周测十一七年级人教版数学上册练习完美课件
- 格式:ppt
- 大小:2.04 MB
- 文档页数:13
七年级数学上册周周练新版新人教版Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】周周练(1.5)(时间:45分钟满分:100分)一、选择题(每小题3分,共30分)1.下列各数中,准确数是( )A.节约用电150度B.我家有五口人C.某市人口约53万D.围墙长度115米2.下列叙述正确的是( )A.近似数3.1与3.10的意义一样B.近似数53.20精确到十分位C.近似数2.7万精确到十分位D.近似数1.9万与1.9×104的精确度相同3.用四舍五入法按要求对0.060287分别取近似值,下列各项中错误的是( ) A.0.06(精确到百分位)B.0.06(精确到千分位)C.0.1(精确到0.1)D.0.0603(精确到0.0001)4.用计算器求(-2)6的值,下列按键顺序正确的是( )A.B.C.D.5.-22的倒数等于( )A.4B.-4C.D.-6.在-(-5),-(-5)2,-|-5|,(-5)3中,正数有( )A.1个B.2个C.3个D.4个7.下列各组数中,数值相等的是( )A.-22015和(-2)2015B.-22016和(-2)2016C.20152016和20162015D.(-2015)2016和(-2016)20158.与算式23+23+23的运算结果相等的是( )A.23B.29C.3×23D.3×69.(丹东中考)据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为( ) A.2.78×106B.27.8×106C.2.78×105D.27.8×10510.算式(-3)4-72-的值为( )A.-138B.-122C.24D.40二、填空题(每小题3分,共24分)11.算式(-3)×(-3)×(-3)×(-3)用幂的形式可表示为________,其值为________.12.(-2)3与-23的关系是________,(-2)4与-24的关系是____________.13.立方等于-0.064的数为________,平方等于的数为________.14.(东营中考)东营市2014年城镇居民人均可支配收入是37000元,比2013年提高了8.9%.37000元用科学记数法表示是________元.15.2014年我国国内生产总值约为 6.36×105亿元,用科学记数法表示的数6.36×105亿元的原数约为________亿元.16.计算(-1)2-(-)3×(-3)3的结果为________.17.-32,(-2)3,(-)2,(-)3的大小顺序是________>________>________>________.18.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…用你所发现的规律写出32016的末位数字是________.三、解答题(共46分)19.(8分)按括号里的要求,对下列各数取近似数:(1)0.842(精确到0.1);(2)672053(精确到万位).20.(6分)小明和小刚测量同一根木棒,小明测得长是0.80m,小刚测得长是0.8m,问两人测量的结果是否相同?为什么?21.(16分)计算:(1)-72+2×(-3)2-(-6)÷(-)2;(2)3+50÷22×(-)-1;(3)(-0.5)×(-4)2-52×(-);(4)-22×÷(-3)2+(-2)2.22.(6分)计算:[3÷(-)×]4-3×(-3)3-(-5)2.23.(10分)根据乘方的定义可得42=4×4,43=4×4×4,则42×43=(4×4)×(4×4×4)=4×4×4×4×4=45,(1)试计算23×24的值;(2)请你猜想:当m,n是正整数时,a m·a n的值.参考答案1.B2.D3.B4.B5.D6.A7.A8.C9.C 10.D 11.(-3)481 12.相等互为相反数13.-0.4或-14.3.7×10415.63600016.0 17.(-)2(-)3(-2)3-3218.119.(1)0.8.(2)6.7×105.20.不同.小明测得0.80m,精确到百分位,小刚测得0.8m,精确到十分位.因为两人测量结果精确度不同,所以两人测量结果不一样.21.(1)原式=-49+2×9-(-6)÷=-49+18+54=23.(2)原式=3+50÷4×(-)-1=3+50××(-)-1=3--1=-.(3)原式=-×16+25×=-8+15=7.(4)原式=-4×÷9+4=-3÷9+4=-+4=3.22.原式=[×(-)×]4-3×(-27)-25=(-3)4-(-81)-25=81+81-25=137.23.(1)23×24=2×2×2×2×2×2×2=27.(2)a m·a n=·=a m+n.。
