二次函数中等难度题
- 格式:docx
- 大小:221.76 KB
- 文档页数:7
(专题精选)初中数学二次函数难题汇编含答案一、选择题1.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A.5B.453C.3 D.4【答案】A【解析】【分析】【详解】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=12OA=2.由勾股定理得:5设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE.∴BF OF CM AMDE OE DE AE==,x2x2255-,,解得:()52x 5BF ?x CM 22-==,. ∴BF+CM=5.故选A .2.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )A .﹣1<x <1B .﹣3<x <﹣1C .x <1D .﹣3<x <1【答案】D【解析】【分析】 根据已知条件求出抛物线与x 轴的另一个交点坐标,即可得到答案.【详解】解:∵抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),对称轴为直线x =﹣1, ∴抛物线与x 轴的另一交点坐标是(﹣3,0),∴当y >0时,x 的取值范围是﹣3<x <1.所以答案为:D .【点睛】此题考查抛物线的性质,利用对称轴及图象与x 轴的一个交点即可求出抛物线与x 轴的另一个交点坐标.3.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .3B 3C .32D .52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解.【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B , ∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.4.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( )A .0ac <B .3是关于x 的方程()210ax b x c +-+=的一个根;C .当1x >时,y 的值随x 值的增大而减小;D .当13x 时,()210.ax b x c +-+>【答案】C【解析】【分析】根据函数中的x 与y 的部分对应值表,可以求得a 、b 、c 的值 然后在根据函数解析式及其图象即可对各个选项做出判断.【详解】解:根据二次函数的x 与y 的部分对应值可知:当1x =-时,1y =-,即1a b c -+=-,当0x =时,3y =,即3c =,当1x =时,5y =,即5a b c ++=,联立以上方程:135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得:133a b c =-⎧⎪=⎨⎪=⎩,∴233y x x =-++;A 、1330=-⨯=-<ac ,故本选项正确;B 、方程()210ax b x c +-+=可化为2230x x -++=, 将3x =代入得:232339630-+⨯+=-++=,∴3是关于x 的方程()210ax b x c +-+=的一个根,故本选项正确; C 、233y x x =-++化为顶点式得:2321()24=--+y x , ∵10a =-<,则抛物线的开口向下, ∴当32x >时,y 的值随x 值的增大而减小;当32x <时,y 的值随x 值的增大而增大;故本选项错误; D 、不等式()210ax b x c +-+>可化为2230x x -++>,令2y x 2x 3=-++, 由二次函数的图象可得:当0y >时,13x,故本选项正确;故选:C .【点睛】 本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键.5.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c <0;②a ﹣b +c >1;③abc >0;④9a ﹣3b +c <0;⑤c ﹣a >1.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D【解析】【分析】 根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可.由图象可知,a<0,c=1,对称轴:x=b1 2a-=-,∴b=2a,①由图可知:当x=1时,y<0,∴a+b+c<0,正确;②由图可知:当x=−1时,y>1,∴a−b+c>1,正确;③abc=2a2>0,正确;④由图可知:当x=−3时,y<0,∴9a−3b+c<0,正确;⑤c−a=1−a>1,正确;∴①②③④⑤正确.故选:D.【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.6.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?( )A.1 B.12C.43D.45【答案】D【解析】【分析】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【详解】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=12A B•OC=12AB•k,△ABD的面积=12AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=14(4﹣k),解得:k=45.【点睛】本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.7.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( ) A .aB .bC .cD .d【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x 轴的交点坐标,从而可以判断a 、b 、c 、d 的正负,本题得以解决.【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P 、Q 两点,且PQ=6, ∴该函数图象开口向上,对称轴为直线x=2,∴图形与x 轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),∵此函数图象通过(1,a )、(3,b )、(-1,c )、(-3,d )四点,∴a <0,b <0,c=0,d >0,故选:D .【点睛】此题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.8.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;③a 12>;④b >1,其中正确的结论个数是( )A .1个B .2 个C .3 个D .4 个【答案】C【解析】【分析】 根据题意和函数图象,可以判断各个小题中的结论是否正确,本题得以解决.由图象可得,a >0,b >0,c <0,∴abc <0,故①错误,当x =1时,y =a +b +c =2,故②正确,当x =﹣1时,y =a ﹣b +c <0,由a +b +c =2得,a +c =2﹣b ,则a ﹣b +c =(a +c )﹣b =2﹣b ﹣b <0,得b >1,故④正确, ∵12b a ->-,a >0,得122b a >>,故③正确, 故选C .【点睛】 本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.9.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=2211a +>2, ∴B 正确; 二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a; ∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.10.已知二次函数y =ax 2+bx +c 的图象如图所示,那么下列结论中正确的是( )A .ac >0B .b >0C .a +c <0D .a +b +c =0【答案】D【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】A.由图象可知:a <0,c >0,∴ac <0,故A 错误;B.由对称轴可知:x =2b a -<0, ∴b <0,故B 错误;C.由对称轴可知:x =2b a-=﹣1, ∴b =2a ,∵x =1时,y =0,∴a +b +c =0,∴c =﹣3a ,∴a +c =a ﹣3a =﹣2a >0,故C 错误;故选D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.11.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =.下列结论:①0abc >;②20a b +=;③930a b c ++<;④若12310,,,23y y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是抛物线上两点,则12y y >.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 由抛物线开口方向得到a <0,根据对称轴得到b=-2a >0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对③进行判断;通过二次函数的增减性可对④进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线12b x a=-= ,∴b=-2a >0, ∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∴abc <0,所以①错误;∵b=-2a ,∴2a+b=0,所以②正确;∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(3,0),∴当x=3时,y=0,∴930a b c ++=,所以③错误;∵抛物线的对称轴为直线x=1,且抛物线开口向下,∴当x 1<时,y 随x 的增大而增大 ∵103132-<-< 点13,2y ⎛⎫- ⎪⎝⎭到对称轴的距离比点210,3y ⎛⎫- ⎪⎝⎭ 对称轴的距离近, ∴y 1>y 2,所以④正确.故选B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.12.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个【答案】B【解析】【分析】【详解】 解:∵抛物线和x 轴有两个交点,∴b 2﹣4ac >0,∴4ac ﹣b 2<0,∴①正确;∵对称轴是直线x ﹣1,和x 轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x 轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a ﹣2b+c >0,∴4a+c >2b ,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c <0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系13.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A.B.C.D.【答案】B【解析】【分析】由题意可求m<﹣2,即可求解.【详解】∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=的图象在第二、第四象限,故选B.【点睛】本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键.14.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0;②4a+2b+c >0;③13<a <23;④b >c .其中含所有正确结论的选项是( )A .①②③B .①③④C .②③④D .①②④【答案】B 【解析】 【分析】根据对称轴为直线x=1及图象开口向下可判断出a 、b 、c 的符号,从而判断①;根据对称性得到函数图象经过(3,0),则得②的判断;根据图象经过(-1,0)可得到a 、b 、c 之间的关系,从而对④作判断;从图象与y 轴的交点B 在(0,-2)和(0,-1)之间可以判断c 的大小得出③的正误. 【详解】①∵函数开口方向向上, ∴a >0;∵对称轴在y 轴右侧 ∴ab 异号,∵抛物线与y 轴交点在y 轴负半轴, ∴c <0, ∴abc >0, 故①正确;②∵图象与x 轴交于点A (-1,0),对称轴为直线x=1, ∴图象与x 轴的另一个交点为(3,0), ∴当x=2时,y <0, ∴4a+2b+c <0, 故②错误;③∵图象与y 轴的交点B 在(0,-2)和(0,-1)之间, ∴-2<c <-1∵-12ba , ∴b=-2a ,∵函数图象经过(-1,0),∴a-b+c=0,∴c=-3a,∴-2<-3a<-1,∴13<a<23;故③正确④∵函数图象经过(-1,0),∴a-b+c=0,∴b-c=a,∵a>0,∴b-c>0,即b>c;故④正确;故选B.【点睛】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.15.二次函数y=ax2+bx+c(a≠0)中的x与y的部分对应值如下表:给出以下结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当﹣12<x<2时,y<0;(3)已知点A(x1,y1)、B(x2,y2)在函数的图象上,则当﹣1<x1<0,3<x2<4时,y1>y2.上述结论中正确的结论个数为()A.0 B.1 C.2 D.3【答案】B【解析】【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(2)从表格可以看出,当﹣12<x<2时,y<0,符合题意;(3)﹣1<x1<0,3<x2<4时,x2离对称轴远,故错误,不符合题意;故选择:B.【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.16.如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC CD →方向运动,当P 运动到B 点时,P Q 、点同时停止运动.设P 点运动的时间为t 秒,APQ ∆的面积为S ,则表示S 与t 之间的函数关系的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】本题应分两段进行解答,①点P 在AB 上运动,点Q 在BC 上运动;②点P 在AB 上运动,点Q 在CD 上运动,依次得出S 与t 的关系式,即可判断得出答案. 【详解】解:当点P 在AB 上运动,点Q 在BC 上运动时, 此时,,2AP t BQ t ==2122APQSt t t =⋅⋅=,函数图象为抛物线; 当点P 在AB 上运动,点Q 在BC 上运动时, 此时,AP t =,APQ 底边AP 上的高保持不变1422APQSt t =⋅⋅=,函数图象为一次函数;故选:D . 【点睛】本题考查的知识点是函数图象,理解题意,分段求出S 与t 之间的函数关系是解此题的关键.17.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .【答案】C 【解析】 【分析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除. 【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限, 故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2ba>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B . 故选C .18.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有( ) A .0 B .1C .2D .3【答案】B 【解析】 【分析】根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数. 【详解】若二次函数的图象在第三、四象限,开口向下,顶点在原点,y 轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y 轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限. 故答案为:B .【点睛】本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.19.已知二次函数y =ax 2+bx+c (a≠0)的图象如图,分析下列四个结论:①abc <0;②b 2﹣4ac >0;③3a+c >0;④(a+c )2<b 2,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B 【解析】试题解析:①由开口向下,可得0,a < 又由抛物线与y 轴交于正半轴,可得0c >,再根据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc , 故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确; ③当2x =-时,0,y < 即420a b c -+< ……(1) 当1x =时,0y <,即0a b c ++< ……(2) (1)+(2)×2得,630a c +<, 即20a c +<, 又因为0,a <所以()230a a c a c ,++=+< 故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+> 所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦所以22().a c b +< 故④正确,综上可知,正确的结论有2个. 故选B .20.已知二次函数y =ax 2+bx+c 的图象如图所示,下列结i 论:①abc >0;②b 2﹣4ac >0;③2a+b =0;④a ﹣b+c <0.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】首先根据开口方向确定a 的取值范围,根据对称轴的位置确定b 的取值范围,根据抛物线与y 轴的交点确定c 的取值范围,根据抛物线与x 轴是否有交点确定b 2﹣4ac 的取值范围,根据x =﹣1函数值可以判断. 【详解】 解:抛物线开口向下,0a ∴<,对称轴12bx a=-=, 0b ∴>,抛物线与y 轴的交点在x 轴的上方,0c ∴>,0abc ∴<,故①错误;抛物线与x 轴有两个交点, 240b ac ∴->,故②正确;对称轴12bx a=-=, 2a b ∴=-,20a b ∴+=,故③正确;根据图象可知,当1x =-时,0y a b c =-+<,故④正确; 故选:C . 【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题关键.。
