第二章 电源变换和控制技术基础知识
- 格式:ppt
- 大小:3.91 MB
- 文档页数:97
基础电源知识点总结电源是电子设备的核心组成部分,其作用是将输入电压转换为所需电压、电流的输出,供给电子器件正常工作。
一个好的电源系统能够确保电子器件的稳定工作,同时也能提高整个系统的效率和可靠性。
本文将重点总结基础电源知识,包括电源的工作原理、常见类型、特点、以及在电子产品中的应用。
一、电源的工作原理电源的工作原理主要包括输入、变换、输出三个环节。
1. 输入电源的输入是指将外部交流电源或者直流电源输入到电源系统中。
在输入环节,电源需要对输入电压进行稳压、滤波等处理,以确保电源系统的正常工作。
2. 变换变换是电源的核心环节,主要包括变压器、整流器、滤波器和稳压器。
在这个过程中,输入电压会经过变压器的变压、整流器的整流、滤波器的滤波以及稳压器的稳压,最终得到稳定的输出电压和电流。
3. 输出电源的输出是指输出到电子器件的电压和电流。
输出电压需要满足电子器件的工作要求,输出电流则需要满足电子器件的工作功率需求。
同时也需要对输出电压和电流进行过载保护、短路保护等处理,以确保电子器件的安全工作。
二、电源的类型与特点根据输入电压的不同,电源可以分为交流电源和直流电源;根据输出电压、电流的不同,电源可以分为稳压电源、开关电源、线性电源等。
不同类型的电源具有不同的特点和适用场景。
1. 交流电源交流电源输入电压范围广,适用于家庭、工业等场景;工作原理简单,但输出电压波动较大,需要额外的稳压电路进行处理。
2. 直流电源直流电源输出电压稳定,适用于电子产品等场景;可直接驱动电子器件工作,但成本相对较高,体积较大。
3. 稳压电源稳压电源能够提供稳定、可调的输出电压和电流,适用于对电源质量要求较高的场景;可以通过电压调节器和电流限制器等电路进行控制,但效率较低。
4. 开关电源开关电源采用开关管进行开关控制,可以实现高效率、高精度的电源输出;但开关电源的电磁干扰和电压波动较大,需要在设计和布线上加以注意。
5. 线性电源线性电源原理简单,输出电压稳定,但效率较低,适用于对输出电压精度要求较高的场景。
《电源基础知识综合性概述》一、引言在当今科技高度发达的时代,电源作为各种电子设备和系统的动力源泉,其重要性不言而喻。
从我们日常生活中使用的智能手机、笔记本电脑,到工业生产中的大型机械设备、自动化控制系统,无一不需要稳定可靠的电源供应。
了解电源的基础知识,对于正确选择、使用和维护各种电子设备,以及推动电子技术的发展都具有重要意义。
本文将从电源的基本概念、核心理论、发展历程、重要实践以及未来趋势等方面进行全面的阐述与分析。
二、电源的基本概念1. 定义电源是将其他形式的能量转换为电能的装置。
它可以将化学能、机械能、太阳能等不同形式的能量转化为可供电子设备使用的电能,如直流电(DC)或交流电(AC)。
2. 分类(1)按能量来源分类:- 化学电源:如电池,通过化学反应将化学能转化为电能。
常见的有干电池、铅酸蓄电池、锂离子电池等。
- 物理电源:包括太阳能电池、温差发电器等,利用物理效应将其他形式的能量转化为电能。
- 机械电源:如发电机,通过机械运动将机械能转化为电能。
(2)按输出形式分类:- 直流电电源:输出恒定的直流电压和电流,如电池、直流稳压电源等。
- 交流电电源:输出交变的交流电压和电流,如市电、交流发电机等。
3. 主要参数(1)电压:表示电源输出电能的电位差,单位为伏特(V)。
不同的电子设备需要不同的电压等级,如手机充电器一般输出 5V电压,而笔记本电脑充电器可能输出 19V 电压。
(2)电流:指电源输出电能的流量,单位为安培(A)。
电子设备的工作电流取决于其功率需求和内部电路设计。
(3)功率:是电压和电流的乘积,单位为瓦特(W)。
它表示电源能够提供的电能大小。
(4)效率:电源的输出功率与输入功率之比,通常以百分比表示。
高效率的电源能够减少能量损失,降低发热,提高能源利用效率。
三、电源的核心理论1. 欧姆定律欧姆定律是电路分析的基础,它指出在同一电路中,通过某一导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比。
电力电子技术知识点讲义汇总——天天向上图文工作室独家整理复习笔记知识点第1章绪论1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。
2 电力变换的种类(1)交流变直流AC-DC:整流(2)直流变交流DC—AC:逆变(3)直流变直流DC—DC:一般通过直流斩波电路实现(4)交流变交流AC—AC:一般称作交流电力控制3 电力电子技术分类:分为电力电子器件制造技术和变流技术。
第2章电力电子器件1 电力电子器件与主电路的关系(1)主电路:指能够直接承担电能变换或控制任务的电路.(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件.2 电力电子器件一般都工作于开关状态,以减小本身损耗.3 电力电子系统基本组成与工作原理(1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。
(2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。
(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。
(4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。