2024-2025学年第一学期七年级数学周测卷(第一章-第四章)班级:_____ 姓名:_______一. 选择题(每题5分,共40分)1. 如果将银行利率上调3%记作+3%,那么利率下降4%记作( )%1.-A %7.+B %4.-C %4.+D2.下列四个数中,负整数是( )4.3.A 6.B 38.-C 5.-D3.单项式63yx -的系数和次数分别是( )31.和-A 461.和-B 36.和-C 361.和-D4.下列各式属于代数式的是( )b a A <1.- 102.=-x B 363.=+-C n m D 3.+5.下列各式,互为相反数的是( )2020.---)与(A 2241.)与(--B33)27(.)与(--+C 2244.)与(--D6.下列多项式次数最高的是( )123.23+-x x A m mn n m B 542.32+--12.2+-a a C y y x x D 35.24+-7.下列计算正确的是( )145.=-x x A mn n m B 963.=+xy xy xy C 422.-=-- b a ab b a D 222725.=+8.已知y x y x --==+则,8,933的值为( )8.A 10.-B 3.-C 108.-或D二. 填空题(每题5分,共30分)9. 在7)6(-中,底数是______,指数是_______.10.将736000000用科学记数法表示,其结果是________. 11.用四舍五入法得到的近似数0.436精确到_______位. 12.用代数式表示“a 的3倍与b 的平方的差”:_______________. 13. 已知单项式y x y x n m 524和-可以合并,则2n-m 的值是_______.14.已知463,52+--=-n m n m 则式子的结果是________.三. 解答题(共4小题,共30分)15.(8分)计算1331282)1()()(-+-÷+ 22235)2()()(-+⨯-+-16. (5分)先化简,再求值)13(2)(422++-+a a a a ,其中a=-217.(9分)按要求将下列各式进行分类y x m m n abc b a y x 32351265342+-+-+,,,,, 单项式:________________.多项式:________________.整式:__________________.18.(8分)已知232+-a n m 是关于m,n 的七次单项式.(1)求a 的值.(2)求多项式a a a a 4)(3522---的值.答案一. 选择题1. C2.D3.B4.D5.D6. B7.C8.D二. 填空题9. -6;710. 81036.7⨯11.千分 12.23b a - 13.7 14. -11三.解答题(共4小题,共30分)15.31481282)1(133=-+-+=-+-÷+)()()()( 34652235)2(2=+-+=-+⨯-+-)()()(16.22226244)13(2)(422222--=---+=++-+a a a a a a a a a a 当a=-2,原式=8+4-2=1017.单项式:35642m abc y x ,,- 多项式:y x b a 3253+-+, 整式:y x m abc b a y x 323565342+--+,,,, 18.(1)a=2(2) a a a a a a a a a a -=-+-=---22222243354)(35 当a=2,原式=6。
