分析】根据函数的解析式,列出函数有意义时满足的不等式,求得答案.【详解】函数()()1lg 12f x x x =++-需满足1020x x +>⎧⎨-≠⎩,解得1x >-且2x ≠,故函数()()1lg 12f x x x =++-的定义域为()()1,22,-⋃+∞,故答案为:()()1,22,-⋃+∞14.34-##0.75-【分析】展开1tan 42⎛⎫-=- ⎪⎝⎭πα,求出tan α,再代入22tan tan 21tan ααα=-,即可求解.【详解】解:πtantan π1tan 14tan π41+tan 21+tan tan 4ααααα--⎛⎫-===- ⎪⎝⎭,解得tan 3α=,所以222tan 236t 4an 2==1tan 1383ααα==---⨯-,故答案为:34-.15.0【分析】结合函数的奇偶性、周期性等知识求得正确答案.【详解】依题意,()f x 是定义域为R 的奇函数,()00f =,由()()1f x f x +=-令0x =得()()100f f ==,()()()()()()21111f x f x f x f x f x f x +=++=--=-+=--=,所以()f x 是周期为2的周期函数,所以()()()212111210f f f -=-+⨯==.故答案为:016.2π-##2π-【分析】由题意,可先求解出正三角形扇形面积,再利用莱洛三角形与扇形之间的关系转化即可求解.【详解】由已知得2π3AB BC AC ===,则AB =BC =AC =2,故扇形的面积为2π3,由已知可得,莱洛三角形的面积扇形面积的3倍减去三角形面积的2倍,∴所求面积为22π3222π3⨯-=-故答案为:2π-或2π-+.17.(1)π(2)ππ,026k ⎛⎫+ ⎪⎝⎭,Z k ∈【分析】(1)利用正弦函数的倍角公式化简()f x ,再由最小正周期公式即可得解;(2)结合(1)中结论求得π6f x ⎛⎫- ⎪⎝⎭,再结合正弦函数的对称性即可得解.【详解】(1)因为()1sin cos sin 22f x x x x ==,所以2ππ2T ==,故函数()f x 的最小正周期为π.(2)由(1)知()1sin 22f x x =,所以π1πsin 2623f x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,令π2π3x k -=,Z k ∈,则ππ26k x =+,Z k ∈,所以函数π6f x ⎛⎫- ⎪⎝⎭图象的对称中心的坐标为ππ,026k ⎛⎫+ ⎪⎝⎭,Z k ∈.18.(1)6,9a b =-=(2)36210x y ++=【分析】(1)解方程组(1)3(1)320f a b f a b =+=⎧⎨=+='⎩即可求解;(2)只需求出()1f '-,()1f -,再利用点斜式写直线方程即可.【详解】(1)()232f x ax bx '=+,由题意可得(1)3(1)320f a b f a b =+=⎧⎨=+='⎩,解得69a b =-⎧⎨=⎩,检验:()21818f x x x '=-+,令()0f x '=,解得0x =或1x =,当()(),01,x ∞∞∈-⋃+时,()0f x '<,()f x 单调递减;当()0,1x ∈时,()0f x ¢>,()f x 单调递增,满足题意;(2)由(1)得()3269f x x x =-+,所以()21818f x x x '=-+.所以()115f -=,()136f '-=-.所以所求切线方程为()15361y x -=-+,即36210x y ++=.19.(1)f (x )=-3x +162,x ∈[30,54];(2)P=-3(x-42)2+432,x ∈[30,54],销售单价为42元.【分析】(1)设出函数的解析式,进而根据表格中的数据求得答案;(2)先求出P ,然后根据二次函数求最值的方法解得答案.【详解】(1)因为f (x )是一次函数,设f (x )=ax +b ,由表格得方程组452735012162a b a a b b +==-⎧⎧⇒⎨⎨+==⎩⎩,所以y =f (x )=-3x +162.又y ≥0,所以30≤x ≤54,故所求函数关系式为f (x )=-3x +162,x ∈[30,54].(2)由题意得,P =(x -30)y =(x -30)(162-3x )232524860x x =-+-()[]2342432,30,54x x =--+∈.当x =42时,最大的日销售利润P =432,即当销售单价为42元时,获得最大的日销售利润.20.