高频振荡器实验石英晶体振荡器
- 格式:pptx
- 大小:929.37 KB
- 文档页数:27
正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。
4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。
正弦波振荡器在电子技术领域中有着广泛的应用。
在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。
在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。
振荡器的种类很多。
从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。
此实验只讨论反馈式振荡器。
根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。
此实验只介绍正弦波振荡器。
常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。
按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。
(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。
b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。
当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。
高频实验实验一 小信号调谐放大器90139013R71kR24.7kR18.2kC1470p R320kR 610kTC1R5510ΩR4100ΩC50.01C30.01C40.01R104.7ΩR820KR121KC80.01W110KR111KTC2220pR13510ΩC100.01C60.01R9100ΩC110.01C12470pR141kC70.01Ui+-AC20.01K1BC12VUo+-T1T2小信号调谐放大电路原理图1.如何判断并联谐振回路处于谐振状态? 答:判断方法有两种:1、用高频毫伏表观测Uo ,当Uo 得最大值时,并联谐振回路处于谐振状态;2、用示波器监测Uo ,当波形最大不失真时,并联谐振回路处于谐振状态。
2.引起放大器自激的主要因素有哪些?答:主要因素:负载电阻、振荡回路连接时的接入系数、静态工作点、内反馈大小。
3.小信号谐振放大器的增益A U 与输入信号U i 的大小有无关系?如何提高谐振放放大器的稳定电压增益?答:与Ui 大小无关。
因为A Uo =-p1p2y fe /g= -p1p2y fe /(P 12g oe +(P 22g ie +g),要提高稳定电压增益,应增大P1、P2减小g oe 、 g ie 、g 应增大C 。
4、为什么说提高电压放大倍数A VO 时,通频带BW 会减小?可采取哪些措施提高放大倍数Avo ?实验结果如何? 答:因为TfeU G Y P P A 21=,要提高A V ,则可适当增加接入系数,但因为接入系数过大导致GT 增加,由TG f BW 07.0=可知,GT 增大,BW0.7减小,即带宽BW 减小。
5、在调谐谐振回路时,对放大器的输入信号有何要求?如果输入信号过大会出现什么现象? 答:由TfeU G Y P P A 21=知A V 与输入信号大小无关。
但由于UO 的增大将可能超出小信号放大器的线形动态范围。
引起信号失真,也会通过外部寄生耦合导致放大器工作不稳定。
《高频电子线路》晶体振荡器与压控振荡器实验一、实验目的1、掌握晶体振荡器与压控振荡器的基本工作原理。
2、比较LC振荡器和晶体振荡器的频率稳定度。
二、实验内容1、熟悉振荡器模块各元件及其作用。
2、分析与比较LC振荡器与晶体振荡器的频率稳定度。
3、改变变容二极管的偏置电压,观察振荡器输出频率的变化。
