第讲CCD图像传感器new
- 格式:ppt
- 大小:1.32 MB
- 文档页数:36
ccd图像传感器的原理
CCD图像传感器是一种基于电荷耦合器件(Charge-Coupled Device)的光学传感技术。
其原理是利用PN结以及电荷耦合
的原理将光信号转换为电荷信号,并通过逐行读取的方式将这些电荷信号转换为数字图像。
当一个光子击中CCD图像传感器上的感光表面时,它会激发
感光表面上的电子,并将它们转换成电荷信号。
这些电荷信号会被储存在电荷耦合器件中的位势阱中,由于耦合电介质介导电耦合效应,使电荷可以在电荷耦合器件中进行传输。
在图像采集过程中,电荷信号会被逐行读取。
首先,所有的电荷信号都会被传输到传感器芯片的顶部电荷传输区域。
然后,通过逐行读取的方式,将每行中的电荷信号传输到图像信号处理电路中进行进一步处理。
在逐行读取的过程中,每行的电荷信号会根据时钟脉冲的控制,被顺序地传输到图像信号处理电路中。
在图像信号处理电路中,电荷信号会被放大、调整和数字化,最终形成完整的数字图像。
CCD图像传感器具有高灵敏度、高动态范围和低噪声等优点,因此广泛应用于数码相机、摄像机、望远镜等领域。
它的原理基于光电效应和电荷耦合效应,为数字图像采集和处理提供了高质量的解决方案。
CCD图像传感器CCD(Charge Coupled Device)全称为电荷耦合器件,是70年代发展起来的新型半导体器件。
它是在MOS集成电路技术基础上发展起来的,为半导体技术应用开拓了新的领域。
它具有光电转换、信息存贮和传输等功能,具有集成度高、功耗小、结构简单、寿命长、性能稳定等优点,故在固体图像传感器、信息存贮和处理等方面得到了广泛的应用。
CCD图像传感器能实现信息的获取、转换和视觉功能的扩展,能给出直观、真实、多层次的内容丰富的可视图像信息,被广泛应用于军事、天文、医疗、广播、电视、传真通信以及工业检测和自动控制系统。
实验室用的数码相机、光学多道分析器等仪器,都用了CCD作图象探测元件。
一个完整的CCD器件由光敏单元、转移栅、移位寄存器及一些辅助输入、输出电路组成。
CCD工作时,在设定的积分时间内由光敏单元对光信号进行取样,将光的强弱转换为各光敏单元的电荷多少。
取样结束后各光敏元电荷由转移栅转移到移位寄存器的相应单元中。
移位寄存器在驱动时钟的作用下,将信号电荷顺次转移到输出端。
将输出信号接到示波器、图象显示器或其它信号存储、处理设备中,就可对信号再现或进行存储处理。
由于CCD光敏元可做得很小(约10um),所以它的图象分辨率很高。
一.CCD的MOS结构及存贮电荷原理CCD的基本单元是MOS电容器,这种电容器能存贮电荷,其结构如图1所示。
以P型硅为例,在P型硅衬底上通过氧化在表面形成SiO2层,然后在SiO2上淀积一层金属为栅极,P型硅里的多数载流子是带正电荷的空穴,少数载流子是带负电荷的电子,当金属电极上施加正电压时,其电场能够透过SiO2绝缘层对这些载流子进行排斥或吸引。
于是带正电的空穴被排斥到远离电极处,剩下的带负电的少数载流子在紧靠SiO2层形成负电荷层(耗尽层),电子一旦进入由于电场作用就不能复出,故又称为电子势阱。
当器件受到光照时(光可从各电极的缝隙间经过SiO2层射入,或经衬底的薄P型硅射入),光子的能量被半导体吸收,产生电子-空穴对,这时出现的电子被吸引存贮在势阱中,这些电子是可以传导的。
CCD图像传感器CCD(Charge Coupled Device)全称为电荷耦合器件,就是70年代发展起来的新型半导体器件。
它就是在MOS集成电路技术基础上发展起来的,为半导体技术应用开拓了新的领域。
它具有光电转换、信息存贮与传输等功能,具有集成度高、功耗小、结构简单、寿命长、性能稳定等优点,故在固体图像传感器、信息存贮与处理等方面得到了广泛的应用。