一、二次函数解析式及定义型问题( 顶点式中考要点 ). 把二次函数的图象向左平移 2 个单位, 再向上平移1 个单位, 所得到的图象对应的二次函数关系式是 y (x 则 b 、 c 的值为 10. 抛物线 y x 2ax 4的顶点在 X 轴上,则 a 值为 11. 已知二次函数y 2(x 3)2,当 X 取 x 1和 x 2时函数值相等,当 X 取 x 1+x 2时函数值为 12. 若二次函数 y ax 2k ,当 X 取 X1 和 X2( x 1 x 2)时函数值相等 , 则当 X 取 X1+X2时,函数值为 13. 若函数 y a (x 3)2过(2. 9)点,则当 X =4时函数值 Y =14. 若函数 y (x h )2 k 的顶点在第二象限则, h 0, k 0 15. 已知二次函数当 x=2 时 Y 有最大值是1 . 且过(3 . 0)点求解析式?17. 已知抛物线在 X 轴上截得的线段长为6二、一般式交点式中考要点18. 如果抛物线 y=x 2-6x+c-2 的顶点到 x 轴的距离是 3, 那么 c 的值等于( ) (A ) 8 (B ) 14 (C ) 8 或 14( D )-8 或 -14 19. 二次函数 y=x 2-(12-k )x+12, 当 x>1 时, y 随着 x 的增大而增大, 当 x<1 时, y 随着 x 的增大而减小, 则 k 的值应取 ( (A ) 12 ( B )11 ( C )10(D ) 9 20. 若 b 0 ,则二次函数 y x 2bx 1的图象的顶点在 ( A )( A )第一象限( B )第二象限 ( C )第三象限( D )第四象限 21. 不论 x 为何值 , 函数y=ax 2+bx+c (a ≠ 0) 的值恒大于 0 的条件是 ( )A.a>0, △ >0B.a>0, △ <01)2则原. 如果函数 y (k3)x k2. ( 08 绍兴)已知点3k 2y 1 ) ,2, 1 ),形状开品与抛物线 y= - 2x 2相同,这个函数解析式为kx 1 是二次函数 , 则 k 的值是 _ .( 兰州 A .若 y 1 B .若 C .若 x 10 y 2,则 x 1 x 2,则x 2y 2 D .若 x 1 10) 抛物线 x 1 x 2 x 2 ,则y 1 y 2 y 1 b y 2 c 图像向右平移2 个单位再向下平移3 个单位, 所得图像的解析式为 y 2x 3,A . b=2 C . b=-2 . 抛物线 c=2 , c=-1 (m 1)x 2ax B. b=2 D. b= -3 c=0,(m 23m 4)x 5以 Y 轴为对称轴则。
二次函数中级试题及答案一、选择题1. 下列哪个选项是二次函数的标准形式?A. y = 3x^2 + 2x + 1B. y = 3x + 2C. y = x^3 - 4D. y = 2x^2 - 3答案:A2. 二次函数y = ax^2 + bx + c的顶点坐标为(h,k),则h的值是?A. -b/2aB. -b/aC. b/2aD. b/a答案:C3. 如果一个二次函数的图像开口向上,那么它的系数a的值应该是?A. 大于0B. 小于0C. 等于0D. 不确定答案:A二、填空题1. 二次函数y = 2x^2 - 4x + 3的顶点坐标是______。
答案:(1, 1)2. 已知二次函数y = ax^2 + bx + c的图像与x轴交于点(-1,0)和(3,0),则a + b + c = ______。
答案:03. 若二次函数y = 4x^2 - 12x + k的图像与x轴无交点,则k的最小值是______。
答案:9三、解答题1. 已知二次函数y = 2x^2 - 4x + 3,求其图像与x轴的交点坐标。
答案:交点坐标为(1,0)。
2. 已知二次函数y = -x^2 + 4x - 3,求其顶点坐标。
答案:顶点坐标为(2,1)。
3. 已知抛物线y = ax^2 + bx + c与直线y = 2x + 3在点(1,5)处相交,且抛物线开口向上,求a的取值范围。
答案:a > 0。
四、综合题1. 已知二次函数y = 3x^2 - 6x + 2,求其图像的对称轴方程和顶点坐标。
答案:对称轴方程为x = 1,顶点坐标为(1,-1)。
2. 已知抛物线y = 2x^2 - 8x + 7与x轴交于点A和B,求线段AB的长度。
答案:线段AB的长度为4。
3. 已知二次函数y = 5x^2 - 10x + 3,求其图像与直线y = 2x + 1的交点坐标。
答案:交点坐标为(1,2)和(3,11)。
最难中考数学二次函数压轴题中考数学中,二次函数是一个重要的知识点,特别是与二次函数相关的解析几何问题。
下面我们来讨论一个关于二次函数的压轴题。
压轴题:已知抛物线y=ax²+bx+c(a≠0),经过两点(1,1)和(2,4)。
求抛物线的解析式及抛物线与y轴的交点坐标。
解析:题目给出了抛物线经过两点(1,1)和(2,4),我们可以得到以下两组方程组:1)a+b+c=1(1)4a+2b+c=4(2)2)a+b+c=4(3)4a+2b+c=16(4)我们需要解出系数a、b和c,然后才能得到抛物线的解析式。
解法一:消元法我们尝试使用消元法来解这个方程组。
首先,我们将方程(1)乘以4,然后与方程(2)相减得到3b-3c=0。
然后,我们可以将方程(3)乘以2,然后与方程(4)相减得到-6a+(-6b+12c)=-24在等式中,我们可以将-6b+12c替换为2(3b-3c),得到-6a+2(3b-3c)=-24化简上述等式,我们得到-6a+6b-6c=-24我们可以将上述结果与方程(1)相加得到5b-5c=-23将上述结果带入方程(1)得到a+c=24/5,然后将其中的c代入方程(1)或(2)中可得a=9/5和b=5/5所以,我们得到a=9/5,b=1,c=-4/5将这些系数代入抛物线的解析式y=ax²+bx+c,我们可以得到抛物线的解析式为y=(9/5)x²+x-4/5接下来,我们需要求抛物线与y轴交点的坐标。
当x=0时,代入抛物线的解析式可得y=-4/5、所以,抛物线与y轴的交点坐标为(0,-4/5)。
解法二:矩阵法我们还可以使用矩阵法解决这个方程组。
我们将方程组(1)和(2)的系数写成矩阵形式,得到:\[ \begin{bmatrix}1&1&1\\4&2&1\end{bmatrix}\begin{bmatrix}a\\b\\c\end{bmatrix}\begin{bmatrix}1\\4\end{bmatrix} \]然后,我们可以使用矩阵的逆运算,将上述方程组化简为a、b和c 的矩阵式。
专题十四二次函数选择题满分:80学校 __________ 班级 __________ 学生 __________一、填空题( 本大题共30小题每题1 分)1、已知是二次函数,则m=_______.解析:2解析:因为是二次函数,所以m2-m=2,解得m1=-1,m2=2.但当m=-1时,二次项系数m2-1=0,故舍去,只取m=2.2、已知抛物线的图象经过点(a,4.5)和(-a,y1),则y1的值是_____.解析:4.5解析:由题意知,a2=9,a=±3,将(-a,y1)代入,进一步求得y1=4.53、抛物线y=x2-2x-3的对称轴是______,顶点坐标是______.解析:x=1 (1,-4)解析:利用配方法可以得到结论,也可直接用对称轴和顶点坐标公式来求出结果.4、二次函数y=ax2+bx+c中,a>0,b<0,c=0,则其图象的顶点应在第_____象限. 解析:四解析:由,可知抛物线的顶点必须在第四象限.5、写出图象经过点(1,0)、(0,1)的三个不同的函数解析式_____、_____、_____.解析:y=-x+1 y=-x2+1 y=x2-2x+1解析:本题是开放性题目,答案只要满足条件即可.6、结合函数y=(x-2)2-1的图象,确定当时______,y=0;当______时,y>0;当____时,y<0.解析:x=1或x=3 x>3或x<1 1<x<37、已知二次函数y=x2-6x+m的最小值为1,则m=_______.解析:10解析:由题意知:,解得m=10.8、抛物线的最低点坐标是______;当______时,y随x的增大而增大.解析: (-1,-2) x>-1解析:求最低点坐标实质上是求顶点坐标.9、抛物线y=x2+(2m-1)x+m2与x轴有两个交点,则m的取值范围是______.解析:m<10、若抛物线的顶点在x轴的下方,则m=________.解析:-1解析:由题意知:得m=-1.11、如果函数y=2x2-mx+1的最小值为-7,则m=______.解析:±8解析:代入公式,解得m=±8.12、抛物线的对称轴是______,顶点坐标是______.解析:x=-3 (-3,2)13、汽车刹车距离s(m)与速度v(km/h)之间的函数关系是,在一辆车速为100 km/h的汽车前方80 m处发现停放一辆故障车,此时刹车_______有危险(填“会”、“不会”).解析:会解析:由,得此时刹车有危险.14、如图,假定一拱门形状是抛物线,底部宽40英尺,高25英尺,试问:离地面16英尺处拱门有多宽?答:________英尺.解析:24解析:可建立坐标系,如图所示,A(-20,0),B(20,0),C(0,25).从而可得过A、B、C三点抛物线的解析式.当y=16时,得x=±12,故高16英尺处拱门宽为12×2=24(英尺).15、如图,假定一拱门形状是抛物线,底部宽40英尺,高25英尺,试问:离地面16英尺处拱门有多宽?答:________英尺.解析:24解析:可建立坐标系,如图所示,A(-20,0),B(20,0),C(0,25).从而可得过A、B、C三点抛物线的解析式.当y=16时,得x=±12,故高16英尺处拱门宽为12×2=24(英尺).16、抛物线y=-x2+bx+c的图象如图所示,则此抛物线的关系式为__________.解析:y=-x2+2x+3点拨:本题考查二次函数的有关知识,由图象知该抛物线的对称轴是x=1,且过点(3,0),所以解得所以抛物线的关系式为y=-x2+2x+3,故填y=-x2+2x+317、抛物线y=-x2+bx+c的部分图象如图所示,请写出与其关系式、图象相关的2个正确结论:________,________.(对称轴方程,图象与x轴正半轴、y 轴交点坐标例外)解析:c=3 b+c=1点拨:本题是开放性题目,答案不唯一,还有:①c-3b=9;②b=-2;③抛物线的顶点为(-1,4),或二次函数的最大值为4;④方程-x2+bx+c=0的两个根为-3,1;⑤y>0时,-3<x<1;或y<0时,x<-3或x>1;⑥当x>-1时,y随x的增大而减小;或当x<-1时,y随x的增大而增大等.18、出售某种文具盒,若每个获利x元,一天可售出(6-x)个,则当x=__________元时,一天出售该种文具盒的总利润y最大.解析:319、已知二次函数y=ax2+bx+c(a≠0)中自变量x和函数值y的部分对应值如下表:则该二次函数的关系式为__________.解析:y=x2+x-2点拨:把图表中的三个点代入二次函数y=ax2+bx+c中求得a、b、c的值.20、抛物线y=-x2+bx+c的部分图象如图所示,请写出与其关系式、图象相关的2个正确结论:__________,__________.(对称轴方程,图象与x正半轴、y 轴交点坐标除外)解析:c=3 b=-2点拨:本题是开放性题目,答案不唯一.21、某种火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用公式h=-5t2+150t+10表示.经过__________ s,火箭达到它的最高点.解析:15点拨:因为a=-5,故当时,h有最大值.22、y=2x2-bx+3的对称轴是直线x=1,则b的值为__________.解析:4点拨:由于,解得b=4.23、抛物线y=x2-4x+与x轴的一个交点的坐标为(1,0),则此抛物线与x 轴的另一个交点的坐标是__________.解析: (3,0)点拨:抛物线的对称轴是,又因为抛物线与x的一个交点是(1,0),所以另一个交点是(3,0).24、抛物线y=ax2+bx+c过点A(-1,0),B(3,0),则此抛物线的对称轴是直线x=__________.解析:1点拨:A,B是抛物线与x轴的两个交点,关于对称轴对称,所以对称轴是直线.25、写出一个二次函数,使得a-b+c=0,这个二次函数是__________.解析:答案不唯一,如y=5x2+4x-1点拨:先写出a的一个值,然后再依次确定b和c.26、y=2x2-bx+3的对称轴是直线x=1,则b的值为__________.解析:4点拨:由于,解得b=4.27、隧道呈抛物线形,已知隧道宽10 m,高4 m,一辆汽车宽1.6 m,高3 m,假设它从正中通过,问这辆汽车能否顺利通过隧道?答:________.(填“能”或“不能”)解析:能点拨:建立直角坐标系,由题意可知A(-5,0),B(5,0),C(0,4).根据三点坐标可求得抛物线关系式为.当时,.∴汽车可以通过隧道.28、如图,抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0),B(x2,0),点A在点B的左侧.当x=x2-2时,y_______0(填“>”“=”或“<”号).解析:<【解析】本题考查二次函数图象的性质,难度中等.由题意可知抛物线的对称轴为x=1,x1>0,x2>0,x1+x2=2,所以x2<2,则x2-2<0,所以当x=x2-2时,y<0.29、如图,已知⊙P的半径为2,圆心P在抛物线y=上运动,当⊙P与x 轴相切时,圆心P的坐标为________.解析:(,2)或(-,2)【解析】本题考查学生数形结合的能力.由二次函数的性质可知,只有当点P在x轴上方且与x轴的距离为2时,圆P才与x轴相切,把y=2代入解析式得x2-1=2,解得x=±,故点P的坐标为(,2)或(-,2).30、如图,已知⊙P的半径为2,圆心P在抛物线y=上运动,当⊙P与x 轴相切时,圆心P的坐标为________.解析:(,2)或(-,2)【解析】本题考查学生数形结合的能力.由二次函数的性质可知,只有当点P在x轴上方且与x轴的距离为2时,圆P才与x轴相切,把y=2代入解析式得x2-1=2,解得x=±,故点P的坐标为(,2)或(-,2).二、选择题( 本大题共30小题每题1 分)1、下列函数关系中,可以看作是二次函数y=ax2+bx+c(a≠0)模型的是()A.圆的周长与圆的半径之间的关系B.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)C.在人口年自然增长率为1%的情况下我国人口总数随年份的变化关系D.在一定距离内汽车的行驶速度与行驶时间的关系参考答案:B解析:B解析:由知D不对;由y=a(1+1%)x知C不对;由C=2πR知A不对,故选B;当然也可由物理公式直接选B.2、抛物线y=-x2+2kx+2与x轴的交点个数为()A.0个 B.1个C.2个 D.以上答案都不对参考答案:C解析:C解析:由(2k)2-4×(-1)×2=4k2+8>0可知,抛物线与x轴必有两个交点,故选C.3、如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有()A.2个B.3个 C.4个D.1个参考答案:D解析:D解析:(1)根据图象知,该函数图象与x轴有两个交点,∴△=b2-4ac>0;故本选项正确;(2)由图象知,该函数图象与y轴的交点为(0,1),∴c<1;故本选项错误;(3)由图知,知对称轴;又函数图象的开口方向向下,∴a<0,∴-b<-2a,即:2a-b<0,故本选项正确;(4)根据图象可知,当x=1,即y=a+b+c<0,∴a+b+c<0;故本选项正确.4、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限参考答案:D解析:D点拨:由题意知:二次函数y=ax2+bx+c中a>0,b>0,c>05、一台机器原价为60万元,如果每年的折旧率是x,两年后这台机器的价格为y万元,那么用x表示y的函数表达式为()A.y=60(1-x)2 B.y=60(1-x)C.y=60-x2 D.y=60(1+x)2参考答案:A解析:A点拨:一年后这台机器的价格为60(1-x)万元,两年后这台机器的价格为y=60(1-x)(1-x)=60(1-x)2万元.6、点(1,y1),(2,y2),(3,y3)在函数y=x2的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y2<y1<y3C.y1>y2>y3 D.y1>y3>y2参考答案:A解析:A点拨:当x>0时,函数y=x2的函数值y随x的增大而增大,因为1<2<3,所以y1<y2<y3,因此,应选A.7、对于二次函数y=x2,下列说法正确的是…()A.当x<0时,y随x的增大而增大B.有最小值,其值为0C.当x>0时,y随x的增大而减小D.y随x的增大而减小参考答案:B解析:B点拨:当x<0时,二次函数y=x2的函数值y随x的增大而减小;当x>0时,二次函数y=x2的函数值y随x的增大而增大,故排除A、C、D8、下列函数中,不是二次函数的是().A.B.y=2(x-1)2+4C.y=(x-1)(x+4)D.y=(x-2)2-x2参考答案:D解析:D点拨:由二次函数的定义可知A,B,C都是二次函数,而D中y=(x-2)2-x2整理后为y=-4x+4,它是一次函数,所以选D.9、对于任意实数m,下列函数一定是二次函数的是().A.y=mx2+3x-1 B.y=(m-1)x2C.y=(m-1)2x2D.y=(-m2-1)x2参考答案:D解析:D点拨:∵m,m-1,(m-1)2都有可能等于0,而-m2-1≠0,∴选D.10、一台机器原价为60万元,如果每年的折旧率是x,两年后这台机器的价格为y万元,那么用x表示y的函数表达式为().A.y=60(1-x)2B.y=60(1-x)C.y=60-x2D.y=60(1+x)2参考答案:A解析:A点拨:一年后这台机器的价格为60(1-x)万元,两年后这台机器的价格为y=60(1-x)(1-x)=60(1-x)2万元.11、长方形的周长为30 cm,则长方形的面积y(cm2)与一边长x(cm)之间的函数表达式为().A.y=x(30-x) B.y=x(15-x)C.y=30x2D.y=x(x+30)参考答案:B解析:B点拨:长方形的周长为30 cm,一边长为x cm,则另一边长为(15-x) cm,所以面积为x(15-x) cm2.12、抛物线y=2x2+4x-3的顶点坐标是().A.