三、实验仪器1、模块3 1块2、频率计模块1块3、双踪示波器1台4、万用表1块四、基本原理1、晶体振荡器:将开关S2拨为“00”,S1拨为“10”,由N1、C3、C10、C11、晶体CRY1与C4构成晶体振荡器(皮尔斯振荡电路),在振荡频率上晶体等效为电感。
2、LC压控振荡器(VCO):将S2拨为“10”或“01”,S1拨为“01”,则变容二极管D1、D2并联在电感L1两端。
当调节电位器W2时,D1、D2两端的反向偏压随之改变,从而改变了D1和D2的结电容C j,也就改变了振荡电路的等效电感,使振荡频率发生变化。
3、晶体压控振荡器:开关S2拨为“10”或“01”,S1拨为“10”,就构成了晶体压控振荡器。
图6-1 正弦波振荡器(4.5MHz)五、实验步骤1、(选做)温度对两种振荡器谐振频率的影响。
1)将电路设置为LC振荡器(S1设为“01”),在室温下记下振荡频率。
(频率计接于P1处。
)2)将加热的电烙铁靠近振荡管N1,每隔1分钟记下频率的变化值。
3)开关S1交替设为“01”(LC振荡器)和“10”(晶体振荡器),并将数据记于表6-1。
表6-1 振荡器数据对比记载表2、两种压控振荡器的频率变化范围比较1)将电路设置为LC压控振荡器(S1设为“01”),频率计接于P1,直流电压表接于TP7。
2)将W2调节从低阻值、中阻值、高阻值位置(即从左→中间→右顺时针旋转),分别将变容二极管的反向偏置电压、输出频率记于下表中。
将电路设置为晶体压控振荡器(S1拨为“10”),重复步骤2),将测试结果填于下表。
3)六、实验报告要求1、比较所测数据结果,结合新学理论进行分析。
实验三石英晶体振荡器
[实验目的]
1.了解晶体振荡器的工作原理及特点;
2.掌握晶体振荡器的设计方法及参数计算方法。
[实验要求]
1.查阅晶体振荡器的有关资料, 阐明为什么用石英晶体作为振荡回路元件就能使振荡器的频率稳定度大大提高;
2.试画并联谐振型晶体振荡器和串联谐振型晶体振荡器的实际电路, 并阐述两者在电路结构及应用方面的区别。
[实验仪器设备及材料]
1.双踪示波器;
2.万用表;
3.高频电路实验装置
[实验方案]
实验电路见图3-1。
1.测振荡器静态工作点, 调图中Rp, 测得IEmin及IEmax;
2.测量当工作点在上述范围时的振荡频率及输出电压;
3.负载不同时对频率的影响, RL分别取110kΩ、10kΩ、1kΩ, 测出电路振荡频率, 填入表10-3-1并与LC振荡器比较。
填入表10-3-1, 并与LC振荡器比较。
R L~f 表10-3-1 实验数据
[实验报告]
1.画出实验电路的交流电路;
2.整理实验数据;
3.比较晶体振荡器与LC振荡器带负载能力的差异, 并分析原因;
4.你如何肯定电路工作在晶体的频率上;
5.根据电路给出的LC参数计算回路中心频率, 阐述本电路的优点。
[思考题]
石英晶体振荡器与LC三点式振荡器输出信号的差异有哪些?
1。
高频电子电路实验操作步骤及要点实验一、高频电子仪表的使用一、数字万用表1.开机后若显示屏左下出现小电池的图标,表示需更换电池后才能使用。
2.开机后若显示屏左上出现“H”图标,表示万用表处于屏幕保持状态,需解锁后使用。
3.利用万用表的直流电压测试功能完成电路静态工作电压的测试;静态工作电流是通过测试相应元件的电压再运用欧姆定律计算得到。
4.利用万用表的“×200”欧姆档完成电路连接导线及仪表连接线的测试,以判断其好坏状态。
5.不要用万用表测试动态指标。
二、高频电子电路实验箱1.能熟练地找到实验所用模块电路。
2.能正确地搭接实验电路。
(1)先将信号源板和电路板共地:将两块板中靠得最近的两个接地点用最短导线连通(建议将信号源板的右下角和电路板的左下角的两个接地点连通),这样实验箱中所有接地点都连通了;地线使用时注意“就近接地”的原则。
(2)用最合适的导线将电路所需直流工作电源从信号源板引入到电路。
(3)电路中元器件的连接及交流信号的引入选用最合适的导线。
(4)仪表连接线应直接接至测试点附近的接线柱上;不要使用导线接连接线。