CCD图像传感器能实现信息的获取、转换与视觉功能的扩展,能给出直观、真实、多层次的内容丰富的可视图像信息,被广泛应用于军事、天文、医疗、广播、电视、传真通信以及工业检测与自动控制系统。
实验室用的数码相机、光学多道分析器等仪器,都用了CCD作图象探测元件。
一个完整的CCD器件由光敏单元、转移栅、移位寄存器及一些辅助输入、输出电路组成。
CCD工作时,在设定的积分时间内由光敏单元对光信号进行取样,将光的强弱转换为各光敏单元的电荷多少。
取样结束后各光敏元电荷由转移栅转移到移位寄存器的相应单元中。
移位寄存器在驱动时钟的作用下,将信号电荷顺次转移到输出端。
将输出信号接到示波器、图象显示器或其它信号存储、处理设备中,就可对信号再现或进行存储处理。
由于CCD光敏元可做得很小(约10um),所以它的图象分辨率很高。
一.CCD的MOS结构及存贮电荷原理CCD的基本单元就是MOS电容器,这种电容器能存贮电荷,其结构如图1所示。
以P型硅为例,在P型硅衬底上通过氧化在表面形成SiO2层,然后在SiO2上淀积一层金属为栅极,P 型硅里的多数载流子就是带正电荷的空穴,少数载流子就是带负电荷的电子,当金属电极上施加正电压时,其电场能够透过SiO2绝缘层对这些载流子进行排斥或吸引。
于就是带正电的空穴被排斥到远离电极处,剩下的带负电的少数载流子在紧靠SiO2层形成负电荷层(耗尽层),电子一旦进入由于电场作用就不能复出,故又称为电子势阱。
当器件受到光照时(光可从各电极的缝隙间经过SiO2层射入,或经衬底的薄P型硅射入),光子的能量被半导体吸收,产生电子-空穴对,这时出现的电子被吸引存贮在势阱中,这些电子就是可以传导的。
CCD图像传感器的原理和应用1. 引言CCD (Charge-Coupled Device) 图像传感器是一种常用的光电转换器件,具有高灵敏度、低噪音等特点,广泛应用于数字摄像机、摄像监控、光学传感器等领域。
本文将介绍CCD图像传感器的原理和应用。
2. CCD图像传感器的原理CCD图像传感器是利用光电效应将光信号转换为电信号的器件。
其原理可分为以下几个步骤:2.1 光电转换光通过CCD图像传感器的光敏表面,激发光敏材料中的电子,形成光生载流子对。
光生载流子对的产生与光的能量和波长有关。
2.2 光电荷转移光敏表面形成的光生载流子对被电场作用下转移到表面下方的感光区域。
这一步骤是通过电场的调制将光电荷转移到后续电荷转移阶段。
2.3 电荷积分光电荷在感光区域累积,其数量与光照强度成正比。
该阶段称为电荷积分。
2.4 电荷读出通过移动电荷或光电荷势阱的方式,将电荷沿电荷传输路径传输到输出节点。
最后,电荷通过放大电路放大为电压信号。
3. CCD图像传感器的应用3.1 数字摄像机CCD图像传感器是数字摄像机中的核心部件。
它能够将光信号转换为电信号,并通过后续的编码和压缩处理产生数字图像,实现高质量的图像捕捉和录制。
3.2 摄像监控CCD图像传感器在摄像监控领域广泛应用。
它可以实时拍摄监控区域的图像,并将图像通过监控器或网络传输到监控中心。
CCD图像传感器的高灵敏度和低噪音特性,使得摄像监控系统能够在低光照条件下获取清晰的图像。
3.3 光学传感器光学传感器是利用CCD图像传感器感知环境中的光照强度和光照分布的设备。
光学传感器可以用于测量光线强度、测距、物体识别等应用。
通过对CCD图像传感器输出图像的处理,可以获取物体的形状、颜色和光照分布等信息。
3.4 科学研究CCD图像传感器在科学研究领域也得到广泛应用。
例如,在天文学中,CCD图像传感器可以用于拍摄星系、星云等天体图像。
在生物医学领域,CCD图像传感器可以用于显微镜图像的采集和分析。
CCD图像传感器线阵CCD:用一排像素扫描过,做三次曝光——分离对应于红、绿、蓝三色滤镜,正如名称所表示的,线性是捕获一维图像。
