29数学分析104二元函数的泰勒公式PPT课件
- 格式:ppt
- 大小:1.26 MB
- 文档页数:34
二元函数的泰勒公式二元函数是数学中非常重要的一类函数,它的式子是一元多项式的幂函数形式。
它具有很高的数学意义和应用价值,所以学习它是有必要的。
在二元函数中,泰勒公式是最重要的一种,也是最有用的一种。
泰勒公式有多种形式,可以应用于许多领域,其中最重要的是无穷级数法、复变函数法以及数值计算法。
泰勒公式是事实上经常使用的一种关于函数表达式的展开式。
它是一种描述函数的技巧,可以用来测量函数的性质,也可以用来估计函数的值。
在求解函数的过程中,它可以帮助我们更加准确、有效地求解问题,用以解决各种实际应用中的问题。
泰勒公式常用来研究一般连续函数f(x),它被定义为连续函数f(x)在x=a处的泰勒展开式,其形式为:f(x)=f(a)+f(a)(x-a)+f(a)(x-a)2/2!+f(a)(x-a)3/3!+…+f^(n)(a)(x-a)n/n!由此可见,泰勒公式的每一项都有着与它相关的求导数次数,所以二元函数的泰勒公式可以把连续函数f(x)表示为一个无穷级数,由此可以理解为一个与实际应用所属的某一领域有关的特殊函数。
泰勒公式实际上是一个重要的逐步近似技术,它可以用来计算函数f(x)在x=a附近的局部变化。
比如,当函数f(x)在x=a处求导结果为f′(a),进一步求出f″(a),以及更高阶的求导数,那么泰勒公式就可以利用它们来得到函数f(x)在x=a处的局部变化。
由于函数f(x)每一项都相互独立,在每一项求导数的次数均较少,因而可以节省计算量,这也是使用泰勒公式的原因之一。
而在应用中,泰勒公式可以用于数值计算、插值计算、积分运算等,还可以用于研究复变函数、无穷级数的收敛性等。
特别是在无穷级数的研究中,使用它就可以快速进行研究,大大减少了计算量。
综上所述,泰勒公式是一种用于研究特殊函数和无穷级数的重要方法。
从学习、研究上来说,了解泰勒公式对于更好地理解函数有着重要的意义,因此,认真学习泰勒公式是很有必要的。
§10.4 二元函数的泰勒公式一.高阶偏导数二元函数=z f ),(y x 的两个(一阶)偏导函数x z ∂∂,yz ∂∂ 仍是x 与y 的二元函数。
若他们存在关于x 和y 的偏导数,即 x ∂∂(x z ∂∂), y ∂∂(x z ∂∂), x ∂∂(y z ∂∂), y ∂∂(yz ∂∂). 称它们是二元函数=z f ),(y x 的二阶偏导(函)数.二阶偏导数至多有22个。
通常将 x ∂∂(x z ∂∂)记为22xz ∂∂或''xx f ),(y x . y ∂∂(x z ∂∂)记为yx z ∂∂∂2或''xy f ),(y x . (混合偏导数) x ∂∂(y z ∂∂)记为xy x ∂∂∂2或''yx f ),(y x . (混合偏导数) y ∂∂(y z ∂∂)记为22yz ∂∂或''yy f ),(y x . 一般地,二元函数=z f ),(y x 的1-n 阶偏导数的偏导数称为二元函数的n 阶偏导数.二元函数的n 阶偏导数至多有2n 个.二元函数z=f (x,y)的n 阶偏导数的符号与二阶偏导数类似.例如,符号k k n n yx z ∂∂∂-或 )(n y x k k n f -),(y x 表示二元函数=z f ),(y x 的n 阶偏导数,首先对x 求k n -阶偏导数,其次对y 求k 阶偏导数.二阶与二阶以上的偏导数统称为高阶偏导数.类似可定义三元函数、一般n 元函数的高阶偏导数.例1 求函数332233++-=xy y x y x z 的二阶偏导数.解 x z ∂∂=23263y xy y x +-, yz ∂∂=xy x y x 233223+-. 22xz ∂∂=y xy 663-.yx z ∂∂∂2=y x y x 26922+-. x y z ∂∂∂2=y x y x 26922+-. (y x z ∂∂∂2=xy z ∂∂∂2) 22yz ∂∂=x y x 263+. 