第二章 多元函数微分法及其应用 第四节 多元函数微分法在几何上的应用
- 格式:ppt
- 大小:2.19 MB
- 文档页数:25
数二考多元函数微分学的几何应用微分学是数学中的一个重要分支,它研究的是函数的变化规律。
而多元函数微分学则是微分学的一个延伸,研究的是多个变量的函数的变化规律。
在实际应用中,多元函数微分学有着广泛的应用,尤其在几何学中,可以帮助我们揭示图形的性质和变化规律。
我们来看一个简单的例子。
假设有一个平面上的曲线,我们想要研究它的切线方程。
通过多元函数微分学,我们可以求出曲线上任意一点的切线方程。
具体的方法是,首先求出曲线的导数,然后将导数代入切线方程的一般式中,即可得到切线方程。
这样,我们就可以通过切线方程来描述曲线的变化情况了。
接下来,我们来看一个更复杂的例子。
假设有一个三维空间中的曲面,我们想要研究它的切平面方程。
通过多元函数微分学,我们可以求出曲面上任意一点的切平面方程。
具体的方法是,首先求出曲面的偏导数,然后将偏导数代入切平面方程的一般式中,即可得到切平面方程。
这样,我们就可以通过切平面方程来描述曲面的变化情况了。
除了切线方程和切平面方程,多元函数微分学还可以帮助我们研究曲线和曲面的曲率。
曲率是描述曲线弯曲程度的一个重要指标,可以帮助我们了解曲线的形状和性质。
在多元函数微分学中,曲率可以通过求曲线的二阶导数来计算。
具体的方法是,首先求出曲线的一阶导数和二阶导数,然后将导数代入曲率公式中,即可得到曲线的曲率。
通过研究曲线的曲率,我们可以揭示曲线的弯曲情况和变化规律。
同样地,多元函数微分学还可以帮助我们研究曲面的曲率。
曲面的曲率是描述曲面弯曲程度的一个重要指标,可以帮助我们了解曲面的形状和性质。
在多元函数微分学中,曲面的曲率可以通过求曲面的二阶偏导数来计算。
具体的方法是,首先求出曲面的一阶偏导数和二阶偏导数,然后将偏导数代入曲率公式中,即可得到曲面的曲率。
通过研究曲面的曲率,我们可以揭示曲面的弯曲情况和变化规律。
除了切线方程、切平面方程和曲率,多元函数微分学还可以帮助我们研究曲线和曲面的极值。
极值是描述函数在某个区间内取得最大值或最小值的点,可以帮助我们了解函数的最优解。
第九章多元函数微分法及其应用一、基本要求及重点、难点1. 基本要求(1)理解二元函数的概念,了解多元函数的概念。
(2)了解二元函数的极限、连续性概念,有界闭域上连续函数的性质。
(3)理解偏导数和全微分的概念,熟练掌握偏导数的计算,了解全微分存在的必要条件和充分条件。
(4)了解方向导数与梯度的概念及其计算方法。
(5)掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导数。
(6)会求隐函数(包括由方程组确定的隐函数)的偏导数(主要是一阶)。
(7)了解曲线的切线和法平面及曲面的切平面与法线、并会求出它们的方程。
(8)理解多元函数极值和条件极值的概念,会求二元函数的极值。
了解求条件极值的拉格朗日乘数法,会求解一些较简单的最大值和最小值的应用问题。
2. 重点及难点(1)重点:多元函数概念,偏导数与全微分概念,偏导数计算,微分在几何上的应用,多元函数的极值的计算。
(2)难点:二重极限的定义与计算,多元函数连续;偏导数存在与可微之间的关系;复合函数的高阶偏导数;方向导数、偏导数、梯度之间的关系。
二、内容概述多元函数微分学是一元函数微分学的推广,因此两者之间有许多相似之处,但是要特别注意它们之间的一些本质差别。
1.多元函数的极限和连续(1)基本概念1)点集和区域。
2)多元函数的定义、定义域。
3)二元函数的极限、连续。
(2)基本定理1)多元初等函数在其定义域内是连续的。
2)多元连续函数在有界闭区域上一定有最大值M、最小值m;且必取到最大值M和最小值m之间的任何值。
2.多元函数微分法(1)基本概念偏导数、全微分、高阶偏导数的定义。
(2) 计算方法1) 偏导数:),(y x f z =在),(00y x 处对x 的偏导数x x xz =∂∂,就是一元函数),(0y x f z =在0x x =处的导数;对y 的偏导数x x xz =∂∂(同理)。
