第五章 CCD 图像传感器
- 格式:ppt
- 大小:676.50 KB
- 文档页数:32
CCD 的工作过程1 前照明光输入1 背照明光输入2 电荷生成3 电荷收集4 电荷转移5 电荷测量视频输出第五讲CCD图像传感器基本工作原理 电荷存储电荷耦合CCD电极结构电荷注入和检测CCD特性参数电荷耦合摄像器件:工作原理、特性参数一、电荷存储——光电转换得到的信号电荷怎么存储?为了存储电荷必须制造一个存储区。
不仅要把生成的电荷尽量收集起来,而且保证所收集电荷不被复合。
信号电荷以何种机制储存?信号电荷是空穴还是电子?——CCD多用电子利用电子可以被高电势所吸引的性质。
在光电二极管中,不管用什么方法只要做出高于周围电势的部分,信号电荷(电子)就可以在此集中储存。
电势阱:储存信号电荷的电势分布状态当在栅电极上加上型衬底中的空穴从界面处被排斥到衬底的另一侧,在不同氧化层厚度不存在反型层电荷时栅极电压不变时,表面势与反型层电荷密度的关系:反型层电荷填充势阱时,表面势收缩的情况:溢出 现象水桶模型势阱存信号电荷类似水桶盛水中国科学院长春光学精密机械与物理研究所电荷的收集 埋沟MOS 电容器埋沟电容是在 一个 p-型衬底上建造的;在p-型衬底表面 上形成一个 n-型区(~1μm厚); 然后,生长出一层薄的二氧 化硅(~0.1μm厚);再在二氧化硅层上用金属或高掺杂的多晶 硅制作电极或栅极;至此完成了MOS电容的制作。
电子的势能:N型硅 耗尽区 P型硅Ep = − q × Ψ2-6 q 是电子的电荷 量,而Ψ为静电势电极光生电子-空穴对 二氧化硅中国科学院长春光学精密机械与物理研究所电荷的收集 MOS电容器无偏置时, n-型层内含有多余的电子向p-型层扩散, p-型层内含有多余的空穴并向n-型层扩散; 这个结构与二极管结的结构完全相同。
上述的 扩散产生了内部电场,在n-型层内电势达到最大。
电子势能最小的地方位 于n-型区内并与硅 - 二 氧化硅 (Si - SiO 2) 的 交界面有一定距离 沿此线的电势示于上图. 这个势能最小(或电位 最高) 的地方就是多余 电子聚集的地方。
ccd图像传感器的原理
CCD图像传感器是一种基于电荷耦合器件(Charge-Coupled Device)的光学传感技术。
其原理是利用PN结以及电荷耦合
的原理将光信号转换为电荷信号,并通过逐行读取的方式将这些电荷信号转换为数字图像。
当一个光子击中CCD图像传感器上的感光表面时,它会激发
感光表面上的电子,并将它们转换成电荷信号。
这些电荷信号会被储存在电荷耦合器件中的位势阱中,由于耦合电介质介导电耦合效应,使电荷可以在电荷耦合器件中进行传输。
在图像采集过程中,电荷信号会被逐行读取。
首先,所有的电荷信号都会被传输到传感器芯片的顶部电荷传输区域。
然后,通过逐行读取的方式,将每行中的电荷信号传输到图像信号处理电路中进行进一步处理。
在逐行读取的过程中,每行的电荷信号会根据时钟脉冲的控制,被顺序地传输到图像信号处理电路中。
在图像信号处理电路中,电荷信号会被放大、调整和数字化,最终形成完整的数字图像。
CCD图像传感器具有高灵敏度、高动态范围和低噪声等优点,因此广泛应用于数码相机、摄像机、望远镜等领域。
它的原理基于光电效应和电荷耦合效应,为数字图像采集和处理提供了高质量的解决方案。
C C D图像传感器详解CCD图像传感器CCD(Charge Coupled Device)全称为电荷耦合器件,是70年代发展起来的新型半导体器件。
它是在MOS集成电路技术基础上发展起来的,为半导体技术应用开拓了新的领域。
它具有光电转换、信息存贮和传输等功能,具有集成度高、功耗小、结构简单、寿命长、性能稳定等优点,故在固体图像传感器、信息存贮和处理等方面得到了广泛的应用。
CCD图像传感器能实现信息的获取、转换和视觉功能的扩展,能给出直观、真实、多层次的内容丰富的可视图像信息,被广泛应用于军事、天文、医疗、广播、电视、传真通信以及工业检测和自动控制系统。
实验室用的数码相机、光学多道分析器等仪器,都用了CCD作图象探测元件。
一个完整的CCD器件由光敏单元、转移栅、移位寄存器及一些辅助输入、输出电路组成。
CCD工作时,在设定的积分时间内由光敏单元对光信号进行取样,将光的强弱转换为各光敏单元的电荷多少。
取样结束后各光敏元电荷由转移栅转移到移位寄存器的相应单元中。
移位寄存器在驱动时钟的作用下,将信号电荷顺次转移到输出端。
将输出信号接到示波器、图象显示器或其它信号存储、处理设备中,就可对信号再现或进行存储处理。
由于CCD光敏元可做得很小(约10um),所以它的图象分辨率很高。
一.CCD的MOS结构及存贮电荷原理CCD的基本单元是MOS电容器,这种电容器能存贮电荷,其结构如图1所示。
以P型硅为例,在P型硅衬底上通过氧化在表面形成SiO2层,然后在收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除SiO 2 上淀积一层金属为栅极,P 型硅里的多数载流子是带正电荷的空穴,少数载流子是带负电荷的电子,当金属电极上施加正电压时,其电场能够透过SiO 2绝缘层对这些载流子进行排斥或吸引。
于是带正电的空穴被排斥到远离电极处,剩下的带负电的少数载流子在紧靠SiO 2层形成负电荷层(耗尽层),电子一旦进入由于电场作用就不能复出,故又称为电子势阱。