4 电力电子器件的分类根据控制信号所控制的程度分类(1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件.如SCR晶闸管.(2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。
如GTO、GTR、MOSFET 和IGBT.(3)不可控器件:不能用控制信号来控制其通断的电力电子器件。
如电力二极管。
根据驱动信号的性质分类(1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电力电子器件.如SCR、GTO、GTR.(2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件.如MOSFET、IGBT。
根据器件内部载流子参与导电的情况分类(1)单极型器件:内部由一种载流子参与导电的器件。
《新能源电源变换技术》课程标准一、课程基本情况一、课程编码及课程名称课程编码:16123301课程名称:新能源电源变换技术二、学时及学分总学时数:88,其中,讲授学时:64,实践(实验)学时:24。
学分:4三、适用专业及开设学期适用专业:光伏发电与应用技术专业开设学期:第4学期四、课程的性质、目标和任务新能源电源变换技术是可再生能源领域中占有重要地位的一门学科,它包括太阳能、风能、生物质能、可燃冰、潮流能、潮汐能、波浪能、温差能和盐差能等利用技术。
这些能源的应用研究内容主要是计算各方面自然存在的能量,再通过研究不同机构用其吸收这些能量,将其转换为机械能,带动发电机工作。
它的应用是一门多学科的综合技术,这包括大气环境、海洋环境学、流体力学、机械设计、电工及电控学等。
通过课程学习使学生掌握新能源能利用技术的基本理论与研究方法。
通过学习使学生了解太阳光伏、太阳热能、风能、生物质能、潮汐能、地热能等可再生能源发电及燃料电池发电技术;了解电力系统中的各种储能技术及最新发展,包括超导储能、飞轮储能、电池储能、超级电容及抽水蓄能技术等;了解用于可再生能源的电力变换技术,包括变换拓扑、工作原理及性能分析;以及分布式发电系统和主干系统的相互影响及其运行与控制;了解国内外最新的可再生能源发电应用工程情况等。
五、课程的基本要求通过该课程学习可使学生了解可再生能源的生成、特点及利用方法,使学生基本掌握新能源应用研究的技术手段。
掌握太阳能、风能发电的机理及设备;燃料电池发电的机理;各种储能技术;电力电子功率变换电路;分散电源对大系统的影响分析等。
六、课程教学内容第一章绪论(共2学时)(一)本章教学目的和要求通过本章学习,对本课程所学习的知识有一个初步的了解,掌握课程的学习方法。
要求学生对能源有一个概括的认识。
(二)教学内容第1章新能源发电与控制技术导论1.1能源储备与可持续发展战略1.1.1我国的能源结构与储备1.1.2我国的可持续发展战略1.2能源的分类与基本特征1.2.1能源的分类1.2.2能源的基本特征1.2.3新能源及主要特征1.2.4分布式能源及主要特征1.3新能源发电——能源转换的重要形式1.3.1新能源发电技术的应用1.3.2我国新能源发电的现状1.3.3新能源发电及电源变换的主要形式1.4新能源发电与控制技术的经济意义1.4.1能源是经济发展的引擎1.4.2新能源发电的经济意义本章小结(三)重点与难点重点:1.能源的基本分类难点:1.新能源的开发及发展趋势第2章电源变换和控制技术基础知识(6学时)(一)本章教学目的和要求通过本章学习,对本课程所学习的知识有一个初步的了解,掌握常用电力电子器件的基本知识、使用方法。
《电力电子与能源变换》课程教学大纲课程编号:081050211课程名称:电力电子与能源变换英文名称:Power Electronics and power converter课程类型:专业课课程要求:选修学时/学分:4龄(讲课学时:44实验学时:4上机学时:0)适用专业:自动化一、课程性质与任务电力电子与能源变换是自动化(电力电子)专业一门重要的专业方向选修课,限选。
目的和任务:使学生理解开关型电力电了变换基本原理及控制方法;理解开关型电力电子变换器的基本特性;掌握常用电力电子器件的特性和使用方法;熟悉电力电子变换器中的辅助元器件和系统;掌握谐振开关型变换器原理、分析设计方法及应用;了解典型多级复合型电力电子变换器的结构、工作原理、控制方法;了解多级开关电路组合型电力电子变换电源的应用:了解电力电子开关型电力补偿、控制器。
着重学生在电力电子应用技术方面应具备的基本设计方法和基本技能的训练,使学生具有进一步研究学习电力电了技术的能力,为今后从事电力电子装置的研制和开发打下良好的专业基础。
二、课程与其他课程的联系本课程是在学习过电路基础、模拟电子技术、数字电子技术、电力电子技术等有关学科基础课程后设置的专业课。
在具有良好的学科基础上,着重培养学生在电力电子应用技术方面应具备的基本设计方法和基本技能。
并行开设的相关课程有变频器原理与应用,为后续相关课程电力电子建模与仿真和生产实习等教学环节打好基础。
三、课程教学目标1. 使学生理解开关型电力电子变换基本原理及控制方法;理解开关型电力电子变换器的基本特性;掌握常用电力电子器件的特性和使用方法:熟悉电力电子变换器中的辅助元器件和系统;能够识别完成电力电子变换器设计任务面临的电力电子器件等各种制约条件,并得出可接受的指标。
(支撑毕业能力要求 3.3)掌握谐振开关型变换器原理、分析设计方法及应用;能够对于谐振开关型变换器模型进行正确的推理,并能够给出解。
(支撑毕业能力要求13)2. 学习了解典型多级复合型电力电子变换器的结构、工作原理、控制方法;了解多级开关电路组合型电力电子变换电源的应用;了解电力电子开关型电力补偿、控制器。