3.能正确输出实验所需的交流信号。
(1)将显示功能设置为“低频”,同时将高频信号源的“频率粗调”旋钮放在与输出低频信号频率相适应的档位上,此时频率计将正确显示低频信号源输出信号的频率(若使用示波器测试频率,则此步可以不做)。
(2)将显示功能设置为“外测”,同时将高频信号源的“频率粗调”旋钮放在与被测信号频率相适应的档位上,此时频率计将正确显示被测信号的频率(若使用示波器测试频率,则此步可以不做)。
(3)将显示功能设置为“高频”,同时将高频信号源的“频率粗调”旋钮放在与输出高频信号频率相适应的档位上,此时频率计将正确显示高频信号源输出信号的频率(若使用示波器测试频率,则此步可以不做)。
(4)用示波器调测信号时,建议先把“幅度调节”旋钮右旋到底使输出信号幅度最大,此时来进行频率的调节;调节好频率后,再把“幅度调节”旋钮左旋以减小幅度至实验要求的大小(由于幅度减小时波形将会变差,因此调节幅度时可不管示波器上测试频率的变化)。
振荡电路实验121180166 赵琛一.实验目的1. 进一步学习掌握正弦波振荡电路的相关理论。
2. 掌握电容三点式LC振荡电路的基本原理,掌握电路中各元件的功能。
3. 掌握晶体振荡电路的基本原理,熟悉串联型和并联型晶体振荡器电路各自的特点,理解电路中各元件的功能。
4. 掌握静态工作点、正反馈系数、谐振回路的等效Q值对振荡器振荡幅度和频率的影响。
5. 比较LC振荡器和晶体振荡器的频率稳定度,加深对晶体振荡器频率稳定高原因的理解。
二、实验使用仪器1.LC、晶体正弦波振荡电路实验板2.200MH泰克双踪示波器3. FLUKE万用表4. 高频信号源5. 频谱分析仪(安泰信)6. SP312B型高频计数器三、实验基本原理与电路1. LC振荡电路的基本原理LC振荡器实质上是满足振荡条件的正反馈放大器。
LC振荡器的振荡回路由LC元件组成。
从交流等效电路可知:由LC振荡回路引出三个端子,分别接晶体管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。
如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。
在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHz~1GHz。
普通电容三点式振荡器的振荡频率不仅与谐振回路的LC元件的值有关,而且还与晶体管的输入电容i C 以及输出电容o C 有关。
当工作环境改变或更换管子时,振荡频率及其稳定性就要受到影响。
为减小i C 、o C 的影响,提高振荡器的频率稳定度,提出了改进型电容三点式振荡电路——串联改进型克拉泼电路、并联改进型西勒电路,分别如图4-1和4-2所示。
串联改进型电容三点式振荡电路——克拉泼电路的振荡频率为:∑=LC 10ω其中∑C 由下式决定io C C C C C C ++++=∑211111 其中0,i C C 分别是晶体管的输入和输出电容。
台灣大學電機系大學部電子實驗(三) – 石英晶體振盪器原理說明發表於 2006年12月19日Rocky石英晶體振盪器是高精度和高穩定度的振盪器,被廣泛應用於彩電、計算機、遙控器等各類振盪電路中,以及通信系統中用於頻率發生器、為數據處理設備產生時鐘信號和為特定系統提供基準信號。
一、石英晶體振盪器的基本原理1、石英晶體振盪器的結構石英晶體振盪器是利用石英晶體(二氧化矽的結晶體)的壓電效應製成的一種諧振器件,它的基本構成大致是︰從一塊石英晶體上按一定方位角切下薄片(簡稱為晶片,它可以是正方形、矩形或圓形等),在它的兩個對應面上涂敷銀層作為電極,在每個電極上各焊一根引線接到管腳 上,再加上封裝外殼就構成了石英晶體諧振器,簡稱為石英晶體或晶體、晶振。
其產品一般用金屬外殼封裝,也有用玻璃殼、陶瓷或塑膠封裝的。
下圖是一種金屬外殼封裝的石英晶體架構示意圖。
2、壓電效應若在石英晶體的兩個電極上加一電場,晶片就會產生機械變形。
反之,若在晶片的兩側施加機械壓力,則在晶片相應的方向上將產生電場,這種物理現象稱為壓電效應。