2) `全微分:),(y x f z =的全微分dy yzdx x z dz ∂∂+∂∂=3) 复合函数求导法则:画出函数到自变量的路经,然后利用链式迭加法则:即同条路经的偏导数相乘,不同路经的偏导数相加,求出所要的偏导数。
多元函数微分学的几何应用一、多元函数微分学多元函数微分学是微积分的一个分支,研究的是多个自变量的函数的导数、微分和全微分等概念。
与一元函数微分学不同的是,多元函数在求导时需要通过偏导数来计算,而全微分可以看做多元函数在某一点上的线性近似。
多元函数微分学在实际生活中有着广泛的应用,尤其是在几何学方面。
二、几何应用1. 向量场和梯度向量场是一个函数与向量的映射关系,在几何学中经常用于描述速度场、磁场等。
其中,梯度是向量场的一个重要概念。
梯度表示在某一点上函数变化增加最快的方向。
例如,在平面上的某一点上,一个函数的梯度表示了函数值增加最快的方向及增加的速率。
2. 方向导数和梯度的应用方向导数表示函数在某一点上沿着某一给定方向上的导数。
在平面几何中,方向导数可以用来求解曲面的切平面方程。
具体来说,可以通过梯度和方向向量的点积计算出方向导数,从而得到曲面上某一点的切平面方程。
3. 曲面积分曲面积分是对曲面上的函数进行积分,类似于线积分。
在计算曲面积分时,需要用到曲面的面积元素,这里面积元素的计算需要用到微积分中的偏微分。
具体来说,可以通过将曲面分成小的面元,计算每个面元的面积和函数值,然后将它们累加起来,从而得到曲面上的积分值。
4. 极值和拐点在多元函数中,类似于一元函数中的极值和拐点的概念。
在平面几何中,可以将这些概念应用于曲线的局部特征的分析中。
通过极值和拐点的计算,可以得到曲线上的最大和最小值,以及拐点的位置和拐点的类型等信息。
总之,多元函数微分学在几何学中有着广泛的应用。
通过对向量场、梯度、方向导数、曲面积分、极值和拐点等概念的研究,可以深入分析曲线、曲面的本质特征和局部特征,从而为实际问题的求解提供了精确的数学工具。
高等数学AⅠ吉林大学数学学院金今姬第二章多元函数的微分学及其应用一、偏导数二、全微分三、复合函数的微分法四、隐函数微分法五、方向导数与梯度六、多元微分学的几何应用七、多元函数的Taylor公式与极值问题§7 多元微分学的几何应用7.1空间曲线的切线与法平面7.2曲面的切平面与法线复习: 平面曲线的切线与法线已知平面光滑曲线(x f y =,(00y x 切线方程0y y −法线方程0y y −若平面光滑曲线方程为,0,(=y x F ,(,(d d y x F y x F x y y x −=故在点,(00y x 切线方程法线方程(0y y −,(00y x F y +(,(000x x y x F x −0=((00x x x f −′=((100x x x f −′−=在点有有因 0(,(000=−−y y y x F x ,(00y x F y (0x x −7.1 空间曲线的切线与法平面过点 M 与切线垂直的平面称为曲线在该点的法位置.ΓT M π空间光滑曲线在点 M 处的切线为此点处割线的极限平面.1. 曲线方程为参数方程的情况(,(,(:t z t y t x ωψϕ===Γzz z y y y x x x ∆−=∆−=∆−000,t ∆上述方程之分母同除以得令,0→∆t 切线方程000z z y y x x −=−=−,,(0000z y x M t t 对应设=,,(0000z z y y x x M t t t ∆+∆+∆+′∆+=对应(0t ϕ′(0t ψ′(0t ω′T M ΓM ′:的方程割线M M ′((00x x t −′ϕ此处要求(,(,(000t t t ωψϕ′′′也是法平面的法向量,切线的方向向量:称为曲线的切向量.((00y y t −′+ψ0((00=−′+z z t ω如个别为0, 则理解为分子为0 .πΓM 不全为0,(,(,((000t t t T ωψϕ′′′=T 因此得法平面方程 o (t r T 切线方程000z z y y x x−=−=−(0t ϕ′(0t ψ′(0t ω′例7.1 求曲线32,,t z t y t x ===在点(1,1,1处的切线与法平面方程.