散热器热阻的测试新
- 格式:pdf
- 大小:276.18 KB
- 文档页数:1
功率电子器件界面热阻和接触热阻是如何测量的?随着微电子技术的发展,电子芯片不断的趋向于小型化、集成化,热量通常被认为是电子系统前进发展的限制性因素,在电子设备热设计领域,热量的积累,温度上升过高对器件的寿命和可靠性都会产生非常不利的影响。
有研究表明,当工作环境为70℃~80℃时,工作温度每提高1℃,芯片的可靠性将下降5%。
因此,对于界面热传导的研究就变得尤为重要。
在各种功率电子器件中,电子器件产生的热量由内而外的传递需要经过数层接触面,不同材料相互接触时会产生界面,界面对热流有阻碍作用, 而界面热阻的概念亦即运用于此。
界面热阻的精准测量也是在集成电路设计时选择热界面材料重要因素——当热量流经接触界面时,将产生一个间断的温度差∆T,根据傅里叶定律,界面热阻Rimp可表述为:Rimp=(T1T2)/Q。
其中,Rimp为界面热阻,T2为上接触部件的界面温度,T1为下接触部件的界面温度,Q为通过接触界面的热流通量。
这里展示一个典型封装结构:在热量由芯片传递至散热器的过程中,需要经过多个固固界面。
当两个部件之间进行接触传热时,由于固体表面从微观上粗糙不平,部件之间实际上是通过离散的接触点进行接触传热的,有研究表明,这之间的实际接触面积不到部件对应表面积的3%,因而产生了非常高的界面热阻。
当界面填充有TIM时,增加了实际的接触面积,界面热阻的数值也随之减少。
界面热阻包括接触热阻和导热热阻两部分,各类热阻的关联如下图所示:那么界面热阻和接触热阻是怎么样测量的呢?在实际应用中,为了充分表征热界面材料的导热能力,材料本身的导热率和热阻的准确测量是必须的。
其实,界面热阻的测量非常简单,目前业内常用于热阻测试的标准为ASTM D5470,根据上面提到的傅里叶公式Rimp=(T1T2)/Q,常用的测试设备可以直接或间接测得上下界面的温度和流经的热通量,进而得到材料的表观界面热阻。
而由界面热阻引申而来,可以进一步得到接触热阻和导热系数:Rimp=1/λS*L+Rcon。
实验二散热器性能实验班级:姓名:学号:一、实验目的1、通过实验了解散热器热工性能测定方法及低温水散热器热工实验装置的结构。
2、测定散热器的散热量Q,计算分析散热器的散热量与热媒流量G和温差T的关系。
二、实验装置1.水位指示管2.左散热器3. 左转子流量计4. 水泵开关及加热开关组5. 温度压差巡检仪6.温度控制仪表 7. 右转子流量计 8. 上水调节阀 9.右散热器 10. 压差传感器 11.温度测点T1、T2、T3、T4图1散热器性能实验装置示意图三、实验原理本实验的实验原理是在稳定的条件下测定出散热器的散热量:Q=GCP (tg-th) [kJ/h]式中:G——热媒流量, kg/h;CP——水的比热, kJ/Kg.℃;tg 、th——供回水温度,℃。
散热片共两组:一组散热面积为:1m2二组散热面积为:0.975 m2上式计算所得散热量除以3.6即可换算成[W]。
低位水箱内的水由循环水泵打入高位水箱,被电加热器加热,并由温控器控制其温度在某一固定温度波动范围,由管道通过转子流量计流入散热器中,经其传热将一部分热量散入房间,降低温度后的回水流入低位水箱。
流量计计量出流经每个散热器在温度为tg时的体积流量。
循环泵打入高位水箱的水量大于散热器回路所需的流量时,多余的水量经溢流管流回低位水箱。
四、实验步骤1、测量散热器面积。
2、系统充水,注意充水的同时要排除系统内的空气。
3、打开总开关,启动循环水泵,使水正常循环。
4、将温控器调到所需温度(热媒温度)。
打开电加热器开关,加热系统循环水。
5、根据散热量的大小调节每个流量计入口处的阀门,使之流量、温差达到一个相对稳定的值,如不稳定则须找出原因,系统内有气应及时排除,否则实验结果不准确。
6、系统稳定后进行记录并开始测定:当确认散热器供、回水温度和流量基本稳定后,即可进行测定。
散热器供回水温度tg 与th及室内温度t均采用pt100.1热电阻作传感器,配数显巡检测试仪直接测量,流量用转子流量计测量。
电力半导体热阻流阻测试风洞设计摘要本文设计了一套用于电力半导体热阻流阻测试的低速直流风洞。
介绍电力半导体的基本状况,及测试电力半导体热阻流阻的方法和测试系统,采用风冷系统,其中风洞是设计关键。
由风洞的使用要求,结合安装场地的安装条件建造了一座直流风洞。
文章中主要介绍了风洞的基本概况,风洞的基本设计理论,以及风力机实验的相关知识。
详细的计算了该风洞的压力损失,选择了合理的动力系统,并设计了风洞的图纸。