如果在晶片的兩極上加交變電壓,晶片就會產生機械振動,同時晶片的機械振動又會產生交變電場。
在一般情況下,晶片機械振動的振幅和交變電場的振幅非常微小,但當外加交變電壓的頻率為某一特定值時,振幅明顯加大,比其他頻率下的振幅大得多,這種現象稱為壓電諧振,它與LC回路的諧振現象十分相似。
它的諧振頻率與晶片的切割方式、幾何形狀、尺寸等有關。
3、符號和等效電路石英晶體諧振器的符號和等效電路如圖2所示。
當晶體不振動時,可把它看成一個平板電容器稱為靜電電容C,它的大小與晶片的幾何尺寸、電極面積有關,一般約幾個PF到幾十PF。
當晶體振盪時,機械振動的慣性可用電感L來等效。
一般L的值為幾十mH 到幾百mH。
晶片的彈性可用電容C來等效,C的值很小,一般只有0.0002~0.1pF。
晶片振動時因摩擦而造成的損耗用R來等效,它的數值約為100Ω。
石英晶体振荡器实验报告学号 200805120109 姓名 刘皓 实验台号实验结果及数据(一) 静态工作点(晶体管偏置)不同对振荡器振荡频率、幅度和波形的影响 1、把单刀开关K2闭合,用示波器和频率计在c 点监测。
调整DW 1,使振荡器振荡;微调C 2,使振荡频率在4MHz 左右。
2、调整DW 1,使BG 1工作电流E Q I 逐点变化,E Q I 可用万用表在A 点通过测量发射极电阻R 4两端的电压得到(R 4=1k Ω)。
振荡器工作情况变化及测量结果如表1所示:表1 静态工作点变化对振荡器的影响(二)2C 取值不同对振荡器振荡频率范围的影响2C 变化对振荡器的影响 测量条件:E Q I = 1.5 m A保持4.433MHz 基本不变(三)负载变化对振荡器的影响1、K 1断开的情况下,将振荡器的振荡频率调整到4MHz 左右,此时频率osc f = 4.433 MHz ,幅度opp V = 2.92 V 。
2、将K 1分别接1—2、1—3、1—4的位置,即接入不同的负载电阻R 5,测得的相应的频率和幅度及计算结果如表3所示。
表3 负载变化对振荡器的影响 测量条件:osc f =4.433 MHz ,幅度opp V =2.92 V由表3知:负载变化对振荡器工作频率的影响是: 几乎没有影响。
负载变化对振荡器输出幅度的影响是: 随着负载阻抗的减小,输出幅度略微减小。
(四)比较负载变化对LC 正弦波振荡器和石英晶体振荡器的不同影响负载变化对LC 正弦波振荡器的影响比较明显。
而对石英晶体振荡器的影响很小。
这主要是由于石英晶体振荡器的稳定性很高。
思考题晶体振荡器的振荡频率比LC 振荡器稳定得多,为什么? 答:因为(1)石英晶体谐振器具有很高的标准性。
(2)石英晶体谐振器与有源器件的接入系数 ,受外界不稳定因素的影响少。
(3)石英晶体谐振器具有非常高的Q 值,维持振荡频率稳定不变的能力极强。
石英晶体多谐振荡器的振荡频率摘要:1.石英晶体多谐振荡器的基本概念和原理2.石英晶体多谐振荡器的振荡频率决定因素3.石英晶体多谐振荡器的应用领域4.石英晶体多谐振荡器的发展趋势正文:一、石英晶体多谐振荡器的基本概念和原理石英晶体多谐振荡器是一种基于石英晶体谐振原理实现的振荡器。
它主要由石英晶体(晶振)、非门、电容等元件组成,结构相对简单。
石英晶体多谐振荡器主要用于信号发生电路,尤其是方波的产生。
二、石英晶体多谐振荡器的振荡频率决定因素石英晶体多谐振荡器的输出脉冲频率主要取决于石英晶体的固有频率。
石英晶体的固有频率是由其物理性质决定的,因此在设计石英晶体多谐振荡器时,需要根据实际需求选择合适的石英晶体。
三、石英晶体多谐振荡器的应用领域石英晶体多谐振荡器广泛应用于通信、广播、导航等领域。
在通信领域,石英晶体多谐振荡器常用于信号发生器、调制器等设备,以实现信号的传输和接收。
在广播和导航领域,石英晶体多谐振荡器则用于产生稳定的基准频率,确保广播和导航信号的精确传输。
四、石英晶体多谐振荡器的发展趋势随着科技的不断发展,石英晶体多谐振荡器也在不断改进和优化。