第一章 有理数周周测17.如图,表示互为相反数的两个数是( )A. 点A 和点DB.点B 和点CC.点A 和点CD.点B 和点D 8.下列说法中正确的个数为( ) ①符号不相同的两个数互为相反数; ②一个数的相反数一定是负数;③若两个数互为相反数,则这两个数一定是一正一负.A.0B.1C.2D.3 9.有理数a 在数轴上对应的点如图所示,则1,,a a -的大小关系正确的是( )A.1<<-a aB.1<-<a aC.a a <-<1D.a a -<<110.下面是几个城市某年一月份的平均气温,其中平均气温最低的城市是( ) A.桂林C 2.11 B.广州C 5.13 C.北京C 8.4 - D.南京C 4.3二.填空题11.以下各数中,正数有_____________;负数有________________.﹣,0.6,﹣100,0,,368,﹣2.12.在3.3-313.0-1,,,“+这五个数中,非负有理数是_______________(写出所有符合题意的数)13.在数轴上点B A ,表示的数互为相反数,且两点间的距离是10,点A 在点B 的左边,则点A 表示的数为_____,点B 表示的数为_______.14.已知a 与b 互为相反数,b 与c 互为相反数,且6-=c 则._____=a15.给出下列说法:①312-是负分数;②2.4不是正数;③自然数一定是正数;④负分数一定是负有理数.其中正确的是__________.(填序号) 三.解答题16.将下列各数填在相应的大括号里.整数:{ } 正数:{ } 分数:{ } 负数:{ }19.一辆汽车沿着东西走向的公路来回行始,某一天早上从华联超市出发,晚上最后到达金利餐厅,约定向东为正方向,当天该车行驶记录如下(单位:千米):.5.8,14,5.9,1.7,8.5,2.6,3.19,14+--+--++汽车这天共行驶了多少千米?若该汽车每行驶一千米耗油06.0升,则这天共耗油多少升?用绝对值的知识说明哪个零件的质量最好.21. 某老师把某一小组五名同学的成绩简记为:+10,-5,0,+8,-3,又知道记为0的成绩表示90分,正数表示超过90分,则五名同学的平均成绩为多少分?(8分)第一章 有理数周周测2一、选择题1. 我市冬季里某一天的最低气温是,最高气温是,这一天的温差为A.B.C.D.2. 两个有理数的积为负数,和为正数,那么这两个有理数A. 符号相同B. 符号相反,绝对值相等C. 符号相反,且负数的绝对值较大D. 符号相反,且正数的绝对值较大3. 有理数a 、b 在数轴上对应位置如图所示,则的值A. 大于0B. 小于0C. 等于0D. 大于a4. 已知字母a 、b 表示有理数,如果,则下列说法正确的是A. a 、b 中一定有一个是负数B. a 、b 都为0C. a 与b 不可能相等D. a 与b 的绝对值相等 5. 下列关于有理数加减法表示正确的是A. ,并且,则B. ,并且,则C. ,并且,则D.,并且,则6. 定义新运算:对任意有理数a 、b ,都有,例如,,那么的值是A.B.C.D.7. 计算:结果正确的是A. 1B.C. 5D.8.下列运算正确的有A. 0个B. 1个C. 2个D. 3个9.计算:A. B. 15 C. D. 310.计算的结果是A. B. C. D. 1211.下列计算中正确的是A. B.C. D.12.与的和是A. B. C. D.13.一潜水艇所在的海拔高度是米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔A. 米B. 米C. 米D. 50米二、解答题14.计算:(1)(2).(3)15.学了“去分母”以后,民辉同学在计算时,把分母去掉得对吗?16.如图,将这9个数字填入图中的9个方格中,使得方格中,每行,每列,以及对角线上的3个数字之和都为0.17.列式并计算:什么数与的和等于?减去与的和,所得的差是多少?18.已知|a|=2,|b|=2,|c|=3,且有理数a,b,c在数轴上的位置如图,计算a+b+c的值.19.某检修小组乘一辆汽车在东西走向的公路上检修线路,约定向东走为正,某天从A地出发到收工时的行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣13,﹣2,+12,﹣5,+4,+6,求:(1)问收工时检修小组是否回到A地,如果回到A地,请说明理由;如果没有回到A地,请说明检修小组最后的位置;(2)距离A地最近的是哪一次?距离多远?(3)若汽车每千米耗油3升,开工时储油180升,到收工时,中途是否需要加油,若加油最少加多少升?若不需要加油,到收工时,还剩多少升汽油?(假定汽车可以开到油量为0)第一章 有理数周周测3一、选择题1、 下列说法中正确的是( )A. 正数和负数互为相反数B. 任何一个数的相反数都与它本身不相同C. 任何一个数都有它的相反数D. 数轴上原点两旁的两个点表示的数互为相反数 2、 下列结论正确的有( )①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a ,b 互为相反数,那么a +b =0;⑤若有理数a ,b 互为相反数,则它们一定异号。