关键词:低速风洞;流动损失;散热器中图分类号:TH122Design Wind Tunnel Power Semiconductor Heat-sink ThermalResistance and Flow Resistance TestAbstract:This paper designed a thermal flow resistance for power semiconductors speed DC wind tunnel testing. Introduced the basic situation of power semiconductors and power semiconductor thermal flow resistance test method and test system that uses air cooling system, which is designed wind tunnel key. The use of the wind tunnel requirements, combined with the installation site conditions for the construction of a DC installed wind tunnel. Article introduces the basic overview of the wind tunnel, the wind tunnel of the basic design theory and experimental knowledge of the wind turbine. Detailed calculation of the pressure loss of the wind tunnel, select a reasonable power system, and designed wind tunnel drawings.Keyword:Low speed wind tunnel,Flow loss ,RadiatorClassification:TH122符 号 表0A 实验段进口面积2m 0K 当量压力损失系数 1A 进口面积2m Re 雷诺数 2A 出口面积2m β 阻尼网的开孔率 e d 水力直径m λ 摩擦阻力系数 0V 实验段的进口速度m/s R E 风洞能量之比 α 当量扩散角° F 蜂窝器堵塞度 0P 大气压强Pa K 压力损失系数 ρ 气流密度3kg mμ 动力粘性系数 2NS m目次摘要 (I)Abstract: (II)符号表 (III)1.序言 (1)1.1课题背景和意义 (1)1.2国内外研究现状 (2)1.2.1 电力半导体发展 (2)1.2.2电力半导体热阻流阻测试 (2)1.2.3风洞实验 (3)1.3主要研究内容 (4)2设计方案 (5)2.1总体方案 (5)2.2风洞的主要组成部分 (5)2.2.1动力段 (5)2.2.2扩散段 (5)2.2.3稳定段 (6)2.2.4收缩段 (7)2.3 风洞气动外形设计 (7)2.3.1参数要求 (7)2.3.2风洞的气动设计 (7)2.4试验段设计 (8)2.4.1试验段口径与截面形状 (8)2.4.2试验段型式与长度 (8)2.5稳定段设计 (9)2.5.1稳定段直径和收缩比 (9)2.5.2蜂窝器 (10)2.5.3阻尼网 (11)2.6收缩段设计 (13)2.6.1收缩段长度 (13)2.6.2收缩曲线 (14)3 压力损失及风机选择计算 (15)3.1 风洞能量损失研究的意义 (15)3.2 压力损失计算原理 (15)3.3 风洞压力损失计算步骤 (16)3.3.1 气流密度和动力粘性系数 (16)3.3.2 动力段 (16)3.3.3 扩散段 (17)3.3.4 稳定段 (19)3.3.5 收缩段 (20)3.3.6 试验段损失 (21)3.3.7 进出口压力损失系数 (21)3.3.8 总的压力损失系数 (21)4总图与课题总结 (22)参考文献: (23)附录:学位论文数据集 (24)1.序言1.1课题背景和意义风洞指能够人工产生和控制气流来模拟飞行器或这模型周围气体的流动,可量度气流对物体的作用和观察物理现象的一种管道试验设备,也是航空航天飞行器研制,桥梁、车辆、建筑等的研制以及环境保护、发展体育等方面重要试验手段。
散热器热阻测试1. 简介散热器是一种用于降低设备温度的重要组件。
在电子设备中,高温容易导致设备性能下降、寿命减少甚至损坏设备。
散热器的设计和测试对于保持设备的稳定运行至关重要。
本文将介绍散热器热阻测试的方法和步骤。
2. 热阻测试原理热阻是评估散热器性能的关键指标之一。
热阻描述了散热器传热能力的大小,一般用温度差除以功率得到。
热阻越小,说明散热器的传热能力越好。
热阻测试原理基于热传导定律,根据导热测试法测定散热器在规定工况下的热阻。
该方法通过对散热器两侧温度的测量,计算散热器的热阻。
具体步骤如下:1.将散热器安装在被测试设备上。
2.给被测试设备供电,并使其处于预定的工作状态。
3.在散热器的进风口和出风口处测量温度,并记录时间。
4.根据测得的温度和时间数据,计算散热器的热阻。