未来的发展趋势主要包括以下几个方面:1.向高频化发展:随着通信、广播等领域对信号传输速率和容量的需求不断提高,石英晶体多谐振荡器需要实现更高的振荡频率。
2.向小型化、集成化发展:为了满足电子设备小型化、轻便化的要求,石英晶体多谐振荡器需要实现更小的体积和更高的集成度。
3.向高稳定性、高精度发展:在通信、导航等领域,对信号传输的稳定性和精度要求越来越高。
因此,石英晶体多谐振荡器需要实现更高的稳定性和精度。
⽯英晶体振荡器⽯英晶体振荡器⽯英晶体振荡器是⼀种⽤于频率稳定和选择频率的电⼦器件,它的主要作⽤是提供频率基准,由于它具有⾼稳定的物理化学性能、极⼩的弹性震动损耗以及频率稳定度⾼的特点,因此被⼴泛⽤于远程通信、卫星通信、移动电话系统、全球定位系统(GPS)、导航、遥控、航空航天、⾼速计算机、精密计测仪器及消费类民⽤电⼦产品中,是⽬前其它类型的振荡器所不能替代的.⼀、⽯英晶体谐振器的结构、振荡原理1、⽯英晶体振荡器的结构⽯英晶体振荡器是利⽤⽯英晶体(⼆氧化硅的结晶体)的压电效应制成的⼀种谐振器件,它的基本构成⼤致是:从⼀块⽯英晶体上按⼀定⽅位⾓切下薄⽚(简称为晶⽚,它可以是正⽅形、矩形或圆形等),在它的两个对应⾯上涂敷银层作为电极,在每个电极上各焊⼀根引线接到管脚上,再加上封装外壳就构成了⽯英晶体谐振器,简称为⽯英晶体或晶体、晶振。
其产品⼀般⽤⾦属外壳封装,也有⽤玻璃壳、陶瓷或塑料封装的。
下图是⼀种⾦属外壳封装的⽯英晶体结构⽰意图。
2、压电效应若在⽯英晶体的两个电极上加⼀电场,晶⽚就会产⽣机械变形。
反之,若在晶⽚的两侧施加机械压⼒,则在晶⽚相应的⽅向上将产⽣电场,这种物理现象称为压电效应。
如果在晶⽚的两极上加交变电压,晶⽚就会产⽣机械振动,同时晶⽚的机械振动⼜会产⽣交变电场。
在⼀般情况下,晶⽚机械振动的振幅和交变电场的振幅⾮常微⼩,但当外加交变电压的频率为某⼀特定值时,振幅明显加⼤,⽐其他频率下的振幅⼤得多,这种现象称为压电谐振,它与LC回路的谐振现象⼗分相似。
它的谐振频率与晶⽚的切割⽅式、⼏何形状、尺⼨等有关。
⼆、⽯英晶体振荡器的等效电路与谐振频率1、等效电路⽯英晶体谐振器的等效电路如下图所⽰。
当晶体不振动时,可把它看成⼀个平板电容器称为静电电容Co,它的⼤⼩与晶⽚的⼏何尺⼨、电极⾯积有关,⼀般约⼏个PF到⼏⼗PF。
当晶体振荡时,机械振动的惯性可⽤电感L1来等效。
⼀般L1的值为⼏⼗mH 到⼏百mH。
采用石英晶体构成多谐振荡器的案例说明上述多谐振荡器的振荡周期或频率不仅与时间常数RC 有关,而且还取决于门电路的阈值电压U TH 。
由于U TH 本身易受温度、电源电压及干扰的影响,因此频率稳定性较差,不能适应频率稳定性要求较高的电路。
在对频率稳定性要求较高的电路中,通常采用频率稳定性很高的石英晶体振荡器。
石英晶体的选频特性非常好,具有一个极为稳定的串联谐振频率s f 。
而s f 只由石英晶体的结晶方向和外尺寸所决定。
目前,具有各种谐振频率的石英晶体(简称“晶振”)已被制成标准化和系列化的产品出售。
图9.7为常见的石英晶体振荡器电路。
电阻R 的作用是使反相器工作在线性放大区,对于TTL 门电路,其值通常在0.5~2K Ω之间;对于CMOS 门电路,其值通常在5~100M Ω之间。
电容C 用于两个反相器之间的耦合,电容C 的大小选择应使其在频率为s f 时的容抗可以忽略不计。
该电路的振荡频率即为s f ,而与其它参数无关。
石英晶体振荡器的突出优点是具有极高的频率稳定度,且工作频率范围非常宽,从几百赫兹到几百兆赫兹,多用于要求高精度时基的数字系统中。
图9.7 石英晶体多谐振荡器例:秒脉冲信号产生电路的设计。
解:实用的秒脉冲信号产生电路一般均采用图9.7的电路形式。
为了得到1Hz 的秒脉冲信号,一种是在图9.7电路基础上稍作改动,得到如图9.8所示的电路。
图中晶振的谐振频率为4MHz ,故输出电压u o2的频率为4MHz ,该信号经一个4×106分频电路后得到1Hz 的秒脉冲信号u o 。
分频电路可利用集成计数器实现。
