石英晶体振荡电路
- 格式:ppt
- 大小:1.26 MB
- 文档页数:32
晶体Crystal振荡电路原理、分类及设计目录1.文档简介 (3)2.晶体振荡电路的工作原理 (3)2.1石英晶体特性 (3)2.2并联型晶体振荡电路 (4)2.3串联型晶体振荡电路 (6)3.时钟的重要参数 (6)4.晶体振荡器种类 (11)4.1普通晶体振荡器 (11)4.2温度补偿晶体振荡器 (12)4.3恒温晶体振荡器 (14)5.CRYSTAL(晶体)电路设计 (14)5.1晶体电路设计器件说明及选择 (15)5.2PCB布局设计 (16)6.晶体常见问题举例 (16)6.1不起振问题分析与解决 (16)6.2频偏过大 (17)7.总结 (17)附录一相关公式推导一 (18)附录二相关公式推导二 (20)1.文档简介本文主要介绍了晶体振荡电路的工作原理,时钟的重要参数,晶体振荡器的种类,晶体电路设计及晶体常见问题的举例。
2.晶体振荡电路的工作原理晶体(石英晶体)振荡电路主要由主振电路和石英谐振器组成,主振电路将直流能量转换成交流能量,振荡器频率主要取决于石英晶体谐振器。
振荡电路一般采用反馈型电路,按晶体在振荡电路中的作用,又可以分为串联型晶体振荡电路和并联型晶体振荡电路。
本章首先介绍石英晶体的特性,然后分别介绍并联型晶体振荡电路和串联型晶体振荡电路的结构及工作原理。
2.1石英晶体特性晶体(石英晶体)之所以能作为振荡器产生时钟,是基于它的压电效应:所谓的压电效应是指电和力的相互转化,即,如果在晶体的两端施加压缩或拉伸的力,晶体的两端会产生电压信号;同样的,在晶体的两端施加电压信号,晶体会产生形变。
而且这种转化在某特定的频率上效率最高,此频率(由晶片的尺寸和形状决定)即为晶体的谐振频率。
实际应用的晶片是由石英晶体按一定的方向切割而成的,晶片的形状可以各种各样,如方形、矩形或圆形等。
由于晶体的物理性质存在各向差异性,相同的晶体按不同晶格方向切下的晶片,会产生不同的物理特性。
因此,晶体的切割方法是非常重要的,对石英晶体来说,有AT/BT/DT/GT/IT/RT/FC/SC等不同的切法,要根据具体的需求选择相应的切法切割晶片,其中最常用的有AT切和SC切。
石英晶体振荡器与外围电路关系一、三端式LC 振荡器三端式LC 振荡电路是经常被采用的,其工作频率约在几MHz 到几百MHz 的范围,频率稳定度也比变压器耦合振荡电路高一些,约为10–3~10–4量级,采取一些稳频措施后,还可以再提高一点。
三端式LC 振荡电路以分为电感三端式和电容三端式电容三端式又分为串联型电容三端式和并联型电容三端式(也有叫三点式)。
并联型电容三端式:电容反馈式振荡电路,如图1a 。
振荡频率)(212121210C C C C L LCf +≈=ππ(公式1)反馈系数21C C U FUf≈=∙∙∙(公式2)集电极等效负载:2//`∙=FR RR iL C(公式3)ab图1在这个电路中若要提高电容反馈式振荡电路的振荡频率,势必要减小C 1和C2的电容量和L 的电感量。
实际上不C1和C2的电容量减小到一定程度时,晶体管的极间电容和电路中的杂散电容将纳入C1和C2中,从而影响振荡频率。
这些电容等效为放大电路的输入电容Ci 和输出电容C 。
,如图1b 中所标注。
电路的优点:1. 电容反馈三端电路的优点是振荡波形好。
2. 电路的频率稳定度较高,适当加大回路的电容量,就可以减小不稳定因素对振荡频率的影响。
3. 电容三端电路的工作频率可以做得较高,可直接利用振 荡管的输出、输入电容作为回路的振荡电容。
它的工作频率可做到几十MHz,采用共基放大电路可做到几百MHz 的甚高频波段范围。
电路的缺点:调C 1或C 2来改变振荡频率时,反馈系数也将改变。
改进型电容反馈式振荡电路,如图2:图2在电感支路串联一个小容量电容C ,而且C <<C1,C <<C2,这样CC C C 111121≈++总电容约为C ,因面电路的振荡频率为:LCf π210≈(公式4)二、石英晶体振荡器1 、石英晶体的压电特性石英晶体所以能成为电谐振器,是利用了它所特有的正、反两种压电效应。