3. 散热器热阻测试步骤散热器热阻测试的步骤如下:步骤一:准备测试设备•设备:散热器、温度计、电源、被测试设备。
•将散热器正确安装在被测试设备上。
•准备好温度计和电源,确保能够正常测量温度和供电。
步骤二:设定工作状态根据被测试设备的要求,设定其工作状态,确保其产生一定的热量。
步骤三:测量温度•使用温度计在散热器的进风口和出风口处测量温度。
•确保温度计能够准确测量温度,并记录测量值。
步骤四:计算热阻•根据测得的温度值和时间,计算散热器的热阻。
•通常,热阻的计算公式为热阻 = (T1 - T2) / P,其中T1为进风口温度,T2为出风口温度,P为被测试设备的功率。
步骤五:分析和记录结果分析并记录测试结果,比较不同散热器的热阻差异,评估散热器的性能。
4. 注意事项•在进行散热器热阻测试时,应确保被测设备处于稳定状态,并且测试环境温度保持一致。
•测量温度时,应使用精确的温度计,并将其放置在散热器进出风口处,确保测量的准确性。
•确保测试过程中电源供电稳定,以避免测试结果受到电源波动的影响。
•在进行数据记录时,应记得记录测试时间、温度、功率等关键参数,以便后续分析。
利用CFD技术优化CPU集成热管散热器徐哲1 白敏丽1 吕继组1 喜娜1 杨洪武21大连理工大学 能源与动力学院2大连白云机电设备厂利用CFD技术优化CPU集成热管散热器∗Optimization of CPU integrated heat-pipe heatexchanger with CFD technology徐哲1 白敏丽1 吕继组1 喜娜1 杨洪武2(1大连理工大学 能源与动力学院 2大连白云机电设备厂)摘 要:为了满足未来大功率台式电脑CPU的冷却要求,本文将平板热管和常规热管散热器结合提出了集成热管散热器的新概念。
并用CFD数值模拟来代替试验研究,并用试验验证了Star-CD软件进行数值模拟的可靠性和可行性,同时还对两种不同的优化结构进行了流动与传热模拟研究,最终选定最优化结构,并进行了试验测试测试结果表明在气流速度为2.75m/s下新结构的集成热管散热器的热阻在0.1~0.2℃/W间,在200W时模拟CPU的表面温度仅为53℃,完全满足了对CPU的冷却要求。
关键词:CPU;热管;散热器;传热;数值模拟Abstract:A concept of integrated heat sink using heat pipes employing phase change heat transfer of circular heat pipe and flat miniature heat pipe is proposed to cool higher heat dissipation power CPU in the paper. The numerical simulation method with STAR-CD software is used to investigate flowing and heat transfer performance of heat sink. Validity and reliability of numerical simulation was validated by test and two different optimal structures were simulated by STAR-CD software. Finally, heat transfer performance of an improved integrated heat sink is also evaluated. The experimental results show that its thermal resistance is in the range of 0.1~0.2℃/W and the surface temperature is only 53℃ when applying 200W heat dissipation power to CPU, which has attained the demand of cooling CPU well.Key words: CPU; Heat pipe; Heat exchanger; Heat-transfer performance; Numerical simulation;1 引言随着计算机CPU集成度和性能的不断提高, CPU的能耗越来越大,表面热流密度急剧增加,这必然降低芯片的性能和寿命,也影响系统运行的可靠性[1],因此对CPU冷却提出了更∗基金项目:国家自然科学基金资助项目(50276007和50576008) ;辽宁省自然科学基金资助项目(2001101058和20042156)高的要求。
CPU风冷散热器散热性能的实验测试作者:唐金沙,李艳红,黄伟,马雯波,刘吉普来源:《现代电子技术》2009年第12期摘要:CPU风冷散热器作为最传统的散热方式,现在仍被广大PC机用户使用。