解:(((((,3,2,1,,2'''t t t z t y t x =点(1,1,1对应于参数t =1,故曲线在点(1,1,1处的切向量(((((.3,2,11,1,1'''==z y x s 所求切线方程为,312111−=−=−z y x 法平面方程为(((,013121=−+−+−z y x 即.0632=−++z y x2. 曲线为一般式的情况((,,:x z z x y y ==Γ光滑曲线取x 为参数,((,,,:x z z x y y x x ===Γ根据上述情形的结论,在点M 处的切向量为(((,,,10'0'x z x y s =切线方程为((,10'00'00x z z z x y y y x x −=−=−法平面方程为(((((.000' 00'0=−+−+−z z x z y y x y x x光滑曲线⎩⎨⎧==Γ0,,(0,,(:z y x G z y x F 当0,(,(≠∂∂=z y G F J ⎩⎨⎧==((x z x y ψϕ=x y d d 曲线上一点,,(000z y x M x y z, 且有=x z d d ,,(,(1x z G F J ∂∂,,(,(1y x G F J ∂∂时, Γ 可表示为处的切向量为⎭⎬⎫⎩⎨⎧∂∂∂∂=M M y x G F J x z G F J ,(,(1,,(,(1,1{}(,(,100x x T ψϕ′′=3. 空间曲线的情况000z z y y x x −=−=−Mz y G F,(,(∂∂则在点,,(000z y x M 切线方程法平面方程有Mz y G F ,(,(∂∂Mx z G F,(,(∂∂My x G F ,(,(∂∂(0x x −My x G F,(,(∂∂+Mx z G F ,(,(∂∂+(0y y −0(0=−z z 或⎭⎬⎫⎩⎨⎧∂∂∂∂∂∂=M MM y x G F x z G F z y G F T ,(,(,,(,(,,(,(为了便于记忆,用行列式记为⎭⎬⎫⎩⎨⎧∂∂∂∂∂∂=M MM y x G F x z G F z y G F T ,(,(,,(,(,,(,(Mzy x z y xG G G F F F k j i T =((((((000=−−−M G M G M G M F M F M F z z y y x x z y x z y x 也可表为(,(,((,(,(00y y Mx z G F x x M z y G F −∂∂+−∂∂法平面方程0(,(,(0=−∂∂+z z M y x G F例7.2 求曲线0,102222=++=++z y x z y x 在点M ( 1,–2, 1 处的切线方程与法平面方程. 切线方程110211−−=+=−z y x 解法1 令,,102222z y x G z y x F ++=−++=则即⎩⎨⎧=+=−+0202y z x M z yx z y xG G G F F F k j i T =Mz y x k j i 111242=111282−=kj i (.1,0,110−−=法平面方程01(2(01(=−−+⋅+−z y x 即0=−z x x xz z x y y −=+d d d d 2解法2. 方程组两边对 x 求导, 得1d d d d −=+x zx y 112112d d z y xy xz −−=112d d z y x y =曲线在点 M (1,–2, 1 处有:切向量解得11−−z x ,2z y x z −−=z y y x −−=221,0,1(−=⎟⎠⎞⎜⎝⎛=M M x z x y T d d ,d d ,1切线方程121−=+=−z y x 即⎩⎨⎧=+=−+0202y z x 法平面方程01(1(2(01(1=−⋅−++⋅+−⋅z y x 即0=−z x 点 M (1,–2, 1 处的切向量01−11,0,1(−=T当空间曲线(((t z z t y y t x x ===Γ,,:给出时,若(((t z t y t x ''',,连续且不同时为零,则曲线上每一点处都有切线,并且切线随着切点的移动而连续地变动,称为光滑曲线.当空间曲线((x z z x y y ==Γ,:给出时,若((x z x y '',连续,则此曲线是光滑曲线.当空间曲线⎩⎨⎧==Γ0,,(0,,(:z y x G z y x F 给出时,若F ,G 是类函数且Jacobi 行列式不同时为零时,则此曲线是光滑曲线.