(-1,-5) B.(1,-5)C.(-1,-4) D.(-2,-7)参考答案:D解析:A点拨:∵y=2x2+4x-3=2(x+1)2-5,∴顶点坐标为(-1,-5).13、将抛物线y=x2+1向左平移2个单位,再向下平移3个单位,所得抛物线的表达式为().A.y=(x+2)2-3 B.y=(x+2)2-2C.y=(x-2)2-3 D.y=(x-2)2-2参考答案:B解析:B点拨:抛物线y=x2+1的顶点为(0,1),平移后抛物线的顶点为(-2,-2),所以平移后的表达式为y=(x+2)2-2.14、已知抛物线y=x2-2bx+4的顶点在x轴上,则b的值一定是().A.1 B.2 C.-2 D.2或-2参考答案:D解析:D点拨:∵抛物线y=x2-2bx+4的顶点在x轴上,∴这条抛物线与x轴只有一个交点.∴b2-4ac=4b2-16=0.∴b=±2.15、将二次函数y=x2-2x+3,化为y=(x-h)2+k的形式,结果为().A.y=(x+1)2+4 B.y=(x-1)2+4C.y=(x+1)2+2 D.y=(x-1)2+2参考答案:D解析:D点拨:y=x2-2x+3=x2-2x+1+2=(x-1)2+2.16、二次函数y=kx2+2x+1(k<0)的图像可能是().参考答案:C解析:C点拨:由k<0,b=2>0,所以对称轴在y轴右侧.因为c=1,所以图像与y轴的交点在y轴正半轴上.故选C. 17A.y=3x B.y=3x2C.y=2x2+1 D.y=x2+2参考答案:B解析:B点拨:由表中数据看出,,所以y=3x2.18、抛物线y=2x2+4x-3的顶点坐标是().A.(-1,-5) B.(1,-5)C.(-1,-4) D.(-2,-7)参考答案:D解析:A点拨:∵y=2x2+4x-3=2(x+1)2-5,∴顶点坐标为(-1,-5).19、已知点(2,5),(4,5)是抛物线y=ax2+bx+c上的两点,则这条抛物线的对称轴为().A.x=1 B.x=2 C.x=3 D.x=-1参考答案:C解析:C点拨:因为点(2,5),(4,5)是抛物线上的一对对称点,所以对称轴为,即x=3.20、将抛物线y=x2+1向左平移2个单位,再向下平移3个单位,所得抛物线的表达式为().A.y=(x+2)2-3 B.y=(x+2)2-2C.y=(x-2)2-3 D.y=(x-2)2-2参考答案:B解析:B点拨:抛物线y=x2+1的顶点为(0,1),平移后抛物线的顶点为(-2,-2),所以平移后的表达式为y=(x+2)2-2.21、将二次函数y=x2-2x+3,化为y=(x-h)2+k的形式,结果为().A.y=(x+1)2+4 B.y=(x-1)2+4C.y=(x+1)2+2 D.y=(x-1)2+2参考答案:D解析:D点拨:y=x2-2x+3=x2-2x+1+2=(x-1)2+2.22、小敏用一根长为8 cm的细铁丝围成矩形,则矩形的最大面积是().A.4 cm2B.8 cm2 C.16cm2 D.32 cm2参考答案:A解析:A点拨:设矩形的面积为y cm2,矩形的一边长为x cm,根据题意得y=x(4-x)=-x2+4x=-(x-2)2+4,所以当矩形的边长为2 cm时,矩形的面积最大为4 cm2.23、如图,有一网球从斜坡点O处抛出,其运动路线是二次函数y=4x-的图象的一段,斜坡的截线OA是一次函数的图象的一段.建立如图所示的直角坐标系,则网球在斜坡上的落点A的垂直高度是()A.1 m B.2.5 m C.3.5 m D.4 m参考答案:C解析:C点拨:由题意,得:解得∴点A的坐标为(7,3.5),即网球在斜坡上的落点A的垂直高度是3.5 m.24、如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n(a≠0)的顶点在线段AB上运动,与x轴交于C,D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为().A.-3 B.1C.5 D.8参考答案:D解析:D点拨:C,D两点是抛物线与x轴的交点,当取得C点横坐标的最小值为-3时,抛物线的顶点在A处,把C(-3,0),A(1,4)代入解析式,可得0=a(-3-1)2+4,求得a=-,当抛物线的顶点在B处时,可以取得D点横坐标的最大值,其解析式为y=-(x-4)2+4,易得最大值为8.25、如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n(a≠0)的顶点在线段AB上运动,与x轴交于C,D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为().A.-3 B.1C.5 D.8参考答案:D解析:D点拨:C,D两点是抛物线与x轴的交点,当取得C点横坐标的最小值为-3时,抛物线的顶点在A处,把C(-3,0),A(1,4)代入解析式,可得0=a(-3-1)2+4,求得a=-,当抛物线的顶点在B处时,可以取得D点横坐标的最大值,其解析式为y=-(x-4)2+4,易得最大值为8.26、下列哪一个函数,其图象与x轴有两个交点()A.y=B.C.y= D.y=参考答案:D解析:D【解析】本题考查抛物线与x轴的交点问题.A,B中抛物线开口向上,顶点在x轴上方,与x轴无交点;C中抛物线开口向下,顶点在x轴下方,与x轴无交点;D中抛物线开口向下,顶点在x轴上方,与x轴有两个交点.27、如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(不与点A,B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y,与x的函数关系的图象大致是()参考答案:B解析:B【解析】本题考查了动态几何与二次函数结合.解题关键是根据点D的运动情况,找出点E的运动趋势.并选择合适的图象.当x=0时,当D点在A处时,,所以图象过,故可排除选项D;当点D在向右移动的过程中,x的值越来越大,y的值先逐渐变小,后逐渐变大,故排除选项A;当∠CDA=90º时,,当时,点E在AC的延长线上,即,且逐渐增大,故可排除选项C.故选B.28、已知一元二次方程x2+bx-3=0的一根为-3,在二次函数y=x2+bx-3的图象上有三点(,y1),(,y2),(,y3),则y1,y2,y3的大小关系为()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2 D.y1<y3<y2参考答案:A解析:A【解析】本题考查一元二次方程的根及二次函数图象的性质,难度中等,由方程的一根为-3,可求b=2,则二次函数解析式为y=x2+2x-3,当时,;当时,;当时,;因为,所以.29、已知函数y1=x2与函数y=-x+3的图象大致如图.若y1<y2,则自变量x的取值范围是()A. B.x>2或x<C.-2<x<D.x<-2或x>参考答案:C解析:C【解析】本题考查了比较两个函数值大小的能力.函数y1=x2和y2=-+3的交点横坐标就是方程x2=-x+3的解,解这个方程得x1=-2,x2=.观察图象可知,当-2<x<时有,y1<y2.故选C.30、如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(不与点A,B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y,与x的函数关系的图象大致是()参考答案:B解析:B【解析】本题考查了动态几何与二次函数结合.解题关键是根据点D的运动情况,找出点E的运动趋势.并选择合适的图象.当x=0时,当D点在A处时,,所以图象过,故可排除选项D;当点D在向右移动的过程中,x的值越来越大,y的值先逐渐变小,后逐渐变大,故排除选项A;当∠CDA=90º时,,当时,点E在AC的延长线上,即,且逐渐增大,故可排除选项C.故选B.三、解答题( 本大题共20小题每题1 分)1、已知二次函数.(1)试确定函数图象的开口方向、对称轴和顶点坐标;(2)作出函数及的草图;(3)根据函数图象说出抛物线与抛物线的关系.解析:思路分析:(1)利用配方法将化为的形式即可作出正确解答;(3)中可结合图形的形状和位置予以说明.解:(1)∵,∴抛物线的开口向上,对称轴为x=-6,顶点坐标为(-6,-8). (2)在同一直角坐标系内作出及的图象,如图所示.(3)由图象可以看出,抛物线可看作是抛物线向左平移6个单位长度后,再向下平移8个单位长度得到的,两条抛物线的形状和大小完全相同.只是位置不同.2、已知点A(-2,-c)向右平移8个单位得到点A′,A与A′两点均在抛物线y=ax2+bx+c上,且这条抛物线与y轴交点的纵坐标为-6,求这条抛物线的顶点坐标.解析:解析:抛物线的解析式是y=x2-4x-6,顶点坐标为(2,-10).3、阅读材料,解答问题.阅读材料:当抛物线的函数关系式中含有字母系数时,随着系数中的字母的取值不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2x-1, ①有y=(x-m)2+2m-1, ②∴抛物线的顶点坐标为(m,2m-1).即当m的值变化时,x、y的值也随之变化,因而y的值随x值的变化而变化,将③代入④得,y=2x-1.⑤可见,不论m取任何实数,抛物线的顶点的纵坐标y与横坐标x都满足关系式:y=2x-1.解答问题:(1)在上述过程中,由①到②所用的数学方法是_______,其中运用了_______公式,由③④得到⑤所用的数学方法是______.(2)根据阅读材料提供的方法,确定抛物线y=x2-2mx+2m2-3m+1顶点的纵坐标y与横坐标x之间的关系式.解析:解析:(1)配方法完全平方代入法(2)由,,把x=m代入y=m2-3m+1得y=x2-3x+1,即为抛物钱y=x2-2mx+2m2-3m+1的顶点纵坐标y与横坐标x之间的关系式.4、已知函数.(1)当自变量x在什么范围内取值时,y随x的增大而增大?x在什么范围内取值时,y随x的增大而减小?(2)这个二次函数有最大值或最小值吗?如果有,当x为何值时,函数取得最大值或最小值?求出最大值或最小值.解析:解析:(1)因为,b=6,c=20,所以,,则图象的顶点坐标为(-6,2).因为抛物线开口向上,所以,当x>-6时,y随x的增大而增大;当x<-6时,y随x的增大而减小.(2)因为抛物线开口向上,顶点坐标为(-6,2),所以当x=-6时,这个二次函数有最小值2.5、当m解析:解:由题意,得由①得m≠2且m≠-1;由②得m=6或m=-1.所以,当m=6时,该函数是二次函数,其函数关系式为y=28x2+7x+66、在平原上,一门炮发射的一发炮弹飞行的高度y(m)与飞行时间x(s)的关系满足.(1)经过多长时间,炮弹达到它的最高点?最高点的高度是多少?(2)经过多长时间,炮弹落到地上爆炸?解析:解:(1)∵y=-x2+10x=-(x-25)2+125,∴当x=25时,y最大=125.∴经过25 s后,炮弹达到最高点,最高点的高度是125 m.(2)令y=0,则-x2+10x=0,解得x1=50,x2=0(舍去).∴经过50 s后,炮弹落地爆炸.点拨:欲求经过多长时间达到它的最高点,就是求此抛物线的顶点坐标,经过多长时间,炮弹落到地上爆炸,也就是求抛物线与x轴的交点坐标,只要理解这些便可求出.7、改革开放后,不少农村用上了自动喷灌设备,如图所示,AB表示水管,在B 处有一个自动旋转的喷水头,一瞬间喷出的水呈抛物线状,建立如图所示的平面直角坐标系后,抛物线对应的函数关系式为.(1)当x=1时,喷出的水离地面多高?(2)你能求出水落地点的最远距离吗?(3)水管有多高?解析:解:(1)当x=1时,y=×12+2×1+1.5=3.故x=1时,喷出的水离地面的高为3.(2)当y=0时,,解得, (舍去).因此水落地点的最远距离为.(3)当x=0时,y=1.5,因此水管AB的高为1.5.8、已知抛物线y=x2-2x-8,(1)求证:该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点分别为A、B,且它的顶点为P,求△ABP的面积.解析:(1)证明:△=36>0,所以一元二次方程x2-2x-8=0有两个不相等的实数根,所以所对应的抛物线与x轴一定有两个交点.(2)解:由题可得P点坐标为(1,-9),所以S△ABP=×6×9=27.9、已知抛物线y=ax2+bx+c开口向下,并且经过A(0,1)和M(2,-3)两点.(1)若抛物线的对称轴为直线x=-1,求此抛物线所对应的函数关系式;(2)如果抛物线的对称轴在y轴的左侧,试求a的取值范围;(3)如果抛物线与x轴交于B、C两点,且∠BAC=90°,求此时a的值.解析:解:(1)y=-0.5x2-x+1;(2)-1<a<0;(3)a=-1.10、如图,一块草地是长80 m,宽60 m的矩形,欲在中间修筑两条互相垂直的宽为x m的小路,这时草坪面积为y m2.求y与x的函数关系式,并写出自变量x的取值范围.解析:解:y=(60-x)(80-x),即y=x2-140x+4 800(0<x<60).11、已知点A(1,1)在二次函数y=x2-2ax+b的图象上.(1)用含a的代数式表示b;(2)如果该二次函数的图象与x轴只有一个交点,求这个二次函数的图象的顶点坐标.解析:解:(1)因为点A(1,1)在二次函数y=x2-2ax+b的图象上,所以1=1-2a+b,可得b=2a.(2)根据题意,方程x2-2ax+b=0有两个相等的实数根,所以4a2-4b=4a2-8a=0,解得a=0或a=2.当a=0时,y=x2,这个二次函数的顶点坐标为(0,0);当a=2时,y=x2-4x+4,这个二次函数的顶点坐标为(2,0).所以,这个二次函数的顶点坐标为(0,0)或(2,0).点拨:(1)根据题意得1=1-2a+b,所以b=2a;(2)由题意知方程x2-2ax+b=0有两个相等的实数根,所以4a2-4b=0,由(1)b=2a得4a2-8a=0,解得a=0或a=2.进而分类可求得该二次函数的图象的顶点坐标.12、已知二次函数的图象经过点(0,3),(-3,0),(2,-5),且与x轴交于A,B两点.(1)试确定此二次函数解析式;(2)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,请说明理由.解析:解:(1)设二次函数解析式为y=ax2+bx+c(a≠0),把(0,3),(-3,0),(2,-5)代入,得解得所以二次函数解析式为y=-x2-2x+3;(2)当x=-2时,y=-(-2)2-2×(-2)+3=3,所以点P(-2,3)在这个二次函数图象上;当y=0时,-x2-2x+3=0,解得x1=-3,x2=1,所以点A(-3,0),B(1,0),所以AB=4,所以S=×4×3=6.△PAB点拨:(1)知道二次函数上的三个点的坐标,可以用待定系数法来确定出解析式;(2)判定一个点是否在某个函数上,通常用的方法是让自变量取点的横坐标,算出对应的函数值,如果与点的纵坐标相等,则点在这个函数上,否则就不在,在平面直角坐标系中求三角形的面积,要注意应用坐标的绝对值等于点到坐标轴的距离,也就是可以看成是三角形的高.13、用长度一定的不锈钢材料设计成外观为矩形的框架(如图①,②,③中的一种).设竖档AB=x米,请根据以上图案回答下列问题:(题中的不锈钢材料总长度均指各图中所有黑线的长度和,所有横档和竖档分别与AD,AB平行)(1)在图①中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积为3平方米?(2)在图②中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积S最大?最大面积是多少?(3)在图③中,如果不锈钢材料总长度为a米,共有n条竖档,那么当x为多少时,矩形框架ABCD的面积.S最大?最大面积是多少?解析:本题考查方程与二次函数的综合应用,通过求二次函数的最值考查函数的性质,难度中等.解:(1)由题意,BC的长为(4-x)米,依题意得x(4-x)=3,即x2—4x+3=0,解得x1=1,x2=3,即当AB的长度为1米或3米时,矩形框架ABCD的面积为3平方米.(2),∴当时,S有最大值3,即是说,当x为时,矩形框架ABCD的面积S最大,最大面积是3平方米.(3).∵,∴当时,S有最大值,.因此,当x为时,矩形框架ABCD的面积S最大,最大面积平方米.14、已知A(1,0),B(0,-1),C(-1,2),D(2,-1),E(4,2)五个点,抛物线y=a(x-1)2+k(a>0),经过其中三个点.(1)求证:C,E两点不可能同时在抛物线y=a(x-1)2+k(a>0)上;(2)点A在抛物线y=a(x-1)2+k(a>0)上吗?为什么?(3)求a和k的值.解析:本题考查抛物线的图象和解析式,考查分类讨论思想,难度较大.解:(1)证明:将C,E两点的坐标代入y=a(x-1)2+k(a>0)得,解得a=0,这与条件a>0不符,∴C,E两点不可能同时在抛物线y=a(x-1)2+k(a>0)上,(2)解法一:∵A,C,D三点共线(如图),∴A,C,D三点也不可能同时在抛物线y=a(x-1)2+k(a>0)上.∴同时在抛物线上的三点有如下六种可能:①A,B,C;②A,B,E;③A,B,D;④A,D,E;⑤B,C,D;⑥B,D,E.将①,②,③,④四种情况(都含A点)的三点坐标分别代入y=a(x-1)2+k(a>0),解得:①无解;②无解;③a=-1,与条件不符,舍去;④无解.所以A点不可能在抛物线y=a(x-1)2+k(a>0)上.解法二:∵抛物线y=a(x-1)2+k(a>0)的顶点为(1,k),假设抛物线过A(1,0),则点A必为抛物线y=a(x-1)2+k(a>0)的顶点,由于抛物线的开口向上且必过五点A,B,C,D,E中的三点,所以必过x轴上方的另外两点C,E,这与(1)矛盾,所以A点不可能在抛物线y=a(x-1)2+k(a>0)上.(3)当抛物线经过(2)中⑤B,C,D三点时,则当抛物线经过(2)中⑥B,D,E三点时,同法可求∴15、注意:为了使同学们更好地解答本题,我们提供了一种分析问题的方法。
二次函数专题1.抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( )A .1x =B .1x =-C .3x =-D .3x = 2.二次函数2(0)y ax bx c a =++≠的图象如图1所示,则下列说法不正确的是( )A .240b ac ->B .0a >C .0c >D .02b a-< 3.)下列哪一个函数,其图形与x 轴有两个交点?(A)y =17(x +83)2+2274 (B)y =17(x -83)2+2274(C) y = -17(x -83)2-2274 (D) y = -17(x +83)2+2274。
