分析过冷奥氏体等温转变过程及转变产物
- 格式:ppt
- 大小:265.00 KB
- 文档页数:32
共析钢TTT-CCT图分析TTT曲线过冷奥⽒体等温转变曲线——TTT曲线(Time,Temperature,Transformation)过冷奥⽒体等温转变曲线可综合反映过冷奥⽒体在不同过冷度下的等温转变过程:转变开始和转变终了时间、转变产物的类型以及转变量与时间、温度之间的关系等。
因其形状通常像英⽂字母“C”,故俗称其为C曲线,亦称为TTT图。
C曲线中转变开始线与纵轴的距离为孕育期,标志着不同过冷度下过冷奥⽒体的稳定性,其中以550℃左右共析钢的孕育期最短,过冷奥⽒体稳定性最低,称为C曲线的“⿐尖”。
图中最上⾯⼀条⽔平虚线表⽰钢的临界点A1(723℃),即奥⽒体与珠光体的平衡温度。
图中下⽅的⼀条⽔平线Ms(230℃)为马⽒转变开始温度,Ms以下还有⼀条⽔平线Mf(-50℃)为马⽒体转变终了温度。
A1与Ms线之间有两条C曲线,左侧⼀条为过冷奥⽒体转变开始线,右侧⼀条为过冷奥⽒体转变终了线。
A1线以上是奥⽒体稳定区。
Ms线⾄Mf线之间的区域为马⽒体转变区,过冷奥⽒体冷却⾄Ms线以下将发⽣马⽒体转变。
过冷奥⽒体转变开始线与转变终了线之间的区域为过冷奥⽒体转变区,在该区域过冷奥⽒体向珠光体或贝⽒体转变。
在转变终了线右侧的区域为过冷奥⽒体转变产物区。
A1线以下,Ms线以上以及纵坐标与过冷奥⽒体转变开始线之间的区域为过冷奥⽒体区,过冷奥⽒体在该区域内不发⽣转变,处于亚稳定状态。
在A1温度以下某⼀确定温度,过冷奥⽒体转变开始线与纵坐标之间的⽔平距离为过冷奥⽒体在该温度下的孕育期,孕育期的长短表⽰过冷奥⽒体稳定性的⾼低。
在A1以下,随等温温度降低,孕育期缩短,过冷奥⽒体转变速度增⼤,在550℃左右共析钢的孕育期最短,转变速度最快。
此后,随等温温度下降,孕育期⼜不断增加,转变速度减慢。
过冷奥⽒体转变终了线与纵坐标之间的⽔平距离则表⽰在不同温度下转变完成所需要的总时间。
转变所需的总时间随等温温度的变化规律也和孕育期的变化规律相似。
§6-3 钢在冷却时的转变一、过冷奥氏体等温冷却转变曲线1、过冷奥氏体等温冷却转变曲线建立以共析钢为例:取尺寸相同的T8钢试样,A化后,迅速冷却到A1以下不同温度保温,进行等温转变,测出转变的开始点与转变结束点。
将开始点与结束点分别连接起来,就得到奥氏体等温转变曲线。
该曲线称为TTT图(Time Temperature TransformationDiagram)或C曲线。
2、孕育期:转变开始线与纵坐标轴之间的距离。
孕育期越短,过冷奥氏体越不稳定,转变越快。
孕育期最短处称为鼻温3、影响C曲线的因素A的成分越均匀,晶粒越粗,其稳定性越高,C曲线右移;A含碳量越高,稳定性越高,C曲线右移,共析钢C曲线最靠右;合金元素,除Co外所有合金元素均使C曲线右移,并使C曲线改变形状。
二、共析钢过冷奥氏体的转变产物及性能、珠光体型转变(P)转变温度:A1~鼻温(550℃)之间(高温转变)转变规律:是通过碳、铁的扩散完成转变。
铁原子重新排列由fcc bcc,碳从铁中扩散出,形成转变产物:珠光体型组织铁素体和渗碳体的机械混合物产物形态:渗碳体呈层片状分布在铁素体基体上,转变温度越低,层间距越小。
珠光体型组织按层间距大小分为珠光体(P)、索氏体(S)和屈氏体(T)珠光体3800×索氏体8000×屈氏体8000×2、贝氏体型转变(B)转变温度:鼻温(550℃)~Ms之间(中温转变)转变规律:半扩散型转变,铁原子不扩散,只能做微小的位置调整,由fcc→bcc。
碳原子有一定扩散能力,部分碳原子从铁中扩散出来,形成碳化物。
转变产物:贝氏体型组织,渗碳体分布在过饱和的铁素体基体上的两相混合物。