初期应用于广告界拍摄静态图像,线性阵列,处理高辨别率的图像时,受局限于非移动的延续光照的物体。
三线传感器CCD:在三线传感器中,三排并行的像素分离笼罩RGB滤镜,当捕获彩色时,完整的彩色由多排的像素来组合成。
三线CCD传感器多用于高端数码相机,以产生高的辨别率和光谱色阶。
交织传输CCD:这种传感器利用单独的阵列摄取图像和电量转化,允许在拍摄下一图像时在读取当前图像。
交织传输CCD通常用于低端数码相机、摄像机和拍摄动画的广播拍摄机。
全幅面CCD:此种CCD具有更多电量处理能力,更好动态范围,低噪音和传输光学辨别率,全幅面CCD允许即时拍摄全彩。
全幅面CCD由并行浮点寄存器、串行浮点寄存器和信号输出组成。
全幅面CCD曝光是由机械快门或闸门控制去保存图像,并行寄存器用于测光和读取测光值。
图像投摄到作投影幕的并行阵列上。
此元件接收图像信息并把它分成离散的由数目打算量化的元素。
这些信息流就会由并行寄存器流向串行寄存器。
此过程反复执行,直到全部的信息传输完毕。
接着,系统举行精确的图像重组。
数码相机曝光的囫囵流程:1.机械快门打开,CCD曝光2.在CCD内部光信号转为电信号3.快门关闭,堵塞光芒。
4.电量传送到CCD输出口转化为信号。
5.信号被数字化,数字资料输入内存。
6.图像资料被举行处理,显示在或电脑上。
面阵数码相机如何解决彩色图像的曝光?1.三块CCD同时曝光的办法第一种办法是实行了三块CCD芯片同时曝光的办法,它可以在一次曝光拍摄的同时,捕获到全部的彩色信息。
当光芒通过镜头射向CCD表面的时候,由一个特制的棱镜式分光镜,将影像的成像光速成分射到三个不同的CCD平面。
每一个CCD只记录红绿蓝色光中一种色光的彩色信息,并且只再现一种颜色,然后通过软件的对准处理,合成为一幅完整的全彩色画面。
CCD简介CCD的加工工艺有两种,一种是TTL工艺,一种是CMOS工艺,前者是毫安级的耗电量,而后者是微安级的耗电量。
TTL工艺下的CCD成像质量要优于CMOS工艺下的CCD。
CCD广泛用于工业,医疗、民用产品。
CCD功能特性CCD图像传感器可直接将光学信号转换为模拟电流信号,电流信号经过放大和模数转换,实现图像的获取、存储、传输、处理和复现。
其显著特点是:1.体积小重量轻;2.功耗小,工作电压低,抗冲击与震动,性能稳定,寿命长;3.灵敏度高,噪声低,动态范围大;4.响应速度快,有自扫描功能,图像畸变小,无残像;5.应用超大规模集成电路工艺技术生产,像素集成度高,尺寸精确,商品化生产成本低。
因此,许多采用光学方法测量外径的仪器,把CCD器件作为光电接收器。
CCD工作原理CCD从功能上可分为线阵CCD和面阵CCD两大类。
线阵CCD通常将CCD内部电极分成数组,每组称为一相,并施加同样的时钟脉冲。
所需相数由CCD 芯片内部结构决定,结构相异的CCD可满足不同场合的使用要求。
线阵CCD 有单沟道和双沟道之分,其光敏区是MOS电容或光敏二极管结构,生产工艺相对较简单。
它由光敏区阵列与移位寄存器扫描电路组成,特点是处理信息速度快,外围电路简单,易实现实时控制,但获取信息量小,不能处理复杂的图像(线阵CCD如右图所示)。
面阵CCD的结构要复杂得多,它由很多光敏区排列成一个方阵,并以一定的形式连接成一个器件,获取信息量大,能处理复杂的图像。
CCD的应用四十年来,CCD器件及其应用技术的研究取得了惊人的进展,特别是在图像传感和非接触测量领域的发展更为迅速。
随着CCD技术和理论的不断发展,CCD技术应用的广度与深度必将越来越大。
CCD是使用一种高感光度的半导体材料集成,它能够根据照射在其面上的光线产生相应的电荷信号,在通过模数转换器芯片转换成“0”或“1”的数字信号,这种数字信号经过压缩和程序排列后,可由闪速存储器或硬盘卡保存即收光信号转换成计算机能识别的电子图像信号,可对被测物体进行准确的测量、分析。