((((((y x G F x z G F z y G F ,,,,,,,,∂∂∂∂∂∂(1C,,(:=Σz y x F 1.设有光滑曲面通过其上定点,,(000z y x M 0t t =设对应点M ,(,(,(000t t t ωψϕ′′′切线方程为(((000000t z z t y y t x x ωψϕ′−=′−=′−不全为0 . 则Γ 在,(,(,(:t z t y t x ωψϕ===Γ且点 M 的切向量为任意引一条光滑曲线M ΓT 下面证明:此平面称为∑ 在该点的切平面.∑ 上过点 M 的任何曲线在该点的切线都在同一平面上.(,(,((000t t t T ωψϕ′′′=7.2 曲面的切平面与法线M ΓT 证:在∑ 上,(,(,(:t z t y t x ωψϕ===Γ∵0(,(,((≡∴t t t F ωψϕ,0处求导两边在t t =,0M t t 对应点注意=(0t ω′0=,,(000z y x F x ,,(000z y x F y +,,(000z y x F z +(0t ϕ′(0t ψ′得(,(,((000t t t T ωψϕ′′′=,,(,,,(,,,((000000000z y x F z y x F z y x F n z y x =令nT ⊥切向量由于曲线Γ 的任意性 , 表明这些切线都在以为法向量n 的平面上 ,从而切平面存在 .n(,,(0000x x z y x F x −曲面∑ 在点 M 的法向量法线方程000z z y y x x −=−=−(,,(0000y y z y x F y −+0(,,(0000=−+z z z y x F z 切平面方程,,(000z y x F x ,,(000z y x F y,,(000z y x F z M ΓT n,,(,,,(,,,((,,(000000000000z y x F z y x F z y x F z y x F n z y x =∇=(,(000x x y x f x −曲面时, ,(y x f z =zy x f z y x F −=,(,,(则在点,,,(z y x 故当函数 ,(y x f ,(00y x 1,(,(0000000−−=−=−z z y x f y y y x f x x y x 法线方程,y y f F =1−=z F 令有在点,,(000z y x Σ2.当光滑曲面∑ 的方程为显式在点有连续偏导数时, (,(000y y y x f y −+=−0z z ,x x f F =切平面方程γβα,,法向量用2211cos y x f f ++=γ将,(,,(0000y x f y x f y x ,,y x f f 法向量的方向余弦:表示法向量的方向角,并假定法向量方向.为锐角则γ分别记为则,1cos ,1cos 2222y x y y x x f f f f f f ++−=++−=βα向上,1,,(,,((0000y x f y x f n y x −−=例7.4 求椭圆抛物面222y x z +=在点M (1,-1,3处的切平面方程和法线方程.解:因((1,1''1,,−−=y x z z n (,1,4,2−−=故所求切平面方程为(((,031412=−−+−−z y x 即.0342=−−−z y x 法线方程为.134121−−=−+=−z y x3.设曲面∑ 的参数方程为(((,,,,,,v u z z v u y y v u x x ===记((0,,P v u z y A ∂∂=((0,,P v u x z B ∂∂=((0,,P v u y x C ∂∂=不妨设由隐函数存在定理,方程组x=x (u,v ,y=y (u,v 在点(x 0,y 0,u 0,v 0的某一邻域唯一确定一组隐函数u=u (x,y ,v=v (x,y ,并且在(x 0,y 0处,.0≠C .,,,C x v C x u C y v C y u u y v y u x v x =−=−==将u=u (x,y , v=v (x,y ,代入z=z (u,v 得z=z (u (x,y ,,v (x,y .z=z (u (x,y ,,v (x,y .