某某省某某市北大附中为明实验学校2015-2016学年七年级数学上学期周测试题一、精心选一选(本大题共10小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列各数中,最小的数为()2.向东走80米,记为+80米,向西走60米,记为()A.+60米B.﹣60米C.﹣20米D.+20米3.大于﹣3.5,小于2.5的整数共有()个.A.6 B.5 C.4 D.34.有理数的相反数是()A.﹣B.﹣3 C.D.35.有理数a,b,c在数轴上的位置如图所示,则下列结论正确的是()A.a>b>0>c B.b>0>a>c C.b<a<0<c D.a<b<c<06.已知|a|=1,|b|=3,则|a+b|的值为()A.2 B.4 C.2或4 D.±2或±4.7.在数轴上把﹣3对应的点移动5个单位长度后,所得到的对应点表示的数是()A.2 B.﹣8 C.2或﹣8 D.不能确定8.下列计算正确的个数是()(﹣4)+(﹣5)=﹣9,5+(﹣6)=﹣11,(﹣7)+10=3,(﹣2)+2=4.A.1 B.2 C.3 D.49.室内温度10℃,室外温度是﹣3℃,那么室内温度比室外温度高()A.﹣13℃B.﹣7℃C.7℃D.13℃10.已知|x|表示数轴上某一点到原点的距离,|x﹣3|表示数轴上某一点到表示数3的点的距离,|x+2|表示数轴上某一点到表示数﹣2的点的距离.设S=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.S没有最小值B.有限个x(不止一个)使S取最小值C.只有一个x使S取最小值D.有无穷个x使S取最小值二、耐心填一填(本大题共6小题,每小题3分,共12分,请将你的答案写在“______”处)11.计算﹣2﹣3的结果为.12.观察下面一列数,按其规律在横线上写上适当的数:﹣,,﹣,,﹣,.13.若x=﹣x,则x=;若|﹣x|=5,则x=.14.若定义一种新的运算“△”,规定有理数a△b=a﹣b,如2△3=2﹣3=1,则(﹣2)△(﹣3)=.15.若a,b互为相反数,m是最大的负整数,n是最小的正整数,则a+b﹣m+n=.16.若a<0,b>0,c>0,|a|>|b|+|c|,则a+b+c0.三、细心算一算(共52分)17.在数轴上表示下列各有理数,并用“<”号把它们按从小到大的顺序排列起来.﹣3,0,1,4.5,﹣1.18.计算题(1)﹣150+250(2)﹣5﹣65(3)﹣20+(﹣14)﹣(﹣18)﹣13(4)8+(﹣)﹣5﹣(﹣0.25)(5)﹣18+(﹣14)+18﹣13(6)3.7﹣6.9﹣9﹣5.19.若|a+1|+|b﹣2|=0,则a+b﹣1的值为多少?20.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?21.已知点A、B为数轴上的两点,A点表示的数为﹣8,B点表示的数为10,则A、B之间的距离为.(2)若A点表示的数为,B点表示的数为﹣2,且A、B之间的距离为12,即|AB|=12,则点A表示的数是多少?(3)在(1)的条件下,点A、B都向右运动,点A的速度为2单位长度/秒,点B的速度为1单位长度/秒,多少秒后A、B相距2个单位长度?2015-2016学年某某省某某市北大附中为明实验学校七年级(上)周测数学试卷(2)参考答案与试题解析一、精心选一选(本大题共10小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列各数中,最小的数为()【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1<0<0.5,∴各数中,最小的数为﹣2.故选:B.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.向东走80米,记为+80米,向西走60米,记为()A.+60米B.﹣60米C.﹣20米D.+20米【考点】正数和负数.【分析】根据正负数表示相反意义的量,向东记为正,可得向西的表示方法.【解答】解:向东走80米,记为+80米,向西走60米,记为﹣60米,故选:B.