(1)π6B =(2)【分析】(1)利用正弦定理、辅助角公式化简已知条件,从而求得B .(2)利用余弦定理求得AB ,进而求得三角形ABC 的面积【详解】(1)在ABC 中由正弦定理及已知条件,可得()sin sin sin 2A B A B =,∵()0,πA ∈,∴sin 0A >,∴sin 2B B =-,∴πsin 13B ⎛⎫+= ⎪⎝⎭.∵()0,πB ∈,∴ππ4π333B <+<.∴πππ,326B B +==.(2)∵D 为BC 边的中点,BC =,∴BD =.在ABD △中,由余弦定理得2222cos AD AB BD AB BD B =+-⋅⋅,∴2π7326AB AB =+-,∴2340AB AB --=,解得4AB =或1AB =-(舍去).∴11sin 4sin 3022ABC S AB BC B =⋅⋅=⨯⨯︒=△21.(1)[]6,2-(2)9,4⎛⎫-∞- ⎪⎝⎭【分析】(1)()()2222log 1h x x =--+,[]2log 1,3x ∈,计算得到值域.(2)令2log t x =,[]1,3t ∈,题目转化为3341k t t ⎛⎫⎛⎫<-- ⎪⎪⎝⎭⎝⎭对任意的[]1,3t ∈恒成立,[]31,3t ∈,计算最值得到答案.【详解】(1)()()()2222242log log 2log 1h x x x x =-=-+-,[]2,8x ∈,[]2log 1,3x ∈,设[]2log 1,3m x =∈,()()2221m k m --=+,()()max 12k m g ==,()()min 36k m g ==-,故函数()h x 的值域为[]6,2-.(2)()()22f x f k g x ⋅>⋅,即()()()222234log 3log log x x k x -->,令2log t x =,[]1,3t ∈,()()2343t t k t -->⋅对任意的[]1,3t ∈恒成立.3341k t t ⎛⎫⎛⎫<-- ⎪⎪⎝⎭⎝⎭对任意的[]1,3t ∈恒成立,[]1,3t ∈,设[]31,3n t =∈.设()()()2594124F n n n n ⎛⎫=--=-- ⎪⎝⎭,()min 5924F n F ⎛⎫==- ⎪⎝⎭,故94k <-.实数k 的取值范围为9,4⎛⎫-∞- ⎪⎝⎭.22.(1)见解析(2)()1,e 1-【分析】(1)对函数求导,分0a ≤和0a >两种情况进行讨论,利用导函数的正负来判断函数的单调区间即可求解;(2)结合(1)的结论,分三种情况进行讨论,根据条件和零点存在性定理即可求解.【详解】(1)∵()e 1x f x ax =--,∴()e x f x a '=-,当0a ≤时,()0f x ¢>恒成立,所以()f x 的单调递增区间为(),-∞+∞,无单调递减区间.当0a >时,令()'0f x <,得ln x a <:令()'0f x >,得ln x a >,所以()f x 的单调递减区间为(),ln a -∞,单调递增区间为()ln ,a +∞.综上:当0a ≤时,函数()f x 的单调递增区间为(),-∞+∞,无单调递减区间;当0a >时,函数()f x 的单调递减区间为(),ln a -∞,单调递增区间为()ln ,a +∞.(2)由(1)知()e x f x a '=-.当1a ≤时,函数()f x 在区间()0,1上单调递增且()00f =,所以函数()f x 在区间()0,1上不存在零点.所以当e a ≥时,()f x 在区间()0,1上单调递减且()00f =,所以函数()f x 在区间()0,1上不存在零点.所以当1e a <<时,函数()f x 在区间()0,ln a 上单调递减,在()ln ,1a 上单调递增,又∵()00f =,()1e 1f a =--,∴当e 10a --≤,即e 1e a -≤<时,函数()f x 在区间()0,1上不存在零点;当e 10a -->,即1e 1a <<-时,函数()f x 在区间()0,1上存在零点.综上,实数a 的取值范围为()1,e 1-.【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面:(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域;(2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.。