所谓正压电效应,就是当沿晶体的电轴或机械轴施以张力或压力时,就在垂直于电轴的两面上产生正、负电荷,呈现出电压。
晶体振荡器,简称晶振。
在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。
由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。
这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。
晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。
一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。
一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。
晶体振荡器也分为无源晶振和有源晶振两种类型。
无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。
无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。
谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。
晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。
石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。
如在极板间所加的是交变电压,就会产生机械变形振动,同时机械变形振动又会产生交变电场。
串联、并联石英晶体振荡电路中石英晶体的作用
1、串联、并联石英晶体振荡电路中石英晶体的作用
石英晶体振荡电路是一种多种电子器件的组合,它可以提供定定的、可靠的频率。
石英晶体振荡电路可用于产生、调节、检测和锁定各种频率,如电视机的调谐器和声音的收音机等。
石英晶体和振荡电路中的其他电子器件是互相联系的,石英晶体的作用在于传输信号,控制振荡电路的频率。
串联石英晶体振荡电路是在振荡电路中使用的一种类型。
串联石英晶体振荡电路由电阻、电容、石英晶体和放大器构成,石英晶体在此种类型的振荡电路中填充放大器的输出电压,从而控制频率。
石英晶体振荡电路的频率取决于石英晶体的频率,当石英晶体的频率发生变化时,振荡电路的频率也会发生变化。
并联石英晶体振荡电路也是一种常用的类型,它由电阻、电容、双石英晶体以及一个放大器构成。
由于双石英晶体是并联的,因此对频率的控制是更为精确的。
并联石英晶体振荡电路的工作原理是,石英晶体向放大器输出信号,放大器将这些信号放大,从而产生振荡,使频率变得稳定。
综上所述,在串联、并联石英晶体振荡电路中,石英晶体的作用是传输信号,控制振荡电路的频率。
另外,串联石英晶体振荡电路的频率取决于石英晶体的频率,而并联石英晶体振荡电路的频率则由双石英晶体共同决定。
4-2 LC 、RC 和石英晶体振荡电路课 题:集成运算放大器的基本电路教学目的、要求:1、掌握三种选频振荡电路的工作频率 2、三种振荡电路的工作特点 教学重点、难点:1、LC 、RC 、石英晶体的谐振频率(重点)2、LC 、RC 、石英晶体振荡电路特点(难点)授 课 方 法:多媒体课件讲授,提纲及重点板书。
授 课 提 纲:教 学 内 容: 组织教学准备教学材料,清点学生人数。
(课前2分钟) 复习旧课正弦波振荡电路的起振条件(2分钟) 引入新课根据选用选频网络的不同,我们把正弦波振荡器分为LC 、RC 、石英晶体振荡电路。
这三种不同的选频网络所选择的频率也不一样。
(3分钟) 进入新课第四章 正弦波振荡电路4-2 LC 、RC 和石英晶体振荡电路【板书】 一、选频放大器介绍【板书】(10分钟)图1(a )为普通共射放大器电路图,若用LC 并联谐振回路来替代集电极负载电阻R3后,就构成了选频放大器,或称调谐放大器。