例2 证明:若u=r1,r=222)()()(c z b y a x -+-+-,则 22x u ∂∂+22y u ∂∂+22z u ∂∂=0. 证明 由§10.3例2,有x u ∂∂=3r a x --,yu ∂∂=3r b y --,z u ∂∂=3r c z --. 22x u ∂∂=6233)(r x r r a x r ∂∂---(x r ∂∂=r a x -) =6233)(r r a x r a x r ---- =31r -+53r 2)(a x -. 同样,可得22yu ∂∂=31r -+53r 2)(b y -, 22z u ∂∂=31r -+53r 2)(c z - 于是,22x u ∂∂+22y u ∂∂+22zu ∂∂=31r -53r +])()()[(222c z b y a x -+-+- =33r -+33r=0. 由例1看到,y x z ∂∂∂2=xy z ∂∂∂2,即二阶混合偏导数(先对x 后对y 和先对y 后对x )与求导的顺序无关。
§10.4 二元函数的泰勒公式一.高阶偏导数二元函数=z f ),(y x 的两个(一阶)偏导函数xz ∂∂,yz ∂∂ 仍是x 与y 的二元函数。
若他们存在关于x 和y 的偏导数,即x∂∂(xz ∂∂),y∂∂(xz ∂∂),x∂∂(yz ∂∂),y∂∂(yz ∂∂).称它们是二元函数=z f ),(y x 的二阶偏导(函)数.二阶偏导数至多有22个。
通常将x∂∂(xz ∂∂)记为22xz ∂∂或''xx f ),(y x .y∂∂(x z ∂∂)记为y x z ∂∂∂2或''xy f ),(y x . (混合偏导数)x ∂∂(y z ∂∂)记为x y x ∂∂∂2或''yx f ),(y x . (混合偏导数)y∂∂(yz ∂∂)记为22yz ∂∂或''yy f ),(y x .一般地,二元函数=z f ),(y x 的1-n 阶偏导数的偏导数称为二元函数的n 阶偏导数.二元函数的n 阶偏导数至多有2n个.二元函数z=f (x,y)的n 阶偏导数的符号与二阶偏导数类似.例如,符号kk n nyxz ∂∂∂-或 )(n yxkkn f -),(y x表示二元函数=z f ),(y x 的n 阶偏导数,首先对x 求k n -阶偏导数,其次对y 求k 阶偏导数.二阶与二阶以上的偏导数统称为高阶偏导数.类似可定义三元函数、一般n 元函数的高阶偏导数.例1 求函数332233++-=xyy x y x z 的二阶偏导数.解 xz ∂∂=23263y xy y x +-,yz ∂∂=xy x y x 233223+-.22xz ∂∂=y xy663-.y x z ∂∂∂2=y x y x 26922+-.x y z ∂∂∂2=y x y x 26922+-. (yx z ∂∂∂2=xy z ∂∂∂2)22yz ∂∂=x y x 263+.例2 证明:若u=r1,r=222)()()(c z b y a x -+-+-,则22xu ∂∂+22yu ∂∂+22zu ∂∂=0.证明 由§10.3例2,有xu ∂∂=3ra x --,yu ∂∂=3rb y --,zu ∂∂=3rc z --.22xu ∂∂=6233)(rxr ra x r∂∂---(xr ∂∂=ra x -)=6233)(rra x ra x r----=31r-+53r2)(a x -.同样,可得22yu ∂∂=31r-+53r2)(b y -,22zu ∂∂=31r-+53r2)(c z -于是,22xu ∂∂+22yu ∂∂+22zu ∂∂=31r-53r+])()()[(222c z b y a x -+-+-=33r-+33r=0.由例1看到,yx z ∂∂∂2=xy z ∂∂∂2,即二阶混合偏导数(先对x 后对y 和先对y 后对x )与求导的顺序无关。