常德市一中2021届高三数学试题卷第1页共2页常德市一中2021届高三第四次月水平检测数学试题时量:120分钟满分:150分命题人:高三数学备课组一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|14},{|60}M x x N x x x =-<<=--<,则M N = ()A.{|14}x x -<< B.{|13}x x -<< C.{|23}x x -<< D.{|24}x x -<<2.已知复数1z ,2z 在复平面内对应的点分别为(1,1),(0,1),则12z z =()A .1i+B .1i-+C .1i--D .1i-3.设函数2()log ||f x x =,若13(log 2)a f =,5(log 2)b f =,0.2()c f e =,则a ,b ,c 的大小为()A .b a c<<B .c a b<<C .b c a<<D .a b c<<4.在平面直角坐标系xOy 中,已知点()0,2A -,()1,0N ,若动点M满足MA MO=,则·OM ON的取值范围是()A.[]0,2B.0,⎡⎣C.[]22-,D.-⎡⎣5.直线3y kx =+与圆22(3)(2)4x y -+-=相交于M、N两点,若||MN ≥,则k 的取值范围是()A .3[,0]4-B .3(,][0,)4-∞-⋃+∞C .33[,]33-D .2[,0]3-6.△ABC 的三边长为三个连续的自然数,且最大内角是最小内角的2倍,则最小内角的余弦值是()A.23B.34C.56D.7107.5G 技术的数学原理之一是著名的香农公式:2log (1)SC W N=+,它表示:在受高斯白噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内所传信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中S N 叫做信噪比.按香农公式,在不改变W 的情况下,将信噪比SN从1999提升至λ,使得C 大约增加了20%,则λ的值约为()(参考数据:lg2≈0.3,103.96≈9120)A.7596B.9119C.11584D.144698.已知直线1:0()l kx y k R +=∈与直线2:220l x ky k -+-=相交于点A ,点B 是圆22(2)(3)2x y +++=上的动点,则||AB 的最大值为()A .32B .52C .522+D .322+二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列不等式成立的是()A.若a <b <0,则a 2>b 2B.若ab =4,则a +b ≥4C.若a >b ,则ac 2>bc 2D.若a >b >0,m >0,则b b ma a m+<+10.在正三棱锥A BCD -中,侧棱长为3,底面边长为2,E ,F 分别为棱AB ,CD 的中点,则下列命题正确的是()A.EF 与AD 所成角的正切值为32B.EF 与AD 所成角的正切值为23C.AB 与面ACD 所成角的余弦值为7212D.AB 与面ACD 所成角的余弦值为7911.已知函数()f x 是定义在R 上的奇函数,当0x >时,()()1xf x e x -=-.则下列结论正确的是()A.当0x <时,()()1xf x e x =+B.函数()f x 有五个零点C.若关于x 的方程()f x m =有解,则实数m 的取值范围是()()22f m f -≤≤D.对12,x x ∀∈R ,()()212f x f x -<恒成立12.设}{n a 是无穷数列,若存在正整数k ,使得对任意+∈N n ,均有n k n a a >+,则称}{n a 是间隔递增数列,k 是}{n a 的间隔数,下列说法正确的是()A .公比大于1的等比数列一定是间隔递增数列B .已知4n a n n=+,则{}n a 是间隔递增数列C .已知2(1)n n a n =+-,则{}n a 是间隔递增数列且最小间隔数是2D.已知22020n a n tn =-+,若{}n a 是间隔递增数列且最小间隔数是3,则45t ≤<.常德市一中2021届高三数学试题卷第2页共2页三、填空题:本题共4小题,每小题5分,共20分.13.若平面向量a 与b 的夹角为90,(2,0),1,a b == 则2a b +=.14.点(2,1)P 关于直线10x y -+=的对称点Q 的坐标为.15.函数)1,0(1≠>=-a a a y x 的图象恒过定点A ,若点A 在直线10(0)mx ny mn +-=>上,则11m n+的最小值为________.16.