4.如图3二次函数()220y ax bx a b a =+++≠的图像为下列图像之一,则a 的值为A.-1B.1C. -3D. -45.已知二次函数215(1)y x k =-+的图象上有三个点123(2,),(2,),(5,)A y B y C y -. 则123,,y y y 的大小关系为______.A. 123y y y >>B. 213y y y >>C. 312y y y >>D. 321y y y >>6.二次函数2y ax bx c =++与一次函数y ax c =+在同一坐标系中的图象可能是下图中的_____.7.在同一坐标系中二次函数2y ax b =+和2y bx ax =+的图象只可能是下图中的_____.8.已知: 0,930a b c a b c -+=++=, 则二次函数2y ax bx c =++图象的顶点可能在_____.A. 第一或第二象限 .B. 第三或第四象限.C. 第一或第四象限D. 第二或第三象限9.关于函数2565y x x =-+-的最值中说法正确的是_____.A. 该函数只有最大值5B. 该函数只有最小值3C. 该函数有最大值5、最小值3D. 该函数有最大值5、最小值1 10.已知二次函数11)(2k 2--+=x kx y 与x 轴交点的横坐标为1x 、2x (21x x <),则对于下列结论:①当x =-2时,y =1;②当2x x >时,y >0;③方程011)(22=-+-x k kx 有两个不相等的实数根1x 、2x ;④11-<x ,12>-x ;⑤22114k x x k+-=,其中所有正确的结论是 11.函数231y ax ax x =-++的图象与x 轴有且只有一个公共点, 那么a 的值是______.12.如图,抛物线2y ax bx c =++与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则 (1)abc 0(填“>”或“<”);(1)a 的取值范围是13.如图(5)A. B. C.是二次函数y=ax 2+bx +c (a ≠0)的图像上三点,根据图中给出的三点的位置,可得a ——0,c ——0, ⊿——0 14.抛物线y=-(x-L )(x-3-k)+L 与抛物线y=(x-3)2+4关于原点对称,L+k=________。
《二次函数》——难度题1、从如图所示的二次函数y = ax 2+bx +c (a ≠0)的图象中,得出了下面五条信息:①ab > 0 ②a +b +c < 0 ③b +2c > 0 ④a -2b +4c > 0 ⑤32a b . 其中正确信息的序号是 ① ② ③ ④ ⑤2、如图,二次函数2y ax bx c (0≠a )的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①0ab,②24b a ,③02a b c ,④01b ,⑤当1x时,0y .其中正确结论的序号是 ①②③④o x y-113、已知二次函数y =ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论:①b 2>4ac ;②abc >0;③2a ﹣b =0;④8a+c <0;⑤9a+3b+c <0,其中结论正确的是①②⑤ .(填正确结论的序号)4、二次函数y= ax 2+bx+c 的图象如图所示,给出下列结论:①2a+b >0;②b >a >c ;③若﹣1<m <n <1,则m+n <a b ;④3|a |+|c |<2|b |. 其中正确的结论是 ①③④ (写出你认为正确的所有结论序号).5、二次函数y=ax 2+bx+c 图象如图,下列正确的序号为 ①③④ ①bc >0;②2a ﹣3c <0;③2a+b >0;④ax 2+bx+c =0有两个解x 1,x 2,x 1>0, x 2<0;⑤a+b+c >0;⑥当x >1时,y 随x 增大而减小.【解】①∵抛物线开口向上,∴a >0,∵对称轴在y 轴右侧,∴a ,b 异号即b <0, ∵抛物线与y 轴的交点在负半轴,∴c <0,∴bc >0,故①正确;②∵a >0,c <0,∴2a ﹣3c >0,故②错误;③∵对称轴x =﹣<1,a >0,∴﹣b <2a ,∴2a+b >0,故③正确;④由图形可知二次函数y=ax 2+bx+c 与x 轴的两个交点分别在原点的左右两侧, 即方程ax 2+bx+c=0有两个解x 1,x 2,当x 1>x 2时,x 1>0,x 2<0,故④正确; ⑤由图形可知x=1时,y=a+b+c <0,故⑤错误;⑥∵a >0,对称轴x=1,∴当x >1时,y 随x 增大而增大,故⑥错误.综上所述,正确的结论是①③④6、如图,二次函数y=ax 2+bx+c (a >0)图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为﹣1,3.与y 轴负半轴交于点C ,在下面五个结论中:①2a ﹣b =0;②a+b+c >0;③c =﹣3a ;④只有当a =21时,△ABD 是等腰直角三角形;⑤使△ACB 为等腰三角形的a 值可以有四个.其中正确的结论是 ③④ .(只填序号)7、二次函数y=ax 2+bx+c (a ≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x =2,下列结论:①4a+b =0;②9a+c >3b ;③8a +7b +2c >0;④当x >﹣1时,y 的值随x 值的增大而增大.其中正确的结论有( B )A.1个B.2个C.3个D.4个8、(2014年四川)已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.a bc<0B.﹣3a+c<0 C.b2﹣4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c9、二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是(B)A.4个B. 3个C.2个D.1个10、二次函数bx x y +=2的图象如图,对称轴为1=x .若关于x 的一元二次方程02=-+t bx x (t 为实数)在41<<-x 的范围内有解,则t 的取值范围是 81<≤-t11、如图,已知抛物线y 1=-2x 2+2,直线y 2=2x +2,当x 任取一值时,x 对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M = y 1=y 2.例如:当x =1时,y 1=0, y 2=4, y 1<y 2,此时M = 0. 下列判断:①当x >0时,y 1>y 2; ②当x <0时,x 值越大,M 值越小; ③使得M 大于2的x 值不存在; ④使得M = 1的x 值是 21-或22.其中正确的是 ③④12、二次函数y =ax 2+bx +c (a ≠0)图象如图,下列结论:①abc >0; ②3a +c <0; ③当m ≠1时,a +b >am 2+bm ;④a ﹣b +c >0; ⑤若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则x 1+x 2=2.其中正确的有 xy Oy 2 y 1②③⑤( 填序号)13、如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C-D-E上移动,若点C、D、E的坐标分别为(-1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为 214、如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y = x上;②抛物线依次经过点A1,A2,A3…A n,….则顶点M2014的坐标为(4027,4027).2 1 - 1 O xy15、如图,抛物线y =ax 2+bx +c 的对称轴是x = 1 3,小亮通过观察得出了下面四条信息:①c <0, ②abc <0, ③a -b +c >0, ④2a -3b =0.你认为其中正确的有____①③ ____(把正确的番号填在横线上)16、二次函数y=x 2+bx 的图象如图,对称轴为直线x =1,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣3≤x <4的范围内有解,则t 的取值范围是﹣1≤t ≤1517、已知抛物线y =-x 2+6x -5与x 轴交于点A 、B (A 在B 的左侧),顶点为C ,CD ⊥y 轴于D ,P 是x 轴上方抛物线对称轴上一点,且S △P AD =2S △PBC ,则点P 的坐标为_)8,3()58,3(或____【方法】设点,将面积与坐标建立等量关系,用差量法求三角形面积18、已知抛物线y =ax 2+bx +c 经过A (-1,0)、B (3,0)、C (0,3)三点,顶点为D ,点P 是抛物线的对称轴上一点,以点P 为圆心的圆经过A 、B 两点,且与直线CD 相切,则点P 的坐标为_____)462,1()462,1(---或____【方法】设点坐标;三角函数;勾股定理19、已知抛物线y =x 2-2mx +4m -8的顶点为A .(1)若以A 为一个顶点作该抛物线的内接正三角形ABC (B 、C 两点都在拋物线上),则△ABC 的面积为____33______;(2)若抛物线y =x 2-2mx +4m -8与x 轴交点的横坐标均为整数,则整数m 的值为____2_____【方法】利用特殊几何形的长度角度关系,设点坐标;将点的坐标代入抛物线方程,建立方程求解。
二次函数中档经典题目【含解析】1.二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x <7这一段位于x轴的上方,则a的值为()A.1 B.﹣1 C.2 D.﹣22.设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A.a(x1﹣x2)=d B.a(x2﹣x1)=d C.a(x1﹣x2)2=d D.a(x1+x2)2=d3.某数学兴趣小组研究二次函数y=mx2﹣2mx+3(m≠0)的图象发现,随着m的变化,这个二次函数的图象形状与位置均发生变化,但这个二次函数的图象总经过两个定点,请你写出这两个定点的坐标:.4.如图,将2个正方形并排组成矩形OABC,OA和OC分别落在x轴和y轴的正半轴上.正方形EFMN的边EF落在线段CB上,过点M、N的二次函数的图象也过矩形的顶点B、C,若三个正方形边长均为1,则此二次函数的关系式为.5.二次函数y=﹣(x﹣2)2+的图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有个(提示:必要时可利用下面的备用图画出图象来分析).6.在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M的坐标为.(2)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16<y′≤16,则实数a的取值范围是.8.已知二次函数y=2x2﹣4mx+m2+2m(m是常数).(1)求该函数图象的顶点C的坐标(用含m的代数式表示);(2)当m为何值时,函数图象的顶点C在二、四象限的角平分线上?9.已知函数y=x2+(2m+1)x+m2﹣1.(1)m为何值时,y有最小值0;(2)求证:不论m取何值,函数图象的顶点都在同一直线上.10.(1)求二次函数y=x2﹣4x+1图象的顶点坐标,并指出当x在何范围内取值时,y随x 的增大而减小;(2)若二次函数y=x2﹣4x+c的图象与坐标轴有2个交点,求字母c应满足的条件.11.已知二次函数的图象经过(﹣1,1)、(2,1 )两点,且与x轴仅有一个交点,求二次函数的解析式.12.已知二次函数的图象经过点(0,3)和(﹣2,﹣5),与x轴的两个交点的距离为4个单位长度,试求二次函数的解析式.二次函数中档经典题目【答案】1.二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x <7这一段位于x轴的上方,则a的值为()A.1 B.﹣1 C.2 D.﹣2【解答】解:∵抛物线y=a(x﹣4)2﹣4(a≠0)的对称轴为直线x=4,而抛物线在6<x<7这一段位于x轴的上方,∴抛物线在1<x<2这一段位于x轴的上方,∵抛物线在2<x<3这一段位于x轴的下方,∴抛物线过点(2,0),把(2,0)代入y=a(x﹣4)2﹣4(a≠0)得4a﹣4=0,解得a=1.故选A.2.设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A.a(x1﹣x2)=d B.a(x2﹣x1)=d C.a(x1﹣x2)2=d D.a(x1+x2)2=d【解答】解:∵一次函数y2=dx+e(d≠0)的图象经过点(x1,0),∴dx1+e=0,∴y2=d(x﹣x1),∴y=y1+y2=a(x﹣x1)(x﹣x2)+d(x﹣x1)=(x﹣x1)[a(x﹣x2)+d]∵函数y=y1+y2的图象与x轴仅有一个交点,∴函数y=y1+y2是二次函数,且它的顶点在x轴上,即y=y1+y2=a,∴a(x﹣x2)+d=a(x﹣x1),令x=x2,可得a(x2﹣x2)+d=a(x2﹣x1),∴a(x2﹣x1)=d.故选:B.3.某数学兴趣小组研究二次函数y=mx2﹣2mx+3(m≠0)的图象发现,随着m的变化,这个二次函数的图象形状与位置均发生变化,但这个二次函数的图象总经过两个定点,请你写出这两个定点的坐标:(0,3),(2,3).【解答】解:∵原函数化为y=mx(x﹣2)+3的形式,∴当x=0或x﹣2=0时函数值与m值无关,∵当x=0时,y=3;当x=2时,y=3,∴两定点坐标为:(0,3),(2,3).故答案为:(0,3),(2,3).4.如图,将2个正方形并排组成矩形OABC,OA和OC分别落在x轴和y轴的正半轴上.正方形EFMN的边EF落在线段CB上,过点M、N的二次函数的图象也过矩形的顶点B、C,若三个正方形边长均为1,则此二次函数的关系式为y=﹣x2+x+1.【解答】解:∵正方形的边长为1,∴OA=1+1=2,OC=1,∴点B(2,1)、C(0,1),∵正方形EFMN的两顶点M、N在抛物线上,∴根据二次函数图象的轴对称性,点M的横坐标为1﹣×1=1﹣=,纵坐标为1+1=2,∴点M(,2),设二次函数解析式为y=ax2+bx+c,则,解得,所以,二次函数的关系式为y=﹣x2+x+1.故答案为:y=﹣x2+x+1.5.二次函数y=﹣(x﹣2)2+的图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有7个(提示:必要时可利用下面的备用图画出图象来分析).【解答】解:∵二次项系数为﹣1,∴函数图象开口向下,顶点坐标为(2,),当y=0时,﹣(x﹣2)2+=0,解得x1=,得x2=.可画出草图为:(右图)图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有7个,为(2,0),(2,1),(2,2),(1,0),(1,1),(3,0),(3,1).6.在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M的坐标为(﹣1,2).(2)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16<y′≤16,则实数a的取值范围是≤a<4.【解答】解:(1)根据“可控变点”的定义可知点M的坐标为(﹣1,2);(2)依题意,y=﹣x2+16图象上的点P的“可控变点”必在函数y′=的图象上(如图).∵﹣16<y′≤16,∴﹣16=﹣x2+16.∴x=4.当x=﹣5时,x2﹣16=9,当y′=9时,9=﹣x2+16(x≥0).∴x=.∴a的取值范围是≤a<4.故答案为(﹣1,2),≤a<4.7.【解答】解:由图知:当点B的横坐标为1时,抛物线顶点取C(﹣1,4),设该抛物线的解析式为:y=a(x+1)2+4,代入点B坐标,得:0=a(1+1)2+4,a=﹣1,即:B点横坐标取最小值时,抛物线的解析式为:y=﹣(x+1)2+4.当A点横坐标取最大值时,抛物线顶点应取E(3,1),则此时抛物线的解析式:y=﹣(x﹣3)2+1=﹣x2+6x﹣8=﹣(x﹣2)(x﹣4),即与x轴的交点为(2,0)或(4,0)(舍去),∴点A的横坐标的最大值为2.故选B.8.已知二次函数y=2x2﹣4mx+m2+2m(m是常数).(1)求该函数图象的顶点C的坐标(用含m的代数式表示);(2)当m为何值时,函数图象的顶点C在二、四象限的角平分线上?【解答】解:(1)由y=2x2﹣4mx+m2+2m=2(x2﹣2mx)+m2+2m=2(x﹣m)2﹣m2+2m,得顶点C的坐标为(m,﹣m2+2m);(2)点C坐标(m,2m﹣m2),由题意知,点C在直线y=﹣x上,则﹣m=2m﹣m2,整理得m2﹣3m=0,解得m=0或m=3;所以当m为0或3时,函数图象的顶点C在二、四象限的角平分线上.9.已知函数y=x2+(2m+1)x+m2﹣1.(1)m为何值时,y有最小值0;(2)求证:不论m取何值,函数图象的顶点都在同一直线上.【解答】(1)解:当y=0时,===0,解得:m=﹣;(2)证明:函数y=x2+(2m+1)x+m2﹣1的顶点坐标为:(﹣,)设顶点在直线y1=kx+b上,则﹣k+b=,故﹣mk=﹣m,解得:k=1,b=﹣,不论m取何值,该函数图象的顶点都在直线y1=x﹣上.10.(1)求二次函数y=x2﹣4x+1图象的顶点坐标,并指出当x在何范围内取值时,y随x 的增大而减小;(2)若二次函数y=x2﹣4x+c的图象与坐标轴有2个交点,求字母c应满足的条件.【解答】解:(1)y=x2﹣4x+1=(x﹣2)2﹣3,所以顶点坐标为(2,﹣3),当x<2时,y随x的增大而减小;(2)y=x2﹣4x+c的图象与y轴有且只有一个交点(0,c),①当(0,c)仅在y轴上,不在x轴上,即c≠0时,图象应与x轴有唯一交点,此时(﹣4)2﹣4c=0,c=4;②当(0,c)既在y轴上,又在x轴上,即c=0时,图象应与x轴有两个交点,此时y=x2﹣4x,与坐标轴的两个交点为(0,0),(4,0),满足题意.所以c=0或c=4时该二次函数图象与坐标轴有2个交点.11.已知二次函数的图象经过(﹣1,1)、(2,1 )两点,且与x轴仅有一个交点,求二次函数的解析式.【解答】解:∵二次函数的图象经过(﹣1,1)、(2,1 )两点,∴抛物线的对称轴为直线x=,∵二次函数的图象与x轴仅有一个交点,∴顶点的纵坐标为0,∴抛物线的顶点坐标为(,0),设抛物线解析式为y=a(x﹣)2,把(2,1)代入得a=1,解得a=,∴二次函数的解析式为y=(x﹣)2,即y=x2﹣x+.12.已知二次函数的图象经过点(0,3)和(﹣2,﹣5),与x轴的两个交点的距离为4个单位长度,试求二次函数的解析式.【解答】解:抛物线解析式为y=ax2+bx+c(a≠0),把点(0,3)和(﹣2,﹣5)代入,得,则b=2a+4.设抛物线与x轴交点的横坐标分别是x1、x2,则x1+x2=﹣=﹣2﹣,x1•x2=,故|x1﹣x2|==4,即=4,整理,得3a2﹣a﹣4=0,解得a1=,a2=﹣1则b=或b=2.故该抛物线的解析式为:y=x2+x+3或y=﹣x2+2x+3.- 11 -。