按散热片材料分为全铝、全铜和铜铝复合式三种,其中铜铝复合式是现今主流产品。
为对其散热性能进行测试,设计测试散热器散热性能的实验装置。
通过改变输入电压,改变风道、风速和模拟芯片的发热功率,测试目前PC机使用最多的放射状铜铝复合式风冷散热器在不同风速、不同加热功率下强迫风冷时的散热性能。
从它的瞬时储热能力、热阻及CPU表面温度三个方面分析其散热性能,得出这款散热器能较好地满足CPU发热功率在120 W以内的散热需求。
实验测试装置具有通用性,实验结果有助于对此款散热器的改进,以提高其散热性能。
关键词:CPU;风冷;散热器;散热性能;实验测试中图分类号:TK124文献标识码:A文章编号:1004-373X(2009)12-115-03Experimental Testing of Heat Dissipation Peformance of CPU Air Cooling RadiatorTANG Jinsha,LI Yanhong,HUANG Wei,MA Wenbo,LIU Jipu(School of Mechanical Engineering,Xiangtan University,Hunan,411105,China)Abstract:For the time being the most traditional and widespread means of cooling components of PC is forced air cooling radiator.It can be divided into three types according to its different materials which are aluminum,copper,and copper-aluminum.Copper-aluminum is the main trend product.In order to test its heat dissipation performance,an experimental facility is designed.Through changing input power to change air velocity in air duct and generated heat power of simulated CPU chip,then the heat dissipation performance under force convection of radiation-shaped radiator is investigated which is used by most of PC users under different air velocity and different power input.The results indicate that the radiator could preferably meet the needs of heat dissipation when the power input is 120W through analizing its performance according to the instant ability of heat storage,thermal resistence and the surface temperature of CPU.The experimental testing facility has universal property,the results are useful for the radiator with further improvement and better performance.Keywords:CPU;air cooling;radiator;heat dissipation performance;experimental testing0 引言随着现代社会的飞速进步,计算机已成为人们工作、生活、学习中的重要帮手,这就促使其性能不断地提高来满足人们的需要,但同时也随之产生了一些问题。
暖气片散热量测量方法(国家标准)2011年12月23日中华人民共和国国家标准GB/T 13754一92暖气片散热量测定方法标准1 主腼内容与适用范围本标准规定了在闭式小室内,测试采暖散热器(简称散热器)单位时间散热量(简称散热量)的原理、装置、方法、要求和数据的整理。
本标准适用于以热水或蒸汽为热媒的采暖散热器。
2 术语2.1 辐射散热器在采暖散热器中,部分靠辐射放热的称辐射散热器。
2.2 对流散热器在采暖散热器中,几乎完全靠自然对流放热的称对流散热器。