如图(b)所示,LC 并联谐振回路的阻抗特性如图(c )所示。
图1 选频网络既使选频放大器输入信号的频率很多,在它的输出端得到的输出信号却始终是频率等于f o 的正弦波信号。
由于LC 回路具有选频特性,故常称它为选频网络。
二、LC 振荡电路【板书】(15分钟)LC 振荡电路由放大器、LC 选频网络和反馈网络三部分组成。
按反馈方式可分为变压器反馈式振荡电路和三点式振荡电路两大类。
1、变压器反馈式LC 振荡电路【标题板书+内容多媒体】图2 变压器反馈式LC 振荡器优点:便于实现阻抗匹配,效率高、容易起振;调节频率方便,只要将谐振电容换成一个可变电容器,就可以实现调节频率的要求。
2、三点式LC 振荡电路【标题板书+内容多媒体】 ⑴电感三点式振荡电路图3 电感三点式LC 振荡电路(a)图为电感三点式振荡电路,又称哈特莱振荡电路。
若用瞬时极性法不易判其反馈极性。
现画出其交流通路,如(b)图所示,可见电感的三个端点分别接到晶体管的三个电极上(1端→集电极C ,2端→发射极E ,3端→基极B ),象这样:发射极两旁为电感,集电极—基极间为电容,称电感三点式振荡电路。
文章标题:探究石英晶体振荡器的阻抗范围在现代科技领域中,石英晶体振荡器扮演着至关重要的角色。
它不仅被广泛应用于通信设备、计算机、电子钟表等领域,而且也深刻影响了人类社会的发展进程。
石英晶体振荡器之所以能够如此重要,与其阻抗范围息息相关。
本文将从深度和广度两个方面来探讨石英晶体振荡器的阻抗范围,以便读者能够更全面地理解这一主题。
一、石英晶体振荡器的基本原理要深入理解石英晶体振荡器的阻抗范围,首先需要对其基本原理有所了解。
石英晶体具有压电效应,即受到外界压力或拉伸时会产生电荷。
这一特性使得石英晶体可以用作振荡器的振动元件。
当电压施加于石英晶体上时,它会发生机械振动,产生特定的频率。
而这一频率与石英晶体的物理尺寸和机械特性有关,因此可以通过控制其尺寸和形状来实现不同的振荡频率。
二、阻抗范围对石英晶体振荡器的影响石英晶体振荡器的阻抗范围直接关系到其在电路中的应用。
阻抗范围广泛意味着石英晶体振荡器可以适用于不同的电路和系统,而阻抗范围受限则可能导致其应用范围收缩。
一般来说,石英晶体振荡器的阻抗范围包括了电阻、电感和电容等参数的范围变化。
在实际应用中,需要根据电路的要求选择具有适当阻抗范围的石英晶体振荡器,以确保电路的正常工作。
三、石英晶体振荡器的阻抗范围评估针对石英晶体振荡器的阻抗范围进行全面评估,需要考虑多个方面的因素。
首先是石英晶体振荡器的工作频率范围,它直接决定了石英晶体的振荡频率范围。
其次是石英晶体振荡器的稳定性和精度,这些参数与其阻抗范围密切相关,因为稳定性和精度的要求会对阻抗参数提出更高的要求。
四、石英晶体振荡器的实际应用石英晶体振荡器在通信设备、计算机、电子钟表等领域有着广泛的应用。
在这些应用中,石英晶体振荡器的阻抗范围会受到严格的要求。
在通信设备中,要求石英晶体振荡器具有较宽的阻抗范围,以适应不同的工作环境和电路条件。
在电子钟表中,对石英晶体振荡器的稳定性和精度要求较高,这也对其阻抗范围提出了更高的要求。
单片机的晶振电路
单片机的晶振电路是单片机系统中非常重要的组成部分之一。
晶振电路一般由晶体振荡器、电容和电阻等元件组成,主要用于提供单片机系统的时钟信号,控制系统的时序和节拍,保证系统的稳定和可靠运行。
晶振电路的工作原理是利用晶体振荡器将电能转化为机械能,使晶体振荡器产生固定频率的振荡信号,然后将信号输入到单片机系统的时钟输入端,从而控制系统的运行。
晶体振荡器通常由石英晶体和电路元件组成,其精度和稳定性非常高,是单片机系统中最常用的时钟源。
晶振电路的设计需要考虑多种因素,包括时钟频率、电路稳定性、电源噪声等,通常需要根据系统的要求进行调试和优化。
同时,还需要注意晶振电路的布局和电路连接,以避免信号干扰和电磁辐射等问题。
总之,晶振电路是单片机系统中非常重要的组成部分,其设计和优化对系统的稳定性和可靠性具有重要意义。