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.3.大于﹣3.5,小于2.5的整数共有()个.A.6 B.5 C.4 D.3【考点】有理数大小比较.【分析】求出大于﹣3.5,小于2.5的整数,然后可求解.【解答】解:大于﹣3.5,小于2.5的整数有﹣3,﹣2,﹣1,0,1,2,所以共有6个.故答案为A.【点评】比较有理数的大小的方法:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.4.有理数的相反数是()A.﹣B.﹣3 C.D.3【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:的相反数是﹣,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.5.有理数a,b,c在数轴上的位置如图所示,则下列结论正确的是()A.a>b>0>c B.b>0>a>c C.b<a<0<c D.a<b<c<0【考点】有理数大小比较;数轴.【分析】根据数轴上数的排列特点:右边的数总比左边数大,很容易解答.【解答】解:根据数轴上右边的数总是比左边的数大可得b<a<0<c.故选C.【点评】由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.6.已知|a|=1,|b|=3,则|a+b|的值为()A.2 B.4 C.2或4 D.±2或±4.【考点】绝对值.【分析】首先根据|a|=1,|b|=3,分别求出a、b的值各是多少;然后根据绝对值的求法,分类讨论,把a、b的值代入|a+b|,求出算式的值是多少即可.【解答】解:∵|a|=1,|b|=3,∴a=﹣1或1,b=﹣3或3,(1)当a=﹣1,b=3时,|a+b|=|﹣1+3|=2;(2)当a=﹣1,b=﹣3时,|a+b|=|﹣1﹣3|=4;(3)当a=1,b=3时,|a+b|=|1+3|=4;(4)当a=1,b=﹣3时,|a+b|=|1﹣3|=2;∴|a|=1,|b|=3,则|a+b|的值为2或4.故选:C.【点评】此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.7.在数轴上把﹣3对应的点移动5个单位长度后,所得到的对应点表示的数是()A.2 B.﹣8 C.2或﹣8 D.不能确定【考点】数轴.【分析】此题需注意考虑两种情况:点向左移动和点向右移动;数的大小变化规律:左减右加.【解答】解:当数轴上﹣3的对应点向左移动5个单位时,对应点表示数是﹣3﹣5=﹣8;当向右移动5个单位时,对应点表示数﹣3+5=2.故选C.【点评】数轴上点的移动分为向左和向右两种情况,对应的数也就会有两个结果.8.下列计算正确的个数是()(﹣4)+(﹣5)=﹣9,5+(﹣6)=﹣11,(﹣7)+10=3,(﹣2)+2=4.A.1 B.2 C.3 D.4【考点】有理数的加法.【分析】根据有理数加法的运算方法逐项判断即可.【解答】解:∵(﹣4)+(﹣5)=﹣9,∴(﹣4)+(﹣5)=﹣9正确;∵5+(﹣6)=﹣1,∴5+(﹣6)=﹣11不正确;∵(﹣7)+10=3,∴(﹣7)+10=3正确;∵(﹣2)+2=0,∴(﹣2)+2=4不正确.∴计算正确的有2个:(﹣4)+(﹣5)=﹣9,(﹣7)+10=3.故选:B.【点评】此题主要考查了有理数加法的运算方法,要熟练掌握,解答此题的关键是要明确:(1)同号相加,取相同符号,并把绝对值相加.(2)绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.9.室内温度10℃,室外温度是﹣3℃,那么室内温度比室外温度高()A.﹣13℃B.﹣7℃C.7℃D.13℃【考点】有理数的减法.【专题】应用题.【分析】求室内温度比室外温度高多少度,就是用室内温度减去室外温度,列出算式.【解答】解:用室内温度减去室外温度,即10﹣(﹣3)=10+3=13.故选D.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.10.已知|x|表示数轴上某一点到原点的距离,|x﹣3|表示数轴上某一点到表示数3的点的距离,|x+2|表示数轴上某一点到表示数﹣2的点的距离.