在(x 0,y 0处对x,y 求偏导,由连锁规则,有(,1C A y z y z C v z u z z u v v u x v x u x −=−=⋅+⋅=(.1C B x z x z C v z u z z u v v u y v y u y −=+−=⋅+⋅=曲面∑ 在点M 0的法向量为 (,1,,1,,⎟⎠⎞⎜⎝⎛−−−=−C B C A z z y x (.,,C B A n =或0P v v v u u uz y x z y x k j in =切平面方程为 (((,0000=−+−+−z z C y y B x x A 法线方程为.000Cz z B y y A x x −=−=−0P vv v u u uz y x z y x k j i n =例7.5 求曲面3322,,v u z v u y v u x +=+=+=在对应于u =1,v =-1的点处的切平面方程.解:曲面上对应于u =1,v =-1的点为M (0,2,0,在该点故所求切平面方程为(,0203=−−⋅+z y x 即.03=−z x (1,1''''''−vv v u u u z y x z y x k j i (1,122321321−=vv uu kj i 321321−=k j i (,4,0,12−=当曲面(0,,:=∑z y x F 给出时,若''',,zyxFF F 连续且不同时为零,则曲面上每一点处都有切平面和法线,并且法线随着切点的移动而连续地变动,称为光滑曲面.zyxo1.求圆柱螺旋线ϕϕϕk z R y R x ===,sin ,cos 2πϕ=对应点处的切线方程和法平面方程. ,2时当πϕ=切线方程=−R x法平面方程x R −022=+−k z k x R π即⎩⎨⎧=−=−+02R y k R z R x k π即解: 由于,sin ϕR x −=′0R y −kk z 2π−=,cos ϕR y =′,k z =′,,0(20k R M π对应的切向量为0(2=−+k z k π在,0,(k R T −=, 故2. 确定正数σ 使曲面σ=z y x 222z y x ++在点,,(000z y x M 解: 二曲面在 M 点的法向量分别为二曲面在点 M 相切, 故000000000z y x y z x x z y ==0x 22020z y x ==∴又点 M 在球面上,32202020a z y x ===故于是有000z y x =σ2a=相切.333a =与球面,,,(0000001y x z x z y n =,,(0002z y x n =21//n n , 因此有20y 20z 23. 如果平面01633=+−+z y x λ与椭球面相切,提示: 设切点为,,,(000z y x M 则223y x +.λ求000226z y x ==3λ3−01633000=+−+z y x λ163202020=++z y x 2±=λ162=+z (二法向量平行 (切点在平面上(切点在椭球面上证明曲面(x y f x z =上任一点处的切平面都通过原点.提示: 在曲面上任意取一点,,,(000z y x M 则通过此=−0z z (0x x x z M −∂∂(0y y y z M −∂∂+4. 设 f ( u 可微,证明原点坐标满足上述方程 .点的切平面为5. 证明曲面0,(=−−y n z y m x F 与定直线平行,.,(可微其中v u F 证: 曲面上任一点的法向量,1F ′,((21n F m F −⋅′+−⋅′2F ′取定直线的方向向量为,m ,1n 则(定向量故结论成立 .的所有切平面恒(=n (=l ,0=⋅n l6. 求曲线⎩⎨⎧=−+−=−++0453203222z y x x z y x 解: 点 (1,1,1 处两曲面的法向量为2,2,1(−=因此切线的方向向量为1,9,16(−=由此得切线:111−=−=−z y x 1691−法平面:01(1(91(16=−−−+−z y x 024916=−−+z y x 即与法平面.1,1,1(12,2,32(z y x n −=5,3,2(2−=n 21n n l ×=在点(1,1,1 的切线作业:习题2.6(A1 (1(4, 3 (1,5;(B2.。