3 测试原理3.1 散热器的散热量散热器的散热量应由下式求得:Q二G,(h:一h,)式中:Q—散热器的散热量,W,G, —热媒的平均流量,kg/s;h,—散热器进口处热媒的烙.J/kg;h,—散热器出口处热媒的焙,J/kg,注:h - h:的数值系根据被测散热器进出口热媒的温度和压力,由中国建筑工业出版社1987年第一版《供暖通风设计手册》中查得.3.2 热媒参数的测量3.2.,热媒为热水时,当热水温度低于大气压力下水的沸点温度时,应测量散热器进口和出口处的水温,或测量其中一处水温及散热器进出口的热水温差;当热水温度高于大气压力下水的沸点温度时,则应测量散热器进口和出口处的水温和压力,或测量其中一处水温及散热器进出口的热水温差和压力差。
国家技术监督局1992一11一05批准1993一04一01实施ce/T 13754一923.2.2 热媒为蒸汽时,应测量散热器进出口处蒸汽的压力和温度,散热器进口处的蒸汽应有2-5℃的过热度。
测试时被测散热器流出的应仅为凝结水,凝结水温度与散热器进口处蒸汽压力下饱和温度之差不得超过10C<3.2.3 热媒温度系指散热器进出口处的温度。
如不可能在该处测量时.则测温点与散热器进(出)口之间的距离不得大于。
.3m。
应对这段管道严格保温,并在计算散热量时减去这部分散热量。
保温层应延伸到测温点之外。
.3m以上.3.2.4 热媒参数测量的准确度应符合以下要求:流量士。
大功率半导体器件用散热器风冷热阻计算公式和应用软件-CAL-FENGHAI.-(YICAI)-Company One1大功率半导体器件用散热器风冷热阻计算公式和应用软件2012-03-12 14:17:31作者:来源:中国电力电子产业网文章概要如下:一、计算公式为了推导风冷散热器热阻计算公式作如下设定:1,散热器是由很多块金属平板组成,平板一端连在一起成一块有一定厚度的基板,平板之间存在间隙,散热器的基本单元是一块平板;2,平板本身具有一定的长度、宽度和厚度(L×l×b)。
平板的横截面积A =L × b;3,由n个平板(齿片)组成的散热器如图一所示,平板(齿片)数为n ;4,由此可见,参数L即为散热器长,或称“截长”;5,设散热器端面周长为“S”。
大功率半导体器件安装在基板上,工作时产生的热通过接触面传到散热器的过程属于固体导热。
散热器平板周围是空气。
风冷条件下平板上的热要传到空气中属于固体与流体间的传热。
所以风冷散热器总热阻等于两部分热阻之和:Rzo(总热阻)= Rth(散热器内固体传热)+ Rthk(散热器与空气间的传热热阻)引用埃克尔特和..德雷克着的“传热与传质”中的基本原理和公式。
推导出如下实用公式:Ks 为散热器金属材料的导热系数。
20℃时,纯铝:KS = 千卡/ 小时米℃;纯铜:Ks = 332 千卡/ 小时米℃;参数L、l、b、S的单位:米;风速us 单位:米/秒如散热器端面的周边长为S 、散热器的长为L,忽略两端面的面积,散热器的总表面积为: A = S L 。
代入上式后,强迫风冷条件下散热器总热阻公式也可写成:对某一型号的散热器来说参数 Ks、b、n、S 都是常数。
用此公式即可求出不同长度L、不同风速us条件下的总热阻,并可作出相应曲线。
本公式的精确性受到多种因素的影响存在一定误差。
主要有:ⅰ,受到环境空气的温度、湿度、气压等自然因素的影响。
如散热器金属的热导系数“Ks”与金属成分及散热器工作时温度有关,本文选用的是20℃时的纯铝。
功率半导体器件的热阻介绍功率半导体器件的故障率随结温的升高按照指数函数增加。
因此,使用功率半导体器件时,必须特别注意器件的温度。
为使器件正常工作,在设计电路时,应注意配置适当的散热器,保持器件的结温不超过允许值。
这样,不仅使器件能正常工作,也有利提高器件的使用效率和延长其寿命。
器件承受的最大结温,因材料而异。
对于锗半导体器件,一般为80~100℃;硅半导体器件,一般为150~200℃。
我国半导体器件厂目前的规定为:锗管最大允许结温Tjm=90℃,硅管最大允许结温Tjm=175℃。
如果偏置电路的热稳定性是够高,那么器件的允许耗散功率为:式中Pc—环境温度为Ta时的耗散功率;Rθj-a—管的结至环境的热阻(总热阻)。
在热稳定状态下,器件散热回路的热等效回路如下图所示。
图中,Rθj-c是结至壳热阻,Rθc-a是壳至环境热阻,Rθc-s是壳至散热器热阻(接触热阻);Tj表示结温度,Tc表示管壳温度,Ts表示散热器温度,Ta表示环境温度。
从上图的热等效回路,很容易求出器件结至环境的总热阻为:由于Rθc-a比Rθj-c、Rθc-s和Rθs-a大得多,故热阻Rθc-a可略去,即认为全部热量都经散热器扩散出去,于是上式简化为:对于耗散功率小于1W的器件,可不安装散热器,这样总热阻为:器件结至壳热阻Rθj-c与芯片结构设计、材料、芯片和管座连接系统的组成及连接方法和几何参数有关。
在测量Rθj-c时,要设法使管壳温度保持恒定。
Rθj-c可由下式决定:接触热阻Rθc-s由管壳和散热器之间的接触状况决定。
当接触面不不整或接触面不光滑时,管壳和散热器之间就有缝隙,Rθc-s就会变大。