设S=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.S没有最小值B.有限个x(不止一个)使S取最小值C.只有一个x使S取最小值D.有无穷个x使S取最小值【考点】绝对值.【分析】根据题意,可得|x﹣1|+|x+1|表示数轴上某一点到点﹣1、点1的距离的和,S的最小值是2,x 取[﹣1,1]之间的任意一个值时,S都能取到最小值2,据此解答即可.【解答】解:如图,,∵S=|x﹣1|+|x+1|,1﹣(﹣1)=2,∴S的最小值是2,∵x取[﹣1,1]之间的任意一个值时,S都能取到最小值2,∴有无穷个x使S取最小值.故选:D.【点评】此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.二、耐心填一填(本大题共6小题,每小题3分,共12分,请将你的答案写在“______”处)11.计算﹣2﹣3的结果为﹣5 .【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣2﹣3=﹣5.故答案为:﹣5.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.12.观察下面一列数,按其规律在横线上写上适当的数:﹣,,﹣,,﹣,.【考点】规律型:数字的变化类.【分析】分子是从1开始连续的自然数,分母比对应的分子多1,奇数位置为负,偶数位置为正,由此得出第n个数为(﹣1)n,进一步代入求得答案即可.【解答】解:∵第n个数为(﹣1)n,∴第6个数为.故答案为:.【点评】此题考查数字的变化规律,找出分子分母之间的联系,得出数字之间的运算规律与符号规律解决问题.13.若x=﹣x,则x= 0 ;若|﹣x|=5,则x= ﹣5或5 .【考点】绝对值.【分析】首先根据绝对值的含义和求法,可得0的相反数还是0,所以若x=﹣x,则x=0;然后根据|﹣x|=5,可得﹣x=5或﹣x=﹣5,据此求出x的值是多少即可.【解答】解:∵x=﹣x,∴x=0;∵|﹣x|=5,∴﹣x=5或﹣x=﹣5,解得x=﹣5或x=5,∴若|﹣x|=5,则x=﹣5或5.故答案为:0;﹣5或5.【点评】此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.14.若定义一种新的运算“△”,规定有理数a△b=a﹣b,如2△3=2﹣3=1,则(﹣2)△(﹣3)= 1 .【考点】有理数的减法.【专题】新定义.【分析】根据新定义运算,用运算符号前面的数减去运算符号后面的数,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:(﹣2)△(﹣3),=(﹣2)﹣(﹣3),=﹣2+3,=1.故答案为:1.【点评】本题考查了有理数的减法,是基础题,熟记运算法则并理解新定义的运算方法是解题的关键.15.若a,b互为相反数,m是最大的负整数,n是最小的正整数,则a+b﹣m+n= 2 .【考点】代数式求值;有理数;相反数.【分析】由a,b互为相反数,m是最大的负整数,n是最小的正整数,得出a+b=0,m=﹣1,n=1,进一步代入求得答案即可.【解答】解:∵a,b互为相反数,m是最大的负整数,n是最小的正整数,∴a+b=0,m=﹣1,n=1,∴a+b﹣m+n=0﹣(﹣1)+1=2.故答案为:2.【点评】此题考查代数式求值,掌握相反数、负整数、正整数的定义及性质是解决问题的关键.16.若a<0,b>0,c>0,|a|>|b|+|c|,则a+b+c <0.【考点】有理数的加法;绝对值.【分析】首先根据a<0,b>0,c>0,可得|a|=﹣a,|b|=b,|c|=c,然后根据|a|>|b|+|c|,可得﹣a >b+c,据此判断出a+b+c的正负即可.【解答】解:∵a<0,b>0,c>0,∴|a|=﹣a,|b|=b,|c|=c,又∵|a|>|b|+|c|,∴﹣a>b+c,∴a+b+c<0.故答案为:<.【点评】(1)此题主要考查了有理数加法的运算方法,要熟练掌握,解答此题的关键是要明确:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.③一个数同0相加,仍得这个数.(2)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.三、细心算一算(共52分)17.在数轴上表示下列各有理数,并用“<”号把它们按从小到大的顺序排列起来.