u oC G 2G 1 R1 1 R图9.8 秒信号产生电路(1) u o2 C 1 G 2G 1R1 1 R C2 分频电路 1Hz 秒信号 u o。
石英晶体多谐振荡器的振荡频率1. 引言石英晶体多谐振荡器是一种常见的电子元器件,广泛应用于通信、计算机、电子设备等领域。
其主要功能是产生稳定的振荡信号,用于时钟同步、频率调节等应用。
本文将介绍石英晶体多谐振荡器的原理、结构和振荡频率的相关知识。
2. 石英晶体多谐振荡器的原理石英晶体多谐振荡器的工作原理基于石英晶体的压电效应。
石英晶体是一种具有压电性质的晶体材料,当施加外力或电场时,会产生电荷分布的变化,从而产生电势差。
利用这种压电效应,可以将石英晶体作为振荡器的振荡元件。
石英晶体多谐振荡器通常由石英晶体片、电容和电感组成。
石英晶体片被切割成特定的尺寸和方向,使其在特定频率下具有谐振特性。
电容和电感用于调节振荡电路的频率和稳定性。
3. 石英晶体多谐振荡器的结构石英晶体多谐振荡器的结构相对简单,主要包括石英晶体片、电容和电感等元件。
3.1 石英晶体片石英晶体片是石英晶体多谐振荡器的核心部件。
它通常采用石英晶体材料,通过特殊的切割和加工工艺制成。
石英晶体片的尺寸和方向决定了振荡器的谐振频率,因此选择合适的石英晶体片非常重要。
3.2 电容和电感电容和电感用于调节石英晶体多谐振荡器的频率和稳定性。
电容可通过改变电容值来调节振荡器的频率,而电感则可以提高振荡器的稳定性。
4. 石英晶体多谐振荡器的振荡频率计算石英晶体多谐振荡器的振荡频率可以通过以下公式计算:频率= 1 / (2 * π * √(L * C))其中,L为电感的值,C为电容的值。
这个公式表明,振荡频率与电感和电容的乘积成反比,因此可以通过调节电感和电容的值来改变振荡频率。
5. 石英晶体多谐振荡器的应用石英晶体多谐振荡器具有稳定、精准的特点,因此在许多领域都有广泛的应用。
5.1 时钟同步石英晶体多谐振荡器被广泛应用于电子设备中的时钟电路,用于提供稳定的时钟信号。
时钟同步对于电子设备的正常运行非常重要,石英晶体多谐振荡器的高稳定性和精准性确保了时钟信号的准确性。
实验4 石英晶体振荡器—、实验准备1.做本实验时应具备的知识点:●石英晶体振荡器●串联型晶体振荡器●静态工作点、微调电容、负载电阻对晶体振荡器工作的影响2.做本实验时所用到的仪器:●晶体振荡器模块●双踪示波器●频率计●万用表二、实验目的1.熟悉电子元器件和高频电子线路实验系统。
2.掌握石英晶体振荡器、串联型晶体振荡器的基本工作原理,熟悉其各元件功能。
3.熟悉静态工作点、微调电容、负载电阻对晶体振荡器工作的影响。
4.感受晶体振荡器频率稳定度高的特点,了解晶体振荡器工作频率微调的方法。
三、实验内容1.用万用表进行静态工作点测量。
2.用示波器观察振荡器输出波形,测量振荡电压峰-峰值V p-p,并以频率计测量振荡频率。
3.观察并测量静态工作点、微调电容、负载电阻等因素对晶体振荡器振荡幅度和频率的影响。
五、实验步骤1.实验准备在实验箱主板上插好晶振模块,接通实验箱上电源开关,按下开关4K01,此时电源指示灯点亮。
2.静态工作点测量改变电位器4W01可改变4Q01的基极电压V B,并改变其发射极电压V E。
记下V E的最大、最小值,并计算相应的I Emax、I Emin值(发射极电阻4R04=1KΩ)。
V E max=3.10V V E min=1.83V由Ie=Ve/4R04得,I E max=3.10mV、I E min=1.83mV3.静态工作点变化对振荡器工作的影响⑴实验初始条件:V EQ=2.5V(调4W01达到)。
⑵调节电位器4W01以改变晶体管静态工作点I E,使其分别为表4.1所示各值,且把示波器探头接到4TP02端,观察振荡波形,测量相应的振荡电压峰-峰值V p-p,并以频率计读取相应的频率值,填入表4.1。
表4.14.微调电容4C1变化对振荡器工作的影响⑴实验初始条件:同3⑴。
⑵用改锥(螺丝刀、起子)平缓地调节微调电容4C1。
与此同时,把示波器探头接到4TP02端,观察振荡波形,并以频率计测量其频率,看振荡频率有无变化。