为了减小接触热阻,一般要求散热器表面的不平整度要小于0.025mm,表面的粗糙度要求较高。
为了解决由于散热器表面的不平整和不光滑所引起接触热阻增大问题,可以在接触面上涂以硅油,这样就可以使接触不上的地方由硅油来填平。
接触面上的硅油不仅能增大接触面,而且还能排除接触面之间的空气,再加上硅油本身又具有良好的导热性能,这样就可以大大地减小接触热阻Rθc-s。
IGBT热阻及瞬态热阻抗测试方法研究发布时间:2021-11-23T04:00:55.755Z 来源:《中国电力企业管理》2021年8月作者:郭杰、张继博、饶琼、杨钰[导读] 介绍了IGBT热阻及瞬态热阻抗的测试方法,在此基础上研制出了一种用于IGBT及FRD模块的热阻测试设备。
本测试设备采用基于LabVIEW的计算机控制技术,实现了热阻及瞬态热阻抗的计算机自动测试。
西安派瑞功率半导体变流技术有限公司郭杰、张继博、饶琼、杨钰陕西西安 710061摘要:介绍了IGBT热阻及瞬态热阻抗的测试方法,在此基础上研制出了一种用于IGBT及FRD模块的热阻测试设备。
本测试设备采用基于LabVIEW的计算机控制技术,实现了热阻及瞬态热阻抗的计算机自动测试。
关键词:IGBT 热阻及瞬态热阻抗测试 LabVIEW Research on the testing method of IGBT GUO Jie,QIAO Yu, DUAN Xin,FANG Qi Abstract:Introduce the testing method of IGBT thermal resistance and transient thermal impedance, developed a testing equipment of thermal resistance for IGBT module and FRD. The test equipment adopted computer control based on the LABVIEW platform, realized the auto-test of thermal resistance and transient thermal impedance. Keywords: IGBT;thermal resistance and transient thermal impedance;test;LabVIEW Foundation Project:Supported by national science and technology supporting research plan,A new type of power electronics device and power electronics integrate technology(No. 2007BAA12B01) 1.概述绝缘栅双极型晶体管(IGBT)是一种MOS场效应和双极型晶体管复合的新型电力电子器件。
热阻系数测量热阻系数是一种物理量,用于衡量物质对热能传递的阻力程度。
在实际应用中,热阻系数的测量对研究热传递过程、材料的热性质及其应用具有重要意义。
下面对热阻系数的测量进行详细的探讨。
热阻系数的定义热阻系数是衡量物质对热传递的阻力的物理量。
设物质的厚度为d,横截面积为A,温度差为ΔT,热流量为q,则热阻系数R的定义为:R = d/(kA),其中k为物质的热导率,定义为单位长度和单位横截面积内的热流量对温度梯度的比值,即k = q/(AΔT/d)。
热阻系数的单位是m^2·K/W。
1. 传导试验法传导试验法是通过在测试样品两侧施加不同温度,利用传热方程建立温度分布模型,通过测量不同位置的温度及时间来计算热阻系数。
这种方法是一种常规的热阻系数测试方法,适用于固体材料的测量。
2. 横向热流法该方法通过将测试材料的短边上夹入热源和热散射器,使其横向传热,通过热电偶检测热散射器上的温度变化来计算热阻系数。
3. 动态热特性法该方法是通过变化的温度和时间施加在测试样品上,然后利用温度的变化以及测试时间来计算热阻系数。
4. 喷射液体法热阻系数的测量具有重要的意义。
在工程领域中,热阻系数的测量可用于评估建筑、车辆和电子设备等产品的性能,以及计算机芯片散热设计等方面。
在科学研究领域中,热阻系数的测量可用于研究新材料的热特性、热传递机制及其适用性。
总结通过以上介绍,我们可以了解到热阻系数是一种衡量物质对热传递的阻力程度的物理量,其测量方法主要有传导试验法、横向热流法、动态热特性法和喷射液体法等,其应用范围广泛,主要用于工程设计和科学研究等领域。
在实际应用中,热阻系数的测量与计算十分重要。
在建筑商和工程师们设计减热方案时,热阻系数能够帮助他们确定哪些材料最适合用于墙体、天花板和地板的隔热层中。
相反地,热阻系数的测量也可以帮助工程师确定哪些材料是最差的,应该避免使用。
在这方面,热阻系数的测量与计算是减少能源浪费和降低能源消耗的关键因素之一。