如图,矩形ABCD中,AB =2AD =,Q 为BC 的中点,点M ,N 分别在线段AB ,CD 上运动(其中M 不与A ,B 重合,N 不与C ,D 重合),且//MN AD ,沿MN 将DMN ∆折起,得到三棱锥D MNQ -.当三棱锥D MNQ -体积最大时,其外接球的表面积的值为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)(1)已知在平面直角坐标系中,(0,0),(2,4),(6,2)O A B ,求OAB △的外接圆的方程;(2)已知直线l 在两坐标轴上的截距相等,且点A(1,3)到直线l,求直线l 的方程.18.(本题满分12分)已知()2cos (sin )f x x x x =-+(1)求函数()f x 的最小正周期及单调递减区间;(2)求函数()f x 在区间[,0]2π-的取值范围.19.(本题满分12分)在①2a ,3a ,44a -成等差数列,②1S ,22S +,3S 成等差数列这两个条件中任选一个,补充在下面问题中,并解答:在公比为2的等比数列{}n a 中,______.(1)求数列{}n a 的通项公式;(2)若2(1)log n n b n a =+,求数列242{}nn b +的前n 项和n T .20.(本题满分12分)如图,已知三棱柱111ABC A B C -中,ABC ∆与1B BC ∆是全等的等边三角形.(1)求证:1BC AB ⊥;(2)若11cos 4B BA ∠=,求二面角1B B C A --的余弦值.21.(本题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,过1F 作直线l 与椭圆C 交于A ,B 两点,2ABF ∆的周长为8.(1)求椭圆C 的标准方程;(2)问:2ABF ∆的内切圆面积是否有最大值?若有,试求出最大值;若没有,说明理由.22.(本题满分12分)已知函数()sin cos f x x x x =+.(1)求()f x 的单调递增区间;(2)记i x 为函数()(0)y f x x =>的从小到大的第*()i i N ∈个极值点,证明:222231111(2,)9n n n N x x x ++<≥∈ .C常德市一中2021届高三数学试题卷第3页共2页常德市一中2021届高三第四次月考参考答案数学一、选择题:题号123456789101112答案BDADABBCADBCADBCD二、填空题:13.14.(0,3)15.416.253π三、解答题:17.解:(1)设OAB △的外接圆的方程是220x y Dx Ey F ++++=22(40)D E F +->,依题意可得0416240364620F D E F D E F =⎧⎪++++=⎨⎪++++=⎩,解得062F D E =⎧⎪=-⎨⎪=-⎩.故OAB △的外接圆的方程是22620x y xy +--=.(2)①当直线l 过原点时,设直线方程为y =kx ,由点A (1,3)到直线l ,=,解得k =-7或k=1,此时直线l 的方程为y=-7x 或y =x .②当直线l 不过原点时,设直线方程为x+y =a ,由点A (1,3)到直线l 的距离为,=解得a =2或a=6,此时直线l 的方程为x+y-2=0或x+y-6=0.综上所述,直线l 的方程为y =-7x 或y =x 或x+y-2=0或x+y-6=0.18.解:(1)2()2cos sin 1)sin 222sin(23f x x x x x x x π=--==-,所以函数()f x 的最小正周期π.sin y x = 的减区间为3[2,2],22k k k Z ππππ++∈,由3222232k x k πππππ+-+ 得5111212k x k ππππ++,所以函数()f x 的单调递减区间为511[,],1212k k k Z ππππ++∈.(2)因为 [,0]2x π∈-,所以42[,]333x πππ-∈--.所以22sin(2)33x π--.所以函数()f x 在区间[,0]2π-上的取值范围是[2,3]-.19.解:方案一:选条件①解:(1)由题意,212a a =,314a a =,41484a a -=-,2a ,3a ,44a -成等差数列,32424a a a ∴=+-,即1118284a a a =+-,解得12a =,1222n n n a -∴== ,*n N ∈.(2)由(1)知,22(1)log (1)log 2n n b n a n =+=+(1)n n n =+,记242n n n c b +=,则222224242112[](1)(1)n n n n c b n n n n ++===-++,12n nT c c c ∴=++⋯+2222221111112()2()2[]1223(1)n n =-+-+⋯+-+2222221111112[]1223(1)n n =-+-+⋯+-+22112[]1(1)n =-+222(1)n =-+.