在实际应用中,需要根据实际需求和技术要求进行优化和改进,以满足不同场合的需求。
- 1 -。
⽯英晶体振荡器⽯英晶体振荡器⽯英晶体振荡器是⼀种⽤于频率稳定和选择频率的电⼦器件,它的主要作⽤是提供频率基准,由于它具有⾼稳定的物理化学性能、极⼩的弹性震动损耗以及频率稳定度⾼的特点,因此被⼴泛⽤于远程通信、卫星通信、移动电话系统、全球定位系统(GPS)、导航、遥控、航空航天、⾼速计算机、精密计测仪器及消费类民⽤电⼦产品中,是⽬前其它类型的振荡器所不能替代的.⼀、⽯英晶体谐振器的结构、振荡原理1、⽯英晶体振荡器的结构⽯英晶体振荡器是利⽤⽯英晶体(⼆氧化硅的结晶体)的压电效应制成的⼀种谐振器件,它的基本构成⼤致是:从⼀块⽯英晶体上按⼀定⽅位⾓切下薄⽚(简称为晶⽚,它可以是正⽅形、矩形或圆形等),在它的两个对应⾯上涂敷银层作为电极,在每个电极上各焊⼀根引线接到管脚上,再加上封装外壳就构成了⽯英晶体谐振器,简称为⽯英晶体或晶体、晶振。
其产品⼀般⽤⾦属外壳封装,也有⽤玻璃壳、陶瓷或塑料封装的。
下图是⼀种⾦属外壳封装的⽯英晶体结构⽰意图。
2、压电效应若在⽯英晶体的两个电极上加⼀电场,晶⽚就会产⽣机械变形。
反之,若在晶⽚的两侧施加机械压⼒,则在晶⽚相应的⽅向上将产⽣电场,这种物理现象称为压电效应。
如果在晶⽚的两极上加交变电压,晶⽚就会产⽣机械振动,同时晶⽚的机械振动⼜会产⽣交变电场。
在⼀般情况下,晶⽚机械振动的振幅和交变电场的振幅⾮常微⼩,但当外加交变电压的频率为某⼀特定值时,振幅明显加⼤,⽐其他频率下的振幅⼤得多,这种现象称为压电谐振,它与LC回路的谐振现象⼗分相似。
它的谐振频率与晶⽚的切割⽅式、⼏何形状、尺⼨等有关。
⼆、⽯英晶体振荡器的等效电路与谐振频率1、等效电路⽯英晶体谐振器的等效电路如下图所⽰。
当晶体不振动时,可把它看成⼀个平板电容器称为静电电容Co,它的⼤⼩与晶⽚的⼏何尺⼨、电极⾯积有关,⼀般约⼏个PF到⼏⼗PF。
当晶体振荡时,机械振动的惯性可⽤电感L1来等效。
⼀般L1的值为⼏⼗mH 到⼏百mH。
石英晶体振荡电路石英晶体谐振器, 简称石英晶体, 具有非常稳定的固有频率。
对于振荡频率的稳定性要求高的电路, 应选用石英晶体作选频网络。
一、石英晶体的特点将二氧化硅(SiO2)结晶体按一定的方向切割成很薄的晶片, 再将晶片两个对应的表面抛光和涂敷银层, 并作为两个极引出管脚, 加以封装, 就构成石英晶体谐振器。
其结构示意图和符号如右图所示。
1.压电效应和压电振荡在石英晶体两个管脚加交变电场时, 它将会产有利于一定频率的机械变形, 而这种机械振动又会产生交变电场, 上述物理现象称为压电效应。
一般情况下, 无论是机械振动的振幅, 还是交变电场的振幅都非常小。
但是, 当交变电场的频率为某一特定值时, 振幅骤然增大, 产生共振, 称之为压电振荡。
这一特定频率就是石英晶体的固有频率, 也称谐振频率。
2.石英晶体的等效电路和振荡频率石英晶体的等效电路如下图(a)所示。
当石英晶体不振动时, 可等效为一个平板电容C0, 称为静态电容;其值决定于晶片的几何尺寸和电极面积, 一般约为几到几十皮法。
当晶片产生振动时, 机械振动的惯性等效为电感L, 其值为几毫亨。
晶片的弹性等效为电容C, 其值仅为0.01到0.1pF, 因此, C<<C0。
晶片的磨擦损耗等效为电阻R, 其值约为100Ω, 理想情况下R=0。
当等效电路中的L、C、R支路产生串联谐振时, 该支路呈纯阻性, 等效电阻为R, 谐振频率谐振频率下整个网络的电抗等于R并联C0的容抗, 因R<<ω0C0, 故可近似认为石英晶体也呈纯阻性, 等效电阻为R。
当f<fs时, C0和C电抗较大, 起主导作用, 石英晶体呈容性。
当f>fs 时, L、C、R支路呈感性, 将与C0产生并联谐振, 石英晶体又呈纯阻性, 谐振频率石英晶体基础知识1、石英晶体的应用:a、石英钟 b、温度计 c、压力指示器(频率与应力)d、加速度计2、晶体的自然面及解理面平行于原子面3、石英的机械、电气、化学和温度等综合性能,都满足需要电气通讯领域。
