电极电势的能斯特方程
- 格式:ppt
- 大小:393.00 KB
- 文档页数:25
能斯特方程计算电极电势1、电极电势的产生——双电层理论电极电势的大小主要取决于电极的本性,并受温度、介质和离子浓度等因素的影响。
为了赢得各种电极的电极电势数值,通常以某种电极的电极电势并作标准与其它各试样电极共同组成电池,通过测量电池的电动势, 而确认各种相同电极的相对电极电势e值。
年国际单纯化学与应用化学联合会(iupac)的建议,使用标准氢电极做为标准电极,并人为地规定标准氢电极的电极电势为零。
(1)标准氢电极电极符号: pt|h2(.3kpa)|h+(1mol.l-1)电极反应: 2h+ + 2e = h2(g)eφh+/ h2 = 0 v右上角的符号“φ”代表标准态。
标准态要求电极处于标准压力(.kpa)下,组成电极的固体或液体物质都是纯净物质;气体物质其分压为.kpa;组成电对的有关离子(包括参与反应的介质)的浓度为1mol.l-1(严格的概念是活度)。
通常测定的温度为k。
(2) 标准电极电势用标准氢电极和试样电极在标准状态下共同组成电池,测出该电池的电动势值,并通过直流电压表确认电池的正负极,即可根据e池 = e(+)- e(-)排序各种电极的标准电极电势的相对数值。
例如在k,用电位计测得标准氢电极和标准zn电极所组成的原电池的电动势(e池)为0.v,根据上式计算zn2+/zn电对的标准电极为-0.v。
用同样的办法可测得cu2+/cu电对的电极电势为+0.34v。
电极的 e为正值则表示共同组成电极的水解型物质,得电子的女性主义大于标准氢电极中的h+,例如铜电极中的 cu2+;例如电极的为负值,则共同组成电极的水解型物质得电子的女性主义大于标准氢电极中的h+,例如锌电极中的zn2+。
实际应用领域中,常采用一些电极电势较平衡电极例如饱和状态甘汞电极和银-氯化银电极做为参比电极和其它试样电极形成电池,求出其它电极的电势。
饱和状态甘汞电极的.电极电势为0.v。
银-氯化银电极的电极电势为0.v。
第7 讲电化学基础知行合一、经世致用7.4 标准电极电势,能斯特方程7.4 Standard electrode potential, Nernst equation本次课主要内容:标准电极电势标准电极电势与金属活泼顺序的关系电池电动势的能斯特方程电极电势的能斯特方程标准电极电势-由于电极电势的大小与物质的本性、反应体系的温度和浓度等条件有关,在实际应用中,为了统一比较标准,提出了标准电极电势的概念。
-将待测电极处于热力学标准态下测定,所测得的电极电势即为其标准电极电势,记为:E ⊖(氧化态/ 还原态)-将各种电对的标准电极电势以由小到大的顺序自上而下排列就构成了标准电极电势表。
通常有酸性E⊖表和碱性E⊖表两种。
-部分常见电对的E⊖(298.15K)见下表,其它电对的E⊖(298.15K)见教材附录或相关物理化学手册。
电对电极反应E ⊖/V Li +/Li Li + + e -⇌Li -3.040K +/K K + + e -⇌K -2.924Zn 2+/Zn Zn 2+ + 2e -⇌Zn -0.7626H +/H 22H ++ 2e -⇌2H 20Cu 2+/Cu Cu 2++ 2e -⇌Cu 0.340O 2/H 2O O 2+4H ++ 4e -⇌2H 2O 1.229Cl 2/Cl -Cl 2+ 2e -⇌2Cl - 1.229F 2/HF(aq)F 2+2H ++ 2e -⇌2HF(aq) 3.053XeF/Xe(g)XeF + e -⇌Xe(g) + F - 3.4标准电极电势表(298.15K )氧化态的氧化能力增强还原态的还原能力增强标准电极电势表的几点补充说明-表中E采用的是1953 年IUPAC 规定的还原电势,每一个电极的电极反应均写成还原反应形式。
-E⊖小的电对,其对应的还原态物质的还原性强。
E⊖大的电对,其对应的氧化态物质的氧化性强。
因此,在标准状态下,直接比较电极电势E⊖值大小可判断氧化剂、还原剂的强弱。
第7 讲电化学基础知行合一、经世致用7.5 电极电势能斯特方程的影响因素7.5 The influencing factors of electrode potential Nernst equation本次课主要内容:酸度对电极电势的影响难溶化合物的形成对电极电势的影响弱酸或弱碱的生成对电极电势的影响E-pH 图•一般而言,温度、浓度或分压等因素的影响不大。
仅当氧化态或还原态物质浓度很大或很小、以及电极反应中物质的计量系数很大时,温度、浓度或分压等才会有显著影响。
•从电极电势的能斯特方程可知,电极电势主要决定于电极的本性,即标准电极电势E 的大小。
⊖•电极电势能斯特方程的通式:E = E –lg J⊖RTnF酸度对电极电势的影响对于有H +或OH -参与的电极反应,酸度变化对E将产生影响。
已知E Ө(Cr 2O 72‾/Cr 3+) =1.232 V ,c (Cr 2O 72‾) = c (Cr 3+) =1.0mol·L -1。
计算298.15 K 时,电对Cr 2O 72-/Cr 3+ 在下列情况下的E (Cr 2O 72-/Cr 3+)。
(1)在1.0 mol·L -1 HCl 中;(2)在中性溶液中。