一.选择题(共7小题)1.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有()A.1个B.2个C.3个D.4个2.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1)B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大3.下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:那么方程x2+3x﹣5=0的一个近似根是()A.1 B.1.1 C.1.2 D.1.34.已知一次函数y1=4x,二次函数y2=2x2+2,在实数范围内,对于x的同一个值,这两个函数所对应的函数值为y1与y2,则下列关系正确的是()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y25.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1 D.x<﹣1或x>56.二次函数y=ax2+bx+c的部分图象如图所示,则下列正确的说法有()(1)点P(ac,b)在第二象限;(2)x>1时y随x的增大而增大;(3)b2﹣4ac>0;(4)关于x的一元二次方程ax2+bx+c=0解为x1=﹣1,x2=3;(5)关于x的不等式ax2+bx+c>0 的解集为0<x<3.A.2个B.3个C.4个D.5个7.如图,二次函数y=ax2+bx+c(a>0)的图象与直线y=1交点坐标为(1,1),(3,1),则不等式ax2+bx+c﹣1>0的解集为()A.x>1 B.1<x<3 C.x<1或x>3 D.x>3二.填空题(共16小题)8.经过A(4,0),B(﹣2,0),C(0,3)三点的抛物线解析式是.9.抛物线y=3x2+6x﹣1化成顶点式是,它的顶点坐标是,对称轴方程是,当x时,函数y随x的增大而增大,当x时,函数y随x的增大而减小;当x=时,函数有最值为.10.将二次函数y=x2﹣6x+21化为顶点式为.11.如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为.12.某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与日销售量y(件)之间的关系如下表.按照这样的规律可得,日销售利润w(元)与销售单价x(元/件)之间的函数关系式是.13.已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式;自变量的取值范围.14.某化肥厂10月份生产某种化肥200t,如果11、12月的月平均增长率为x,则12月份化肥的产量y(t)与x 之间的函数关系式为.15.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣,﹣}=;若min{(x﹣1)2,x2}=1,则x=.16.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是.17.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.18.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x满足2≤x≤4的情况下,y的最小值为10,则h的值为.19.当﹣1≤x≤1时,二次函数y=x2﹣3x+4的最小值为.20.不论m取任何实数,抛物线y=(x﹣m)2+m﹣1(x为自变量)的顶点都在一条直线上,则这条直线的函数解析式是.21.某抛物线的顶点坐标为(﹣2,﹣1),开口方向、形状与抛物线y=3x2相同,则此抛物线的解析式是.22.点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是.23.已知y=﹣x2﹣3x+4(﹣10≤x≤0)的图象上有一动点P,点P的纵坐标为整数值时,记为“好点”,则有多个“好点”,其“好点”的个数为.三.解答题(共6小题)24.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.25.宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x 天生产的产品数量为y件,y与x满足如下关系:y=.(1)工人甲第几天生产的产品数量为70件?(2)设第x天生产的产品成本为P元/件,P与x的函数图象如图.工人甲第x天创造的利润为W元,求W与x 的函数关系式,并求出第几天时,利润最大,最大利润是多少?26.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a 的值.27.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?28.如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系,求:(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围;(2)有一辆宽2.8米,高1米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?29.如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.。
中考二次函数压轴题(共23道题目)一.选择题(共10小题)1.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b <0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个 B.2个 C.3个 D.4个2.如图是某二次函数的图象,将其向左平移2个单位后的图象的函数解析式为y=ax2+bx+c(a≠0),则下列结论中正确的有()(1)a>0;(2)c<0;(3)2a﹣b=0;(4)a+b+c>0.A.1个 B.2个 C.3个 D.4个3.已知二次函数y=ax2+bx+c(a≠0)的图象如图,在下列代数式中(1)a+b+c >0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0;其中正确的个数为()A.1个 B.2个 C.3个 D.4个4.已知点(x1,y1)、(x2,y2)、(x3,y3)都在抛物线y=x2+bx上,x1、x2、x3为△ABC的三边,且x1<x2<x3,若对所有的正整数x1、x2、x3都满足y1<y2<y3,则b的取值范围是()A.b>﹣2 B.b>﹣3 C.b>﹣4 D.b>﹣55.如图,点A(m,n)是一次函数y=2x的图象上的任意一点,AB垂直于x轴,垂足为B,那么三角形ABO的面积S关于m的函数关系的图象大致为()A.B.CD.6.抛物线y=ax2+bx+c的图象经过原点和第一、二、三象限,那么下列结论成立的是()A.a>0,b>0,c=0 B.a>0,b<0,c=0 C.a<0,b>0,c=0 D.a<0,b<0,c=07.已知抛物线y=x2﹣(4m+1)x+2m﹣1与x轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y轴的交点在点(0,)的下方,那么m的取值范围是()A.B.C.D.全体实数8.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.9.已知抛物线y=x2+bx+c(c<0)经过点(c,0),以该抛物线与坐标轴的三个交点为顶点的三角形面积为S,则S可表示为()A.|2+b||b+1|B.c(1﹣c) C.(b+1)2D.10.下列关于函数y=(m2﹣1)x2﹣(3m﹣1)x+2的图象与坐标轴的公共点情况:①当m≠3时,有三个公共点;②m=3时,只有两个公共点;③若只有两个公共点,则m=3;④若有三个公共点,则m≠3.其中描述正确的有()个.A.一个B.两个C.三个D.四个二.填空题(共10小题)11.已知:如图,过原点的抛物线的顶点为M(﹣2,4),与x轴负半轴交于点A,对称轴与x轴交于点B,点P是抛物线上一个动点,过点P作PQ⊥MA于点Q.(1)抛物线解析式为.(2)若△MPQ与△MAB相似,则满足条件的点P的坐标为.12.将抛物线y=x2﹣2向左平移3个单位,所得抛物线的函数表达式为.13.如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CE﹣EO|,再以CM、CO为边作矩形CMNO.令m=,则m=;又若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,则抛物线与边AB的交点坐标是.15.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P的坐标是.16.如图为二次函数y=ax2+bx+c的图象,在下列结论中:①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=5;③a+b+c<0;④当x<2时,y随着x的增大而增大.正确的结论有(请写出所有正确结论的序号).17.已知当x1=a,x2=b,x3=c时,二次函数y=x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数m的取值范围是.18.如图,已知一动圆的圆心P在抛物线y=x2﹣3x+3上运动.若⊙P半径为1,点P的坐标为(m,n),当⊙P与x轴相交时,点P的横坐标m的取值范围是.19.如图,四边形ABCD是矩形,A、B两点在x轴的正半轴上,C、D两点在抛物线y=﹣x2+6x上.设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为.20.若二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(﹣1,0),则y=a+b+c的取值范围是.三.解答题(共4小题)21.已知抛物线y=ax2﹣2x+c与x轴交于A(﹣1,0)、B两点,与y轴交于点C,对称轴为x=1,顶点为E,直线y=﹣x+1交y轴于点D.(1)求抛物线的解析式;(2)求证:△BCE∽△BOD;(3)点P是抛物线上的一个动点,当点P运动到什么位置时,△BDP的面积等于△BOE的面积?22.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.23.已知:如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.(1)求抛物线的函数表达式;(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC 于点Q.①当x取何值时,线段PQ的长度取得最大值,其最大值是多少?②是否存在这样的点P,使△OAQ为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.24.如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线的函数解析式;(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l 于点H,连结OP,试求△OPH的面积;②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.二次函数压轴题(共24道题目)参考答案与试题解析一.选择题(共10小题)1.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b <0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个 B.2个 C.3个 D.4个【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,得c>0,对称轴为x=<1,∵a<0,∴2a+b<0,而抛物线与x轴有两个交点,∴b2﹣4ac>0,当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2.∵>2,∴4ac﹣b2<8a,∴b2+8a>4ac,∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a﹣b+c<0.由①,③得到2a+2c<2,由①,②得到2a﹣c<﹣4,4a﹣2c<﹣8,上面两个相加得到6a<﹣6,∴a<﹣1.故选:D.2.如图是某二次函数的图象,将其向左平移2个单位后的图象的函数解析式为y=ax2+bx+c(a≠0),则下列结论中正确的有()(1)a>0;(2)c<0;(3)2a﹣b=0;(4)a+b+c>0.A.1个 B.2个 C.3个 D.4个【分析】如图是y=ax2+bx+c的图象,根据开口方向向上知道a>0,又由与y轴的交点为在y轴的负半轴上得到c<0,由对称轴x==﹣1,可以得到2a﹣b=0,又当x=1时,可以判断a+b+c的值.由此可以判定所有结论正确与否.【解答】解:(1)∵将其向左平移2个单位后的图象的函数解析式为y=ax2+bx+c (a≠0)(如虚线部分),∴y=ax2+bx+c的对称轴为:直线x=﹣1;∵开口方向向上,∴a>0,故①正确;(2)∵与y轴的交点为在y轴的负半轴上∴c<0,故②正确;(3)∵对称轴x==﹣1,∴2a﹣b=0,故③正确;(4)当x=1时,y=a+b+c>0,故④正确.故选:D.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图,在下列代数式中(1)a+b+c >0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0;其中正确的个数为()A.1个 B.2个 C.3个 D.4个【分析】由抛物线开口向上得到a大于0,再由对称轴在y轴右侧得到a与b异号,即b小于0,由抛物线与y轴交于正半轴,得到c大于0,可得出abc的符合,对于(3)作出判断;由x=1时对应的函数值小于0,将x=1代入二次函数解析式得到a+b+c小于0,(1)错误;根据对称轴在1和2之间,利用对称轴公式列出不等式,由a大于0,得到﹣2a小于0,在不等式两边同时乘以﹣2a,不等号方向改变,可得出不等式,对(2)作出判断;由x=﹣1时对应的函数值大于0,将x=﹣1代入二次函数解析式得到a﹣b+c大于0,又4a大于0,c大于0,可得出a﹣b+c+4a+c大于0,合并后得到(4)正确,综上,即可得到正确的个数.【解答】解:由图形可知:抛物线开口向上,与y轴交点在正半轴,∴a>0,b<0,c>0,即abc<0,故(3)错误;又x=1时,对应的函数值小于0,故将x=1代入得:a+b+c<0,故(1)错误;∵对称轴在1和2之间,∴1<﹣<2,又a>0,∴在不等式左右两边都乘以﹣2a得:﹣2a>b>﹣4a,故(2)正确;又x=﹣1时,对应的函数值大于0,故将x=﹣1代入得:a﹣b+c>0,又a>0,即4a>0,c>0,∴5a﹣b+2c=(a﹣b+c)+4a+c>0,故(4)错误,综上,正确的有1个,为选项(2).故选:A.4.已知点(x1,y1)、(x2,y2)、(x3,y3)都在抛物线y=x2+bx上,x1、x2、x3为△ABC的三边,且x1<x2<x3,若对所有的正整数x1、x2、x3都满足y1<y2<y3,则b的取值范围是()A.b>﹣2 B.b>﹣3 C.b>﹣4 D.b>﹣5【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,结合已知条件,可知x1、x2、x3的最小一组值是2、3、4;根据抛物线,知它与x轴的交点是(0,0)和(﹣b,0),对称轴是x=﹣.因此要满足已知条件,则其对称轴应小于2.5.【解答】解:∵x1、x2、x3为△ABC的三边,且x1<x2<x3,∴x1、x2、x3的最小一组值是2、3、4.∵抛物线y=x2+bx与x轴的交点是(0,0)和(﹣b,0),对称轴是x=﹣,∴若对所有的正整数x1、x2、x3都满足y1<y2<y3,则﹣<2.5解,得b>﹣5.故选:D.5.如图,点A(m,n)是一次函数y=2x的图象上的任意一点,AB垂直于x轴,垂足为B,那么三角形ABO的面积S关于m的函数关系的图象大致为()A.B.C.D.【分析】因为A(m,n)是一次函数y=2x的图象上的任意一点,所以n=2m.根据三角形面积公式即可得出S与m之间的函数关系,根据关系式即可解答.【解答】解:由题意可列该函数关系式:S=|m|•2|m|=m2,因为点A(m,n)是一次函数y=2x的图象上的任意一点,所以点A(m,n)在第一或三象限,又因为S>0,所以取第一、二象限内的部分.故选:D.6.抛物线y=ax2+bx+c的图象经过原点和第一、二、三象限,那么下列结论成立的是()A.a>0,b>0,c=0 B.a>0,b<0,c=0 C.a<0,b>0,c=0 D.a<0,b<0,c=0【分析】先根据图象经过象限的情况判断出a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理.【解答】解:∵抛物线经过原点,∴c=0,∵抛物线经过第一,二,三象限,可推测出抛物线开口向上,对称轴在y轴左侧∴a>0,∵对称轴在y轴左侧,∴对称轴为x=<0,又因为a>0,∴b>0.故选:A.7.已知抛物线y=x2﹣(4m+1)x+2m﹣1与x轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y轴的交点在点(0,)的下方,那么m的取值范围是()A.B.C.D.全体实数【分析】因为抛物线y=x2﹣(4m+1)x+2m﹣1与x轴有一个交点的横坐标大于2,另一个交点的横坐标小于2,且抛物线开口向上,所以令f(x)=x2﹣(4m+1)x+2m﹣1,则f(2)<0,解不等式可得m>,又因为抛物线与y轴的交点在点(0,)的下方,所以f(0)<﹣,解得m<,即可得解.