方案二:选条件②解:(1)由题意,1S ,1a =,21232S a +=+,317S a =,1S ,22S +,3S 成等差数列,2132(2)S S S ∴+=+,即1112(32)7a a a +=+,解得12a =,1222n n n a -∴== ,*n N ∈.(2)同方案一第(2)题解答过程.20.解:(1)取BC 的中点O ,连接AO ,1B O ,由于ABC ∆与△1B BC 是全等的等边三角形,所以有AO BC ⊥,1B O BC ⊥,且1AO B O O = ,所以BC ⊥平面1B AO,由11AB B AO ⊂平面,所以1BC AB ⊥;(2)设AB a =,ABC ∆与△1B BC 是全等的等边三角形,所以11BB AB BC AC B C a =====,又11cos 4B BA ∠=,由余弦定理可得2222113242AB a a a a a =+-= ,常德市一中2021届高三数学试题卷第4页共2页在△1AB C 中,有22211AB AO B O =+,以OA ,OB ,1OB 分别为x ,y ,z 轴建立空间直角坐标系,如图所示,则3(,0,0)2A a ,(0C ,2a-,0),13(0,0,)2B a ,1333(,,0),(,0,)2222a AC a AB a a =--=- 设平面1AB C 的一个法向量为(,,)m x y z =,由100m AC m AB ⎧=⎪⎨=⎪⎩,得3102233022ax ay ax az ⎧--=⎪⎪⎨⎪-+=⎪⎩,令1x =,则(1,3,1)m =-,又平面1BCB 的一个法向量为(1,0,0)n =,由15cos ,55m n <>==,所以二面角1B B C A --的余弦值为55.21.解:(1) 离心率为12c e a ==,2a c ∴=,2ABF ∆ 的周长为8,48a ∴=,得2a =,1c ∴=,2223b a c =-=,因此,椭圆C 的标准方程为22143x y +=.(2)设2ABF ∆的内切圆半径为r ,∴2221(||||||)2ABF S AF AB BF r =++ ,又22||||||8AF AB BF ++= ,∴24ABF S r = ,要使2ABF ∆的内切圆面积最大,只需2ABF S 的值最大.设1(A x ,1)y ,2(B x ,2)y ,直线:1l x my =-,联立221431x y x my ⎧+=⎪⎨⎪=-⎩消去x 得:22(34)690m y my +--=,易得△0>,且122634m y y m +=+,122934y y m -=+ ,所以222212121212222213636121||||()42(34)343(1)1ABF m m S F F y y y y y y m m m +=-=+-=+=++++ ,设211t m =+ ,则2212121313ABF t S t t t==++ ,设13(1)y t t t =+ ,2130y t '=->,所以13y t t=+在[1,)+∞上单调递增,所以当1t =,即0m =时,2ABF S 的最大值为3,此时34r =,所以2ABF ∆的内切圆面积最大为916π.22.解:(1)()sin cos sin cos f x x x x x x x '=+-=………………1分由()0f x '>得:350(0,)(2,2)222x x k k k Nπππππ>∈⋃++∈当时,………………3分310(2,2)22x x k k k Nππππ<∈----∈当时,………………5分()f x ∴的单调递增区间为31(2,2)22k k k N ππππ----∈,(0,)2π,35(2,2)22k k k N ππππ++∈.………………6分(2)证明:由0,0)(>='x x f 得:*(21),()2i n x n N π-=∈………………7分222221422(21)(21)1i x n n ππ=<⋅---*2222211(),(2,)(22)2222n n N n n n n ππ=⋅=⋅-≥∈--………………9分911212)2121(2)]21221()8161()6141()4121[(2111222222322<=⋅<-=--++-+-+-<++∴ππππn n n x x x n ………………12分常德市一中2021届高三数学试题卷第5页共2页。