上贝氏体(B上):550℃~350℃之间形成形态:呈羽毛状, 小片状的渗碳体分布在成排的铁素体片之间。
光学显微照片1300×电子显微照片5000×上贝氏体性能:铁素体片较宽,塑性变形抗力较低;渗碳体分布在铁素体片之间,容易引起脆断,因此强度和韧性都较差。
具有共析成分的过冷奥氏体(碳钢),冷却到珠光体转变温度区间等温,说明其转变机制过冷奥氏体,也称超冷奥氏体,在冷却过程中没有形成其相变组织,一般分为两类:一类是过淬透镜体,另一类是过共析成分。
其中,本文着重讨论的是具有共析成分的过冷奥氏体(碳钢),并阐述其冷却到珠光体转变温度区间等温的转变机制。
碳钢是指碳含量在0.008%~2.11%之间的钢铁,其中碳元素对于钢铁的性能有着重要的影响。
在处理过程中,钢材会出现一系列组织结构的转变,常见的有铁素体、珠光体和贝氏体。
而碳钢的珠光体转变温度一般在723℃左右,在这个温度区间,过冷奥氏体的结构也会发生变化。
具有共析成分的碳钢在冷却过程中,无论是快速冷却还是缓慢冷却,在一定温度范围内都会发生共析反应。
共析反应是指在相图中,两种或更多组分共同形成一种或多种相的反应。
对于具有共析成分的过冷奥氏体(碳钢),在冷却过程中,当温度下降到共析温度时,其中的一部分组分会分离出来,形成另一种组织结构。
在过冷奥氏体转变过程中,碳钢中的共析组织是关键因素之一。
碳钢中的共析成分是铁-碳共析图中的渗碳体,当温度下降到共析温度时,其中的渗碳体被分离出来,产生了新的组织结构,并改变了材料的性能。
由于渗碳体的形态、类型和分布直接影响着钢铁的力学性能,因此,对其转变机制的研究具有重要意义。
研究表明,在碳钢中,珠光体与共析成分的分离过程是相互作用的。
当温度下降到珠光体转变温度区间时,珠光体晶粒表面的共析组织先开始分离,而在晶粒内部分离则相对较慢。
因此,晶粒表面的分离是整个过程中的瓶颈,影响着组织结构的形成和分布。
总体来看,共析成分对于碳钢中过冷奥氏体的转变起着关键作用,其分离和重新排列可以改变材料的微观组织结构和力学性能。
在碳钢的珠光体转变温度区间等温过程中,渗碳体的分离是一个不可忽略的因素,对于珠光体的形成和分布有着重要的影响。
对于碳钢材料的性能和应用,需要进一步深入研究其转变机制,以便更好地利用其特点,提高其应用价值。
第三章钢的热处理
第2节奥氏体转变图
第3讲过冷奥氏体等温转变过程及产物
贝氏体转变
560~230℃
贝氏体型转变B
上贝氏体下贝氏体
共析钢的奥氏体等温转变图
贝氏体定义: 钢中的贝氏体是过冷奥氏体的中温转变产物,它以贝氏体铁素体(bainitic ferrite, BF) 为基体,同时存在碳化物相的组织
贝氏体=贝氏体铁素体+碳化物
贝氏体铁素体:含碳量过饱和的铁素体
碳化物:包括θ-渗碳体或ε-碳化物
过冷奥氏体不同等温转变温度下, 贝氏体的形态不同
560 ~350 ℃形成
上贝氏体B上
350℃ ~Ms(230 ℃)形成
下贝氏体B下
上贝氏体560 ~350 ℃形成
组织特征:B上呈羽毛状
上贝氏体形成示意图
贝氏体组织的形成
形核+ 核长大
在奥氏体
晶界形成在平行的铁素体片层之间析出渗碳体
新相铁素体
上贝氏体的性能
硬度高:40~45HRC
塑、韧性差:铁素体片粗且平行分布,同时晶间有脆性的渗碳体
(a)光学显微镜照片
下贝氏体组织呈针叶状
下贝氏体的显微组织
Fe 3C 白色弥散分布于铁素体晶内
(b)扫描电子显微镜照片
组织特征:B 下呈针叶状
微观结构:由针叶状过饱和F 和弥散分布在其中的极细小的渗碳体
组成下贝氏体形成示意图
下贝氏体在350℃~Ms(230℃)阶段形成
第三章钢的热处理
性能:
硬度高~50HRC,强度高,耐磨性
好,塑性、韧性高
具有良好的综合力学性能
生产中“等温淬火”的目的就是为
了得到B下组织。