【解答】解:根据题意,令f(x)=x2﹣(4m+1)x+2m﹣1,∵抛物线y=x2﹣(4m+1)x+2m﹣1与x轴有一个交点的横坐标大于2,另一个交点的横坐标小于2,且抛物线开口向上,∴f(2)<0,即4﹣2(4m+1)+2m﹣1<0,解得:m>,又∵抛物线与y轴的交点在点(0,)的下方,∴f(0)<﹣,解得:m<,综上可得:<m<,故选:A.8.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.9.已知抛物线y=x2+bx+c(c<0)经过点(c,0),以该抛物线与坐标轴的三个交点为顶点的三角形面积为S,则S可表示为()A.|2+b||b+1|B.c(1﹣c) C.(b+1)2D.【分析】把点(c,0)代入抛物线中,可得b、c的关系式,再设抛物线与x轴的交点分别为x1、x2,则x1、x2满足x2+bx+c=0,根据根的判别式结合两点间的距离公式可求|x1﹣x2|,那么就可得到以该抛物线与坐标轴的三个交点为顶点的三角形面积.【解答】解:∵抛物线y=x2+bx+c(c<0)经过点(c,0),∴c2+bc+c=0;∴c(c+b+1)=0;∵c<0,∴c=﹣b﹣1;设x1,x2是一元二次方程x2+bx+c=0的两根,∴x1+x2=﹣b,x1•x2=c=﹣b﹣1,∴抛物线与x轴的交点间的距离为|x1﹣x2|=====|2+b|,∴S可表示为|2+b||b+1|.故选:A.10.下列关于函数y=(m2﹣1)x2﹣(3m﹣1)x+2的图象与坐标轴的公共点情况:①当m≠3时,有三个公共点;②m=3时,只有两个公共点;③若只有两个公共点,则m=3;④若有三个公共点,则m≠3.其中描述正确的有()个.A.一个B.两个C.三个D.四个【分析】令y=0,可得出(m2﹣1)x2﹣(3m﹣1)x+2=0,得出判别式的表达式,然后根据m的取值进行判断,另外要注意m的取值决定函数是一次函数还是二次函数,不要忘了考虑一次函数的情况.【解答】解:令y=0,可得出(m2﹣1)x2﹣(3m﹣1)x+2=0,△=(3m﹣1)2﹣8(m2﹣1)=(m﹣3)2,①当m≠3,m=±1时,函数是一次函数,与坐标轴有两个交点,故错误;②当m=3时,△=0,与x轴有一个公共点,与y轴有一个公共点,总共两个,故正确;③若只有两个公共点,m=3或m=±1,故错误;④若有三个公共点,则m≠3且m≠±1,故错误;综上可得只有②正确,共个.故选:A.二.填空题(共10小题)11.已知:如图,过原点的抛物线的顶点为M(﹣2,4),与x轴负半轴交于点A,对称轴与x轴交于点B,点P是抛物线上一个动点,过点P作PQ⊥MA于点Q.(1)抛物线解析式为y=﹣x2﹣4x.(2)若△MPQ与△MAB相似,则满足条件的点P的坐标为(﹣,)、(﹣,).【分析】(1)设抛物线的解析式为:y=a(x+2)2+4,因为抛物线过原点,把(0,0)代入,求出a即可.(2)由于PQ⊥MA,即∠MQP=∠MBA=90°;所以只要满足∠PMQ=∠MAB或∠PMQ=∠AMB.①∠PMQ=∠AMB时,先找出点B关于直线MA的对称点(设为点C),显然有AC=AB=2、MC=MB=4,可根据该条件得到点C的坐标,进而求出直线MC(即直线MP)的解析式,联立抛物线的解析式即可得到点P的坐标;②∠PMQ=∠MAB时,若设直线MP与x轴的交点为D,那么△MAD必为等腰三角形,即MD=AD,根据此条件先求出点D的坐标,进而得出直线MP的解析式,联立抛物线的解析式即可得解.【解答】解:(1)∵过原点的抛物线的顶点为M(﹣2,4),∴设抛物线的解析式为:y=a(x+2)2+4,将x=0,y=0代入可得:4a+4=0,解得:a=﹣1,∴抛物线解析式为:y=﹣(x+2)2+4,即y=﹣x2﹣4x;(2)∵PQ⊥MA∴∠MQP=∠MBA=90°;若△MPQ、△MAB相似,那么需满足下面的其中一种情况:①∠PMQ=∠AMB,此时MA为∠PMB的角平分线,如图①;取点B关于直线MA的对称点C,则AC=AB=2,MC=MB=4,设点C(x,y),有:,解得(舍),∴点C的坐标为(﹣,);设直线MP的解析式:y=kx+b,代入M(﹣2,4)、(﹣,)得:,解得∴直线MP:y=x+联立抛物线的解析式,有:,解得,∴点P的坐标(﹣,);②∠PMQ=∠MAB,如右图②,此时△MAD为等腰三角形,且MD=AD,若设点D (x,0),则有:(x+4)2=(x+2)2+(0﹣4)2,解得:x=1∴点D(1,0);设直线MP的解析式:y=kx+b,代入M(﹣2,4)、D(1,0)后,有:,解得:∴直线MP:y=﹣x+联立抛物线的解析式有:,解得:,∴点P的坐标(﹣,)综上,符合条件的P点有两个,且坐标为(﹣,)、(﹣,).故答案:(1)y=﹣x2﹣4x;(2)(﹣,)、(﹣,).12.将抛物线y=x2﹣2向左平移3个单位,所得抛物线的函数表达式为y=x2+6x+7.【分析】根据二次函数图象的平移规律:左右平移,x改变:左加右减,y不变;上下平移,x不变,y改变,上加下减进行计算即可.【解答】解:根据平移规律:将抛物线y=x2﹣2向左平移3个单位得到:y=(x+3)2﹣2,y=x2+6x+7.故答案为:y=x2+6x+7.13.如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CE﹣EO|,再以CM、CO为边作矩形CMNO.令m=,则m=1;又若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,则抛物线与边AB的交点坐标是(,).【分析】求出CM=OE﹣CE,求出四边形CFGH的面积是CO×(OE﹣CE),求出四边形CMNO的面积是(OE﹣CE)×CO,即可求出m值;求出EF值,得出EF=QF,得出等边三角形EFQ,求出EQ,求出∠CEF、∠OEA,过Q作QD⊥OE于D,求出Q坐标,代入抛物线求出抛物线的解析式,把x=代入抛物线即可求出y,即得出答案.【解答】解:∵沿AE折叠,O和F重合,∴OE=EF,∵在Rt△CEF中,EF>CE,即OE>CE,∴CM=|CE﹣EO|=OE﹣CE,=CF2=EF2﹣EC2=EO2﹣EC2=(EO+EC)(EO﹣EC)=CO×(EO﹣EC),∵S四边形CFGHS四边形CMNO=CM×CO=(OE﹣CE)×OC,∴m==1;∵CO=1,CE=,QF=,∴EF=EO==QF,C(0,1),∴sin∠EFC==,∴∠EFC=30°,∠CEF=60°,∴∠FEA=×(180°﹣60°)=60°,∵EF=QF,∴△EFQ是等边三角形,∴EQ=,过Q作QD⊥OE于D,ED=EQ=.∵由勾股定理得:DQ=,∴OD=﹣=,即Q的坐标是(,),∵抛物线过C、Q,m=1代入得:,解得:b=﹣,c=1,∴抛物线的解析式是:y=x2﹣x+1,AO=EO=,∵把x=代入抛物线得:y=,∴抛物线与AB的交点坐标是(,),故答案为:1,.14.该试题已被管理员删除15.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P的坐标是(,5).【分析】分别求得线段AB、线段AC、线段BC的解析式,分析每一条线段上横、纵坐标的乘积的最大值,再进一步比较.【解答】解:线段AB的解析式是y=x+1(0≤x≤4),此时w=x(x+1)=+x,则x=4时,w最大=8;线段AC的解析式是y=x+1(0≤x≤2),此时w=x(x+1)=+x,此时x=2时,w最大=12;线段BC的解析式是y=﹣2x+10(2≤x≤4),此时w=x(﹣2x+10)=﹣2x2+10x,此时x=时,w最大=12.5.综上所述,当w=xy取得最大值时,点P的坐标是(,5).16.如图为二次函数y=ax2+bx+c的图象,在下列结论中:①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=5;③a+b+c<0;④当x<2时,y随着x的增大而增大.正确的结论有②④(请写出所有正确结论的序号).【分析】根据抛物线的开口向下判断出a<0,再根据与y轴的交点判断出c>0,然后判断出①错误;根据与x轴的交点坐标判断出②正确;取x=1的函数值判断出③错误;先求出抛物线对称轴为直线x=2,然后根据二次函数的增减性判断出④正确.【解答】解:∵抛物线开口向下,∴a<0,∵与y轴的正半轴相交,∴c>0,∴ac<0,故①错误;∵抛物线与x轴的交点坐标为(﹣1,0),(5,0),∴方程ax2+bx+c=0的根是x1=﹣1,x2=5,故②正确;由图可知,当x=1时,函数值y>0,即a+b+c>0,故③错误;抛物线对称轴为直线x==2;当x<2时,y随着x的增大而增大,故④正确;综上所述,正确的结论是②④.故答案为:②④.17.已知当x1=a,x2=b,x3=c时,二次函数y=x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数m的取值范围是m>﹣.【分析】根据三角形的任意两边之和大于第三边判断出a最小为2,再根据二次函数的增减性和对称性判断出对称轴在2、3之间偏向2,即小于2.5,然后列出不等式求解即可.【解答】方法一:解:∵正整数a,b,c恰好是一个三角形的三边长,且a<b<c,∴a最小是2,∵y1<y2<y3,∴﹣<2.5,解得m>﹣2.5.方法二:解:当a<b<c时,都有y1<y2<y3,即,∴,∴,∵a,b,c恰好是一个三角形的三边长,a<b<c,∴a+b<b+c,∴m>﹣(a+b),∵a,b,c为正整数,∴a,b,c的最小值分别为2、3、4,∴m>﹣(a+b)≥﹣(2+3)=﹣,∴m>﹣,故答案为:m>﹣.18.如图,已知一动圆的圆心P在抛物线y=x2﹣3x+3上运动.若⊙P半径为1,点P的坐标为(m,n),当⊙P与x轴相交时,点P的横坐标m的取值范围是3﹣<m<2或4<m<3+.【分析】由圆心P在抛物线y=x2﹣3x+3上运动,点P的坐标为(m,n),可得n=m2﹣3m+3,又由⊙P半径为1,⊙P与x轴相交,可得|m2﹣3m+3|<1,继而可求得答案.【解答】解:∵圆心P在抛物线y=x2﹣3x+3上运动,点P的坐标为(m,n),∴n=m2﹣3m+3,∵⊙P半径为1,⊙P与x轴相交,∴|n|<1,∴|m2﹣3m+3|<1,∴﹣1<m2﹣3m+3<1,解m2﹣3m+3<1,得:3﹣<m<3+,解m2﹣3m+3>﹣1,得:m<2或m>4,∴点P的横坐标m的取值范围是:3﹣<m<2或4<m<3+.故答案为:3﹣<m<2或4<m<3+.19.如图,四边形ABCD是矩形,A、B两点在x轴的正半轴上,C、D两点在抛物线y=﹣x2+6x上.设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为l=﹣2m2+8m+12.【分析】求l与m的函数解析式就是把m当作已知量,求l,先求AD,它的长就是D点的纵坐标,再把D点纵坐标代入函数解析式求C点横坐标,C点横坐标与D点横坐标的差就是线段CD的长,用l=2(AD+CD),建立函数关系式.【解答】解:把x=m代入抛物线y=﹣x2+6x中,得AD=﹣m2+6m把y=﹣m2+6m代入抛物线y=﹣x2+6x中,得﹣m2+6m=﹣x2+6x解得x1=m,x2=6﹣m∴C的横坐标是6﹣m,故AB=6﹣m﹣m=6﹣2m∴矩形的周长是l=2(﹣m2+6m)+2(6﹣2m)即l=﹣2m2+8m+12.20.若二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(﹣1,0),则y=a+b+c的取值范围是0<y<2.【分析】由二次函数的解析式可知,当x=1时,所对应的函数值y=s=a+b+c.把点(0,1),(﹣1,0)代入y=ax2+bx+c,得出c=1,a﹣b+c=0,然后根据顶点在第一象限,可以画出草图并判断出a与b的符号,进而求出y=a+b+c的变化范围.【解答】解:∵二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(﹣1,0),∴易得:c=1,a﹣b+c=0,a<0,b>0,由a=b﹣1<0得到b<1,结合上面b>0,所以0<b<1①,由b=a+1>0得到a>﹣1,结合上面a<0,所以﹣1<a<0②,∴由①②得:﹣1<a+b<1,且c=1,得到:0<a+b+c<2,则y=a+b+c的取值范围是0<y<2.故答案为:0<y<2三.解答题(共4小题)21.已知抛物线y=ax2﹣2x+c与x轴交于A(﹣1,0)、B两点,与y轴交于点C,对称轴为x=1,顶点为E,直线y=﹣x+1交y轴于点D.(1)求抛物线的解析式;(2)求证:△BCE∽△BOD;(3)点P是抛物线上的一个动点,当点P运动到什么位置时,△BDP的面积等于△BOE的面积?【分析】(1)在抛物线y=ax2﹣2x+c中,已知对称轴x=﹣=1,可求出a的值;再将点A的坐标代入抛物线的解析式中,可确定c的值,由此得解.(2)首先由抛物线的解析式,确定点B、C、E的坐标,由直线BD的解析式能得到点D的坐标;在求出△BCE、△BOD的三边长后,由SSS来判定这两个三角形相似.(3)△BOE的面积易得,而在(2)中求出了BD的长,由△BDP、△BOE的面积相等先求出点P到直线BD的距离,如何由这个距离求出点P的坐标?这里需要进行适当的转化;首先在y轴上取一点(可设为点M),使得点M到直线BD 的距离等于点P到直线BD的距离,通过解直角三角形先求出DM的长,由此确定点M的坐标,然后过M作平行于直线BD的直线,再联立抛物线的解析式即可确定点P的坐标.【解答】解:(1)抛物线y=ax2﹣2x+c中,对称轴x=﹣=﹣=1,∴a=1;将点A(﹣1,0)代入y=ax2﹣2x+c中,得:1+2+c=0,c=﹣3;∴抛物线的解析式:y=x2﹣2x﹣3.(2)∵抛物线的解析式:y=x2﹣2x﹣3=(x﹣1)2﹣4=(x+1)(x﹣3),∴点C(0,﹣3)、B(3,0)、E(1,﹣4);易知点D(0,1),则有:OD=1、OB=3、BD=;CE=、BC=3、BE=2;∴==,∴△BCE∽△BOD.=×BO×|y E|=×3×4=6;(3)S△BOE=×BD×h=S△BOE=6,即h=.∴S△BDP在y轴上取点M,过点M作MN1⊥BD于N1,使得MN1=h=;在Rt△MN1D中,sin∠MDN1=,且MN1=;则MD==4;∴点M(0,﹣3)或(0,5).过点M作直线l∥MN2,如右图,则直线l:y=﹣x﹣3或y=﹣x+5,联立抛物线的解析式有:或解得:、、、∴当点P的坐标为(0,﹣3)、(,﹣)、(,)、(,)时,△BDP的面积等于△BOE的面积.22.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.【分析】(1)已知B(4,m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(2)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)当△PAC为直角三角形时,根据直角顶点的不同,有三种情形,需要分类讨论,分别求解.【解答】解:(1)∵B(4,m)在直线y=x+2上,∴m=4+2=6,∴B(4,6),∵A(,)、B(4,6)在抛物线y=ax2+bx+6上,∴,解得,∴抛物线的解析式为y=2x2﹣8x+6.(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),∴PC=(n+2)﹣(2n2﹣8n+6),=﹣2n2+9n﹣4,=﹣2(n﹣)2+,∵PC>0,∴当n=时,线段PC最大且为.(3)∵△PAC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠PAC=90°.如答图3﹣1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=2x2﹣8x+6 ②联立①②式,解得:x=3或x=(与点A重合,舍去)∴C(3,0),即点C、M点重合.当x=3时,y=x+2=5,∴P1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴抛物线的对称轴为直线x=2.如答图3﹣2,作点A(,)关于对称轴x=2的对称点C,则点C在抛物线上,且C(,).当x=时,y=x+2=.2∵点P1(3,5)、P2(,)均在线段AB上,∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).23.已知:如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.(1)求抛物线的函数表达式;(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC 于点Q.①当x取何值时,线段PQ的长度取得最大值,其最大值是多少?②是否存在这样的点P,使△OAQ为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)已知了A,B的坐标,可用待定系数法求出函数的解析式.(2)①QP其实就是一次函数与二次函数的差,二次函数的解析式在(1)中已经求出,而一次函数可根据B,C的坐标,用待定系数法求出.那么让一次函数的解析式减去二次函数的解析式,得出的新的函数就是关于PQ,x的函数关系式,那么可根据函数的性质求出PQ的最大值以及相对应的x的取值.(3)分三种情况进行讨论:当∠QOA=90°时,Q与C重合,显然不合题意.因此这种情况不成立;当∠OAQ=90°时,P与A重合,因此P的坐标就是A的坐标;当∠OQA=90°时,如果设QP与x轴的交点为D,那么根据射影定理可得出DQ2=OD•DA.由此可得出关于x的方程即可求出x的值,然后将x代入二次函数式中即可得出P的坐标.【解答】解:(1)∵抛物线过A(3,0),B(6,0),解得:,∴所求抛物线的函数表达式是y=x2﹣x+2.(2)①∵当x=0时,y=2,∴点C的坐标为(0,2).设直线BC的函数表达式是y=kx+h.则有,解得:.∴直线BC的函数表达式是y=﹣x+2.∵0<x<6,点P、Q的横坐标相同,∴PQ=y Q﹣y P=(﹣x+2)﹣(x2﹣x+2)=﹣x2+x=﹣(x﹣3)2+1∴当x=3时,线段PQ的长度取得最大值.最大值是1.②解:当∠OAQ′=90°时,点P与点A重合,∴P(3,0)当∠Q′OA=90°时,点P与点C重合,∴x=0(不合题意)当∠OQ′A=90°时,设PQ′与x轴交于点D.∵∠OQ′D+∠AOQ′=90°,∠Q′AD+∠AQ′D=90°,∴∠OQ′D=∠Q′AD.又∵∠ODQ′=∠Q′DA=90°,∴△ODQ′∽△Q′DA.∴,即DQ′2=OD•DA.∴(﹣x+2)2=x(3﹣x),10x2﹣39x+36=0,∴x1=,x2=,∴y1=×()2﹣+2=;y2=×()2﹣+2=;∴P(,)或P(,).∴所求的点P的坐标是P(3,0)或P(,)或P(,).24.如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线的函数解析式;(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l 于点H,连结OP,试求△OPH的面积;②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式;=S△OMH﹣S△OMP求解;(2)①如答图1,作辅助线,利用关系式S△OPH②本问涉及复杂的分类讨论,如答图2所示.由于点P可能在OC、BC、BK、AK、OA上,而等腰三角形本身又有三种情形,故讨论与计算的过程比较复杂,需要耐心细致、考虑全面.【解答】解:(1)由题意得:A(4,0),C(0,4),对称轴为x=1.设抛物线的解析式为y=ax2+bx+c,则有:,解得.∴抛物线的函数解析式为:y=﹣x2+x+4.(2)①当m=0时,直线l:y=x.∵抛物线对称轴为x=1,∴CP=1.如答图1,延长HP交y轴于点M,则△OMH、△CMP均为等腰直角三角形.∴CM=CP=1,∴OM=OC+CM=5.S△OPH=S△OMH﹣S△OMP=(OM)2﹣OM•CP=×(×5)2﹣×5×1=﹣=,∴S=.△OPH②当m=﹣3时,直线l:y=x﹣3.设直线l与x轴、y轴交于点G、点D,则G(3,0),D(0,﹣3).假设存在满足条件的点P.a)当点P在OC边上时,如答图2﹣1所示,此时点E与点O重合.设PE=a(0<a≤4),则PD=3+a,PF=PD=(3+a).过点F作FN⊥y轴于点N,则FN=PN=PF,∴EN=|PN﹣PE|=|PF﹣PE|.在Rt△EFN中,由勾股定理得:EF==.若PE=PF,则:a=(3+a),解得a=3(+1)>4,故此种情形不存在;若PF=EF,则:PF=,整理得PE=PF,即a=3+a,不成立,故此种情形不存在;若PE=EF,则:PE=,整理得PF=PE,即(3+a)=a,解得a=3.∴P1(0,3).b)当点P在BC边上时,如答图2﹣2所示,此时PE=4.若PE=PF,则点P为∠OGD的角平分线与BC的交点,有GE=GF,过点F分别作FH⊥PE于点H,FK⊥x轴于点K,∵∠OGD=135°,∴∠EPF=45°,即△PHF为等腰直角三角形,设GE=GF=t,则GK=FK=EH=t,∴PH=HF=EK=EG+GK=t+t,∴PE=PH+EH=t+t+t=4,解得t=4﹣4,则OE=3﹣t=7﹣4,∴P2(7﹣4,4)c)∵A(4,0),B(2,4),∴可求得直线AB解析式为:y=﹣2x+8;联立y=﹣2x+8与y=x﹣3,解得x=,y=.设直线BA与直线l交于点K,则K(,).当点P在线段BK上时,如答图2﹣3所示.设P(a,8﹣2a)(2≤a≤),则Q(a,a﹣3),∴PE=8﹣2a,PQ=11﹣3a,∴PF=(11﹣3a).。