u2/3V 0 ttu 08.1 多谐振荡器本次重点内容:1.多谐振荡器的工作原理。
2.周期的计算方法。
教学过程一、 多谐振荡器特点1. 多谐振荡器没有稳定状态, 只有两个暂稳态。
2. 通过电容的充电和放电, 使两个暂稳态相互交替, 从而产生自激振荡, 无需外触发。
3.输出周期性的矩形脉冲信号, 由于含有丰富的谐波分量, 故称作多谐振荡器。
二、电路组成电路如图8.1 (a) 所示 , 定时元件除电容 C 之外 , 还有两个电阻 R1 和 R2 将高、低电平触发端 ( ⑥、②脚 ) 短接后连接到 C 与 R2 的连接处 , 将放电端 ( ⑦脚 ) 接到 R1与R2的连接处图8.1 (a) 电路组成 (b) 工作波形三、工作原理接通电源瞬间 t =to 时 , 电容 C 来不及充电 ,u c 为低电平 , 此时 ,555 定时器内 R =0,S=1, 触发器置 1, 即 Q =1, 输出u o 为高电平。
同时由于Q =0, 放电管 V 截止 , 电容 C 开始充电 , 电路进 入暂稳态。
一般多谐振荡器的工作过程可分为以下四个阶段 ( 见图 (b)):(1) 暂稳态 I(O ~t l): 电容 C 充电 , 充电回路为 V DD → R1 → R2 → C →地 ,充电时间常数为 为τ1=(R1+R2)C, 电容 C 上的电压 u c 随时间 t 按指数规律上升 , 此阶段内输出电压 uo 稳定在高电平。
(2) 自动翻转 I(t =tl): 当电容上的电压 uc 上升到了32V DD 时 , 由于 555 定时器内 S=0,R=1, 使触发器状态Q 由 1 变为 0, Q 由0变成 1, 输出电压 uo 由高电平跳变为低电平 , 电容 C 中止充电。
(3) 暂稳态 Ⅱ (t1~t2): 由于此刻Q ==1, 因此放电管 V 饱和导通 , 电容 C 放电 , 放电回路为 C → R2 →放电管 V →地 , 放电时间常数τ2=R 2C( 忽略 V 管的饱和电阻 ), 电容电压 u c 按指数规律下降 , 同时使输出维持在低电平上。
石英晶体谐振器From:欧阳联铂石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。
一、石英晶体振荡器的基本原理1、石英晶体振荡器的结构石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。
其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的.为了防止Ag 电极被氧化,一般在封装时充入N2。
下图是一种金属外壳封装的石英晶体结构示意图。
图12、压电效应若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。
反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应,如图2 所示。
如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。
在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC 回路的谐振现象十分相似。
它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。
图23、符号和等效电路石英晶体谐振器的符号和等效电路如图3 所示。
当晶体不振动时,可把它看成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个PF 到几十PF。
当晶体振荡时,机械振动的惯性可用电感L 来等效。
一般L 的值为几十mH 到几百mH。
晶片的弹性可用电容C 来等效,C 的值很小,一般只有0.0002~0.1pF。
晶片振动时因摩擦而造成的损耗用R 来等效(与晶片表面光滑度成反比,粗糙平整度影响R 值,它决定了晶振80%的品质),它的数值约为100Ω。