解:写出配平的电极反应为:Cr 2O 72-+ 14H + + 6e -⇌2Cr 3+ + 7H 2O(1)当c (H +) = 1.0 mol·L‾1,c (Cr 2O 72‾) = c (Cr 3+) = 1.0 mol·L‾1E = E –lg ⊖0.05926c (Cr 3+)2c (Cr 2O 72-) c (H +)14能斯特方程为:E = 1.232 –lg 0.05926 1.021.0 ×1.014= 1.232 V例1c (H +): 1.0 mol·L -11.0×10-7 mol·L -1 E (Cr 2O 72-/Cr 3+) : 1.232 V 0.265 V(2)当c (H +) = 1.0 ×10-7 mol·L‾1,c (Cr 2O 72‾) = c (Cr 3+) = 1.0mol·L‾1E = 1.232 –lg 0.05926 1.021.0 ×(1.0×10-7)14= 0.265 V-含氧酸盐在酸性介质中的氧化性更强。
第7 讲电化学基础知行合一、经世致用7.5 电极电势能斯特方程的影响因素7.5 The influencing factors of electrode potential Nernst equation本次课主要内容:酸度对电极电势的影响难溶化合物的形成对电极电势的影响弱酸或弱碱的生成对电极电势的影响E-pH 图•一般而言,温度、浓度或分压等因素的影响不大。
仅当氧化态或还原态物质浓度很大或很小、以及电极反应中物质的计量系数很大时,温度、浓度或分压等才会有显著影响。
•从电极电势的能斯特方程可知,电极电势主要决定于电极的本性,即标准电极电势E 的大小。
⊖•电极电势能斯特方程的通式:E = E –lg J⊖RTnF酸度对电极电势的影响对于有H +或OH -参与的电极反应,酸度变化对E将产生影响。
已知E Ө(Cr 2O 72‾/Cr 3+) =1.232 V ,c (Cr 2O 72‾) = c (Cr 3+) =1.0mol·L -1。
计算298.15 K 时,电对Cr 2O 72-/Cr 3+ 在下列情况下的E (Cr 2O 72-/Cr 3+)。
(1)在1.0 mol·L -1 HCl 中;(2)在中性溶液中。
解:写出配平的电极反应为:Cr 2O 72-+ 14H + + 6e -⇌2Cr 3+ + 7H 2O(1)当c (H +) = 1.0 mol·L‾1,c (Cr 2O 72‾) = c (Cr 3+) = 1.0 mol·L‾1E = E –lg ⊖0.05926c (Cr 3+)2c (Cr 2O 72-) c (H +)14能斯特方程为:E = 1.232 –lg 0.05926 1.021.0 ×1.014= 1.232 V例1c (H +): 1.0 mol·L -11.0×10-7 mol·L -1 E (Cr 2O 72-/Cr 3+) : 1.232 V 0.265 V(2)当c (H +) = 1.0 ×10-7 mol·L‾1,c (Cr 2O 72‾) = c (Cr 3+) = 1.0mol·L‾1E = 1.232 –lg 0.05926 1.021.0 ×(1.0×10-7)14= 0.265 V-含氧酸盐在酸性介质中的氧化性更强。
电极电势的能斯特方程
电极电势的能斯特方程是描述电极电势与溶液中离子浓度之间关系的方程。
能斯特方程可以表示为:
E = Eº + (0.0592/n)log([Ox]/[Red])
其中:
E为电极电势
Eº为标准电极电势
n为电子转移的电子数
[Ox]为氧化物的浓度
[Red]为还原物的浓度
能斯特方程描述了电极电势与溶液中各种离子浓度之间的关系。
通过测量电极电势的变化,可以推断溶液中各种离子的浓度。
能斯特方程在电化学研究中被广泛应用,可以用于确定化学反应的平衡常数、反应速率等。
能斯特方程在电化学中用来计算电化学是研究电荷在电解质溶液中传递和转化的科学,其应用广泛,包括电池、电解电镀、腐蚀等领域。
在电化学中,能斯特方程被广泛用于计算电极反应的电势。
本文将详细介绍能斯特方程的原理和应用,并探讨其在电化学中的重要性。
能斯特方程是由德国化学家费迪南德·能斯特于1911年提出的,用于描述电极反应的电势与反应物浓度之间的关系。
能斯特方程的一般形式如下:E = E0 - (RT/nF)lnQ其中,E是电极反应的电势,E0是标准电极电势,R是理想气体常数,T是温度,n是电子转移数,F是法拉第常数,Q是反应物浓度的比值。
能斯特方程可以用于计算电极反应在不同反应物浓度下的电势变化。
根据能斯特方程,当反应物浓度趋近于无穷大时,电势趋近于标准电极电势;当反应物浓度趋近于零时,电势趋近于标准电极电势的负值。
这表明能斯特方程可以描述电极反应在不同浓度条件下的电势变化趋势。
能斯特方程在电化学中的应用非常广泛。
首先,能斯特方程可以用于计算电池的电动势。
电池是将化学能转化为电能的装置,其电动势可以通过能斯特方程计算得到。
通过测量电池中反应物的浓度,可以利用能斯特方程计算出电池的电势,从而评估电池的性能。
能斯特方程还可以用于计算电解电镀过程中的电势。
电解电镀是利用电解质溶液中的离子对金属表面进行镀层的过程。
通过能斯特方程,可以计算出电解电镀过程中的电势变化,从而优化电镀工艺,提高电镀质量。
能斯特方程还可以用于研究腐蚀过程中的电势变化。
腐蚀是金属与其周围环境发生氧化反应的过程,其电势变化可以通过能斯特方程进行分析。
通过研究腐蚀过程中的电势变化,可以预测金属的腐蚀速率,从而采取相应的防腐措施。
能斯特方程在电化学中的应用十分重要。
通过能斯特方程,我们可以计算电极反应的电势,从而评估电化学系统的性能。
无论是电池、电解电镀还是腐蚀研究,能斯特方程都发挥着关键的作用。
因此,深入理解和应用能斯特方程对于电化学研究和应用具有重要意义。