二次函数压轴题集锦带答案(2024年中考真题)1.(24年安徽中考)已知物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1. (1)求b 的值;(2)点11(,)A x y 在抛物线22y x x =-+上,点11(,)B x t y h ++在抛物线2y x bx =-+上. (i)若3h t =,且10,0x t >,求h 的值; (ii)若 11x t =-,求h 的最大值.2.(24年包头中考)如图,在平面直角坐标系中,抛物线22yx bxc 与x 轴相交于()1,0A ,B 两点(点A 在点B 左侧),顶点为()2,M d ,连接AM .(1)求该抛物线的函数表达式;(2)如图1,若C 是y 轴正半轴上一点,连接,AC CM .当点C 的坐标为10,2⎛⎫ ⎪⎝⎭时,求证:ACM BAM ∠=∠;(3)如图2,连接BM ,将ABM 沿x 轴折叠,折叠后点M 落在第四象限的点M '处,过点B 的直线与线段AM '相交于点D ,与y 轴负半轴相交于点E .当87BD DE =时,3ABD S △与2M BD S '△是否相等?请说明理由.3.(24年成都中考)如图,在平面直角坐标系xOy 中,抛物线()2:230L y ax ax a a =-->与x 轴交于,A B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点. (1)求线段AB 的长(2)当1a =时,若ACD ∆的面积与ABD ∆的面积相等,求tan ABD ∠的值:(3)延长CD =交x =轴于点E =,当AD DE =时,将ADB ∆沿DE 方向平移得到A EB ''∆.将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.4.(24年重庆中考)如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.5.(24年浙江中考)已知二次函数2y x bx c =++(b ,c 为常数)的图象经过点(2,5)A -,对称轴为直线12x =-.(1)求二次函数的表达式(1)若点(1,7)B 向上平移2个单位长度,向左平移(0)m m >个单位长度后,恰好落在2y x bx c =++的图象上,求m 的值(3)当2≤a ≤n 时,二次函数2y x bx c =++的最大值与最小值的差为94,求n 的取值范围.6.(24年呼伦贝尔中考)如图,在平面直角坐标系中,二次函数()20y ax bx c a =++≠的图像经过原点和点()4,0A .经过点A 的直线与该二次函数图象交于点()1,3B ,与y 轴交于点C .(1)求二次函数的解析式及点C 的坐标;(2)点P 是二次函数图象上的一个动点,当点P 在直线AB 上方时,过点P 作PE x ⊥轴于点E ,与直线AB 交于点D ,设点P 的横坐标为m . ①m 为何值时线段PD 的长度最大,并求出最大值;①是否存在点P ,使得BPD △与AOC 相似.若存在,请求出点P 坐标;若不存在,请说明理由.7.(24年广州中考)已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴 (2)求m 的值(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点. ①求t 的值①设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.8.(24年绥化中考)综合与探究如图,在平面直角坐标系中,已知抛物线2y x bx c =-++与直线相交于A ,B 两点,其中点()3,4A ,()0,1B .(1)求该抛物线的函数解析式.(2)过点B 作BC x ∥轴交抛物线于点C ,连接AC ,在抛物线上是否存在点P 使1tan tan 6BCP ACB ∠=∠.若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.(提示:依题意补全图形,并解答)(3)将该抛物线向左平移2个单位长度得到()2111110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点D ,点E 为原抛物线对称轴上的一点,F 是平面直角坐标系内的一点,当以点B ,D ,E ,F 为顶点的四边形是菱形时,请直接写出点F 的坐标.9.(24年上海中考)在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式(2)直线x m =(0m >)与新抛物线交于点P,与原抛物线交于点Q . ①如果PQ 小于3,求m 的取值范围①记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.10.(24年乐山中考)在平面直角坐标系xOy 中,我们称横坐标、纵坐标都为整数的点为“完美点”.抛物线222y ax ax a =-+(a 为常数且0a >)与y 轴交于点A .(1)若1a =,求抛物线的顶点坐标;(2)若线段OA (含端点)上的“完美点”个数大于3个且小于6个,求a 的取值范围;(3)若抛物线与直线y x =交于M ,N 两点,线段MN 与抛物线围成的区域(含边界)内恰有4个“完美点”,求a 的取值范围.11.(24年甘肃武威中考)如图1,抛物线()2y a x h k =-+交x 轴于O,()4,0A 两点,顶点为(2,B .点C 为OB 的中点.(1)求抛物线2()y a x h k =-+的表达式;(2)过点C 作CH OA ⊥,垂足为H,交抛物线于点E .求线段CE 的长.(3)点D 为线段OA 上一动点(O 点除外),在OC 右侧作平行四边形OCFD .①如图2,当点F 落在抛物线上时,求点F 的坐标;①如图3,连接BD ,BF ,求BD BF +的最小值.12.(24年枣庄中考)在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =.(1)求m 的值(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.13.(24年四川广安中考)如图,抛物线223y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(1,0)-,点B 坐标为(3,0).(1)求此抛物线的函数解析式.(2)点P 是直线BC 上方抛物线上一个动点,过点P 作x 轴的垂线交直线BC 于点D ,过点P 作y 轴的垂线,垂足为点E ,请探究2PD PE +是否有最大值?若有最大值,求出最大值及此时P 点的坐标;若没有最大值,请说明理由.(3)点M 为该抛物线上的点,当45∠=︒MCB 时,请直接写出所有满足条件的点M 的坐标.14.(24年四川南充中考)已知抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B .(1)求抛物线的解析式;(2)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD 面积为1S ,PBE △面积为2S ,求12S S 的值; (3)如图2,点K 是抛物线对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线l x ∥轴,点Q 是直线l 上一动点.求QM QN +的最小值.15.(24年四川泸州中考)如图,在平面直角坐标系xOy 中,已知抛物线23y ax bx =++经过点()3,0A ,与y 轴交于点B,且关于直线1x =对称.(1)求该抛物线的解析式;(2)当1x t -≤≤时,y 的取值范围是021y t ≤≤-,求t 的值;(3)点C 是抛物线上位于第一象限的一个动点,过点C 作x 轴的垂线交直线AB 于点D,在y 轴上是否存在点E,使得以B,C,D,E 为顶点的四边形是菱形?若存在,求出该菱形的边长;若不存在,说明理由.16.(24年河北中考)如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上. 淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时①求直线PQ 的解析式.①作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n.17.(24年武汉中考)抛物线215222y x x =+-交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.18.(24年四川德阳中考)如图,抛物线2y x x c =-+与x 轴交于点()1,0A -和点B ,与y 轴交于点C .(1)求抛物线的解析式;(2)当02x <≤时,求2y x x c =-+的函数值的取值范围;(3)将拋物线的顶点向下平移34个单位长度得到点M ,点P 为抛物线的对称轴上一动点,求PA PM +的最小值.19.(24年湖北中考)如图,二次函数23y x bx =-++交x 轴于(1,0)A -和B ,交y 轴于C .(1)求b 的值.(2)M 为函数图像上一点,满足MAB ACO ∠=∠,求M 点的横坐标.(3)将二次函数沿水平方向平移,新的图像记为L ,L 与y 轴交于点D ,记DC d =,记L 顶点横坐标为n .①求d 与n 的函数解析式.②记L 与x 轴围成的图像为,U U 与ABC ∆重合部分(不计边界)记为W ,若d 随n 增加而增加,且W 内恰有2个横坐标与纵坐标均为整数的点,直接写出n 的取值范围。
组卷二次函数中等题31-60一、选择题(共12小题)31.(2012•株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=﹣1,则该抛物线与x轴的另一交点坐标是()A.(﹣3,0)B.(﹣2,0)C.x=﹣3 D.x=﹣2 32.(2013•德州)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1B.2C.3D.433.(2013•鞍山)如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个34.(2013•吉林)如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=﹣2(x﹣h)2+k,则下列结论正确的是()A.h>0,k>0 B.h<0,k>0 C.h<0,k<0 D.h>0,k<035.(2013•济南)如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是()D.4ac﹣b2<﹣8aA.a<0 B.a﹣b+c<0 C.﹣36.(2013•湖州)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是()A.16 B.15 C.14 D.1337.(2013•衢州)抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x﹣1)2﹣4,则b、c的值为()A.b=2,c=﹣6 B.b=2,c=0 C.b=﹣6,c=8 D.b=﹣6,c=2 38.(2013•南昌)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是()A.a>0 B.b2﹣4ac≥0 C.x1<x0<x2D.a(x0﹣x1)(x0﹣x2)<0 39.(2013•义乌市)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③40.(2012•重庆)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.a bc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b 41.(2012•镇江)若二次函数y=(x+1)(x﹣m)的图象的对称轴在y轴的右侧,则实数m的取值范围是()A.m<﹣1 B.﹣1<m<0 C.0<m<1 D.m>1 42.(2013•呼和浩特)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.二、填空题(共12小题)(除非特别说明,请填准确值)43.(2012•南京)已知下列函数①y=x2;②y=﹣x2;③y=(x﹣1)2+2.其中,图象通过平移可以得到函数y=x2+2x ﹣3的图象的有_________(填写所有正确选项的序号).44.(2013•大连)如图,抛物线y=x2+bx+与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为_________.45.(2013•黑龙江)二次函数y=﹣2(x﹣5)2+3的顶点坐标是_________.46.(2013•葫芦岛)如图,一段抛物线C1:y=﹣x(x﹣3)(0≤x≤3)与x轴交于点O,A1;将C1向右平移得第2段抛物线C2,交x轴于点A1,A2;再将C2向右平移得第3段抛物线C3,交x轴于点A2,A3;又将C3向右平移得第4段抛物线C4,交x轴于点A3,A4,若P(11,m)在C4上,则m的值是_________.47.(2012•扬州)如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是_________.48.(2012•牡丹江)若抛物线y=ax2+bx+c经过点(﹣1,10),则a﹣b+c=_________.49.(2012•贵港)若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是_________.50.(2012•无锡)若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为_________.51.(2013•贵港)如图,在平面直角坐标系xOy中,若动点P在抛物线y=ax2上,⊙P恒过点F(0,n),且与直线y=﹣n始终保持相切,则n=_________(用含a的代数式表示).52.(2013•荆门)若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=_________.53.(2012•百色)如图,已知一动圆的圆心P在抛物线y=x2﹣3x+3上运动.若⊙P半径为1,点P的坐标为(m,n),当⊙P与x轴相交时,点P的横坐标m的取值范围是_________.54.(2012•黔南州)如图,四边形ABCD是矩形,A、B两点在x轴的正半轴上,C、D两点在抛物线y=﹣x2+6x 上.设OA=m(0<m<3),矩形ABCD的周长为l,则l与m的函数解析式为_________.三、解答题(共6小题)(选答题,不自动判卷)55.(2013•枣庄)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.56.(2013•舟山)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?57.(2014•沙坪坝区一模)如图,抛物线y1=x2﹣1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.(1)请直接写出抛物线y2的解析式;(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.58.(2013•宜昌)如图1,平面直角坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=4,经过O,C两点做抛物线y1=ax(x﹣t)(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)(1)填空:用含t的代数式表示点A的坐标及k的值:A_________,k=_________;(2)随着三角板的滑动,当a=时:①请你验证:抛物线y1=ax(x﹣t)的顶点在函数y=的图象上;②当三角板滑至点E为AB的中点时,求t的值;(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围.59.