﹣3,0,1,4.5,﹣1.【考点】有理数大小比较;数轴.【分析】把各个数在数轴上表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按从小到大的顺序用“<”连接起来.【解答】解:在数轴上表示为:按从小到大的顺序排列为:﹣3<﹣1<0<1<4.5.【点评】此题考查了数轴,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.18.计算题(1)﹣150+250(2)﹣5﹣65(3)﹣20+(﹣14)﹣(﹣18)﹣13(4)8+(﹣)﹣5﹣(﹣0.25)(5)﹣18+(﹣14)+18﹣13(6)3.7﹣6.9﹣9﹣5.【考点】有理数的加减混合运算.【分析】有理数加减混合运算的方法:有理数加减法统一成加法,据此求出每个算式的结果是多少即可.【解答】解:(1)﹣150+250=100(2)﹣5﹣65=﹣70(3)﹣20+(﹣14)﹣(﹣18)﹣13=﹣20﹣14+18﹣13=18﹣(20+14+13)=18﹣47=﹣29(4)8+(﹣)﹣5﹣(﹣0.25)=8﹣5+[(﹣)+0.25)]=3+0=3(5)﹣18+(﹣14)+18﹣13=﹣18+18﹣14﹣13=0﹣27=﹣27(6)3.7﹣6.9﹣9﹣5=3.7﹣(6.9+9+5)【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是要明确有理数加减混合运算的方法:有理数加减法统一成加法.19.若|a+1|+|b﹣2|=0,则a+b﹣1的值为多少?【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出a、b的值,代入代数式进行计算即可.【解答】解:由题意得,a+1=0,b﹣2=0,解得a=﹣1,b=2,则a+b﹣1=0.【点评】本题考查的是非负数的性质,有限个非负数的和为零,那么每一个加数也必为零.20.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?【考点】有理数的加法;正数和负数.【专题】应用题.【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=(5+10+12)﹣(3+8+6+10)=27﹣27=0答:守门员最后回到了球门线的位置.(2)由观察可知:5﹣3+10=12米.答:在练习过程中,守门员离开球门线最远距离是12米.(3)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54米.答:守门员全部练习结束后,他共跑了54米.【点评】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.21.已知点A、B为数轴上的两点,A点表示的数为﹣8,B点表示的数为10,则A、B之间的距离为18 .(2)若A点表示的数为,B点表示的数为﹣2,且A、B之间的距离为12,即|AB|=12,则点A表示的数是多少?(3)在(1)的条件下,点A、B都向右运动,点A的速度为2单位长度/秒,点B的速度为1单位长度/秒,多少秒后A、B相距2个单位长度?【考点】一元一次方程的应用;数轴.【分析】(1)用B点表示的数减去A点表示的数即可得到A,B之间的距离;(2)设A点表示的数为x,根据A、B之间的距离为12列出方程|x﹣(﹣2)|=12,解方程即可;(3)设t秒后A、B相距2个单位长度,首先表示出t秒后A、B两点表示的数,再根据A、B相距2个单位长度列出方程,解方程即可.【解答】解:(1)A,B之间的距离=10﹣(﹣8)=10+8=18.故答案为18;(2)设A点表示的数为x,根据题意,得|x﹣(﹣2)|=12,即x+2=12,或x+2=﹣12,解得x=10或﹣14.答:点A表示的数是10或﹣14;(3)设t秒后A、B相距2个单位长度,此时A点表示的数为10+2t或﹣14+2t,B点表示的数为﹣2+t,根据题意得|10+2t﹣(﹣2+t)|=2,或|﹣14+2t﹣(﹣2+t)|=2,即t+12=±2,或t﹣12=±2,解得t=﹣10或﹣14或14或10(负值舍去).答:14或10秒后A、B相距2个单位长度.【点评】本题考查了一元一次方程的应用以及数轴,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。