(2013•株洲)已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).(1)求抛物线C1的解析式的一般形式;(2)当m=2时,求h的值;(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.60.(2013•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A、B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.【章节训练】第2章二次函数-2参考答案与试题解析一、选择题(共12小题)组卷二次函数中等题难度 3 级31.(2012•株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=﹣1,则该抛物线与x轴的另一交点坐标是()A.(﹣3,0)B.(﹣2,0)C.x=﹣3 D.x=﹣2考点:抛物线与x轴的交点.专题:探究型.分析:设抛物线与x轴的另一个交点为B(b,0),再根据AB两点关于对称轴对称即可得出.解答:解:抛物线与x轴的另一个交点为B(b,0),∵抛物线与x轴的一个交点A(1,0),对称轴是x=﹣1,∴=﹣1,解得b=﹣3,∴B(﹣3,0).故选A.点评:本题考查的是抛物线与x轴的交点问题,熟知抛物线与x轴的交点关于对称轴对称是解答此题的关键.组卷二次函数中等题难度 4.5级32.(2013•德州)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1B.2C.3D.4考点:二次函数图象与系数的关系.专题:压轴题.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c 与x轴无交点,∴b2﹣4ac<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选B.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.组卷二次函数中等题难度 4.5 级33.(2013•鞍山)如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个考点:二次函数图象与系数的关系.专题:压轴题.分析:由开口方向、与y轴交于负半轴以及对称轴的位置,即可确定a,b,c的正负;由对称轴x=﹣=1,可得b+2a=0;由抛物线与x轴的一个交点为(﹣2,0),对称轴为:x=1,可得抛物线与x轴的另一个交点为(4,0);当x=﹣1时,y=a﹣b+c<0;a﹣b+c<0,b+2a=0,即可得3a+c<0.解答:解:∵开口向上,∴a>0,∵与y轴交于负半轴,∴c<0,∵对称轴x=﹣>0,∴b<0,∴abc>0;故①正确;∵对称轴x=﹣=1,∴b+2a=0;故②正确;∵抛物线与x轴的一个交点为(﹣2,0),对称轴为:x=1,∴抛物线与x轴的另一个交点为(4,0);故③正确;∵当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故④错误;∵a﹣b+c<0,b+2a=0,∴3a+c<0;故⑤正确.故选B.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.组卷二次函数中等题难度 3 级34.(2013•吉林)如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=﹣2(x﹣h)2+k,则下列结论正确的是()A.h>0,k>0 B.h<0,k>0 C.h<0,k<0 D.h>0,k<0考点:二次函数图象与系数的关系.专题:压轴题;探究型.分析:根据抛物线所的顶点坐标在x轴的上方即可得出结论.解答:解:∵抛物线y=﹣2(x﹣h)2+k的顶点坐标为(h,k),由图可知,抛物线的顶点坐标在第一象限,∴h>0,k>0.故选A.点评:本题考查的是二次函数的图象与系数的关系,熟知二次函数的顶点式是解答此题的关键.组卷二次函数中等题难度 4 级35.(2013•济南)如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是()A.a<0 B.a﹣b+c<0 C.D.4ac﹣b2<﹣8a﹣考点:二次函数图象与系数的关系;抛物线与x轴的交点.分析:由开口方向,可确定a>0;由当x=﹣1时,y=a﹣b+c>0,可确定B错误;由对称轴在y轴右侧且在直线x=1左侧,可确定x=﹣<1;由二次函数y=ax2+bx+c的图象经过点(0,﹣2),对称轴在y轴右侧,a>0,可得最小值:<﹣2,即可确定D正确.解答:解:A、∵开口向上,∴a>0,故本选项错误;B、∵当x=﹣1时,y=a﹣b+c>0,故本选项错误;C、∵对称轴在y轴右侧且在直线x=1左侧,∴x=﹣<1,故本选项错误;D、∵二次函数y=ax2+bx+c的图象经过点(0,﹣2),对称轴在y轴右侧,a>0,∴最小值:<﹣2,∴4ac﹣b2<﹣8a.故本选项正确.故选D.点评:此题考查了图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.组卷二次函数中等题难度 5 级36.(2013•湖州)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是()A.16 B.15 C.14 D.13考点:二次函数综合题.专题:压轴题.分析:根据在OB上的两个交点之间的距离为3可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解.解答:解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=14.故选C.点评:本题是二次函数综合题型,主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观.组卷二次函数中等题难度 4.5 级37.(2013•衢州)抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x﹣1)2﹣4,则b、c的值为()A.b=2,c=﹣6 B.b=2,c=0 C.b=﹣6,c=8 D.b=﹣6,c=2考点:二次函数图象与几何变换.专题:压轴题.分析:先确定出平移后的抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出平移前的抛物线的顶点坐标,然后写出平移前的抛物线的顶点式形式,然后整理成一般形式,即可得到b、c的值.解答:解:函数y=(x﹣1)2﹣4的顶点坐标为(1,﹣4),∵是向右平移2个单位,再向下平移3个单位得到,∴1﹣2=﹣1,﹣4+3=﹣1,∴平移前的抛物线的顶点坐标为(﹣1,﹣1),∴平移前的抛物线为y=(x+1)2﹣1,即y=x2+2x,∴b=2,c=0.故选B.点评:本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减,利用顶点的变化确定函数解析式可以使计算更加简便.组卷二次函数中等题难度 4.5 级38.(2013•南昌)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是()A.a>0 B.b2﹣4ac≥0 C.x1<x0<x2D.a(x0﹣x1)(x0﹣x2)<0考点:抛物线与x轴的交点.专题:压轴题.分析:根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.解答:解:A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2﹣4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0﹣x1>0,x0﹣x2<0,所以,(x0﹣x1)(x0﹣x2)<0,∴a(x0﹣x1)(x0﹣x2)<0,若a<0,则(x0﹣x1)与(x0﹣x2)同号,∴a(x0﹣x1)(x0﹣x2)<0,综上所述,a(x0﹣x1)(x0﹣x2)<0正确,故本选项正确.故选D.点评:本题考查了二次函数与x轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键,C、D选项要注意分情况讨论.组卷二次函数中等题难度 5 级39.(2013•义乌市)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③考点:二次函数图象与系数的关系.专题:计算题;压轴题.分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c .∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.组卷二次函数中等题难度 4.5 级40.(2012•重庆)已知二次函数y=ax 2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.a bc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b考点:二次函数图象与系数的关系.专题:压轴题.分析:由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=﹣,即可求得a=b;由当x=1时,a+b+c<0,即可判定C错误;然后由抛物线与x轴交点坐标的特点,判定D正确.解答:解:A、∵开口向上,∴a>0,∵抛物线与y轴交于负半轴,∴c<0,∵对称轴在y轴左侧,∴﹣<0,∴b>0,∴abc<0,故本选项错误;B、∵对称轴:x=﹣=﹣,∴a=b,故本选项错误;C、当x=1时,a+b+c=2b+c<0,故本选项错误;D、∵对称轴为x=﹣,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<﹣2,∴当x=﹣2时,4a﹣2b+c<0,即4a+c<2b,故本选项正确.故选D.点评:此题考查了二次函数图象与系数的关系.此题难度适中,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.组卷二次函数中等题难度 4 级41.(2012•镇江)若二次函数y=(x+1)(x﹣m)的图象的对称轴在y轴的右侧,则实数m的取值范围是()A.m<﹣1 B.﹣1<m<0 C.0<m<1 D.m>1考点:抛物线与x轴的交点.专题:压轴题;探究型.分析:先令(x+1)(x﹣m)=0求出x的值即可得出二次函数与x轴的交点坐标,再根据抛物线的对称轴在y轴的右侧即可得到关于m的不等式,求出m的取值范围即可.解答:解:∵令y=0,即(x+1)(x﹣m)=0,则x=﹣1或x=m,∴二次函数y=(x+1)(x﹣m)的图象与x轴的交点为(﹣1,0)、(m,0),∴二次函数的对称轴x=,∵函数图象的对称轴在y轴的右侧,∴>0,解得m>1.故选D.点评:本题考查的是抛物线与x轴的交点问题,先根据函数的解析式得出二次函数的图象与x轴的交点是解答此题的关键.组卷二次函数中等题难度 4 级42.(2013•呼和浩特)在同一直角坐标系中,函数y=mx+m和y=﹣mx 2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象.专题:压轴题.分析:本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=,与y轴的交点坐标为(0,c).解答:解:当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选D.点评:主要考查了一次函数和二次函数的图象性质以及分析能力和读图能力,要掌握它们的性质才能灵活解题.二、填空题(共12小题)(除非特别说明,请填准确值)组卷二次函数中等题难度 4 级43.(2012•南京)已知下列函数①y=x2;②y=﹣x2;③y=(x﹣1)2+2.其中,图象通过平移可以得到函数y=x2+2x ﹣3的图象的有①③(填写所有正确选项的序号).考点:二次函数图象与几何变换.专题:探究型.分析:先把原式化为顶点式的形式,再根据函数图象平移的法则进行解答即可.解答:解:原式可化为:y=(x+1)2﹣4,由函数图象平移的法则可知,将函数y=x2的图象先向左平移1个单位,再向下平移4个单位即可得到函数y=(x+1)2﹣4,的图象,故①正确;函数y=(x+1)2﹣4的图象开口向上,函数y=﹣x2;的图象开口向下,故不能通过平移得到,故②错误;将y=(x﹣1)2+2的图象向左平移2个单位,再向下平移6个单位即可得到函数y=(x+1)2﹣4的图象,故③正确.故答案为:①③.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.组卷二次函数中等题难度 5 级44.(2013•大连)如图,抛物线y=x2+bx+与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C 在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为y=x2﹣x+.考点:二次函数图象与几何变换.专题:压轴题.分析:先求出点A的坐标,再根据抛物线的对称性可得顶点C的纵坐标,然后利用顶点坐标公式列式求出b的值,再求出点D的坐标,根据平移的性质设平移后的抛物线的解析式为y=x2+mx+n,把点A、D的坐标代入进行计算即可得解.解答:解:∵令x=0,则y=,∴点A(0,),根据题意,点A、B关于对称轴对称,∴顶点C的纵坐标为×=,即=,解得b1=3,b2=﹣3,由图可知,﹣>0,∴b<0,∴b=﹣3,∴对称轴为直线x=﹣=,∴点D的坐标为(,0),设平移后的抛物线的解析式为y=x2+mx+n,则,解得,所以,y=x2﹣x+.故答案为:y=x2﹣x+.点评:本题考查了二次函数图象与几何变换,根据二次函数图象的对称性确定出顶点C的纵坐标是解题的关键,根据平移变换不改变图形的形状与大小确定二次项系数不变也很重要.组卷二次函数中等题难度 3 级45.(2013•黑龙江)二次函数y=﹣2(x﹣5)2+3的顶点坐标是(5,3).考点:二次函数的性质.分析:因为顶点式y=a(x﹣h)2+k,其顶点坐标是(h,k),对照求二次函数y=﹣2(x﹣5)2+3的顶点坐标.解答:解:∵二次函数y=﹣2(x﹣5)2+3是顶点式,∴顶点坐标为(5,3).故答案为:(5,3).点评:此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.组卷二次函数中等题难度 4.5 级46.(2013•葫芦岛)如图,一段抛物线C1:y=﹣x(x﹣3)(0≤x≤3)与x轴交于点O,A1;将C1向右平移得第2段抛物线C2,交x轴于点A1,A2;再将C2向右平移得第3段抛物线C3,交x轴于点A2,A3;又将C3向右平移得第4段抛物线C4,交x轴于点A3,A4,若P(11,m)在C4上,则m的值是2.考点:二次函数图象与几何变换.分析:利用抛物线C1的解析式求出A1的坐标为(3,0),然后确定出平移到C4的平移距离,并求出平移后的顶点坐标,然后写出顶点式解析式,最后把点P的坐标代入进行计算即可得解.解答:解:令y=0,则﹣x(x﹣3)=0,解得x1=0,x2=3,∴点A1(3,0),由题意得,平移到C4的平移距离为3×3=9,∵y=﹣x(x﹣3)=﹣(x﹣)2+,∴C4的解析式为:y=﹣(x﹣﹣9)2+,∵P(11,m)在C4上,∴m=﹣(11﹣﹣9)2+=﹣+=2.故答案为:2.点评:本题考查了二次函数图象与几何变换,求出平移的距离并利用写出C4的顶点式解析式是解题的关键,也是本题的难点.组卷二次函数中等题难度 4 级47.(2012•扬州)如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是1.考点:二次函数的最值;等腰直角三角形.专题:计算题;压轴题.分析:设AC=x,则BC=2﹣x,然后分别表示出DC、EC,继而在RT△DCE中,利用勾股定理求出DE长度的表达式,利用函数的知识进行解答即可.解答:解:如图,连接DE.设AC=x,则BC=2﹣x,∵△ACD和△BCE分别是等腰直角三角形,∴∠DCA=45°,∠ECB=45°,DC=,CE=(2﹣x),∴∠DCE=90°,故DE2=DC2+CE2=x2+(2﹣x)2=x2﹣2x+2=(x﹣1)2+1,当x=1时,DE2取得最小值,DE也取得最小值,最小值为1.故答案为:1.点评:此题考查了二次函数最值及等腰直角三角形,难度不大,关键是表示出DC、CE,得出DE的表达式,还要求我们掌握配方法求二次函数最值.组卷二次函数中等题难度 4 级48.(2012•牡丹江)若抛物线y=ax2+bx+c经过点(﹣1,10),则a﹣b+c=10.考点:二次函数图象上点的坐标特征.专题:计算题.分析:由于函数图象上的点符合函数解析式,将该点坐标代入解析式即可.解答:解:将(﹣1,10)代入y=ax2+bx+c得,a﹣b+c=10.故答案为10.点评:本题考查了二次函数图象上点的坐标特征,知道函数图象上的点符合函数解析式是解题的关键.组卷二次函数中等题难度 4.5 级49.(2012•贵港)若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是0<m<2.考点:二次函数的图象;反比例函数的图象.专题:压轴题;图表型.分析:首先作出分段函数y=的图象,根据函数的图象即可确定m的取值范围.解答:解:分段函数y=的图象如图:故要使直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,常数m的取值范围为0<m<2,故答案为:0<m<2.点评:本题考查了二次函数的图象及反比例函数的图象,首先作出分段函数的图象是解决本题的关键,采用数形结合的方法确定答案是数学上常用的方法之一.组卷二次函数中等题难度 4 级50.(2012•无锡)若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为y=﹣x2+4x﹣3.考点:待定系数法求二次函数解析式.专题:计算题.分析:设抛物线的解析式为y=a(x﹣2)2+1,将点B(1,0)代入解析式即可求出a的值,从而得到二次函数解析式.解答:解:设抛物线的解析式为y=a(x﹣2)2+1,将B(1,0)代入y=a(x﹣2)2+1得,a=﹣1,函数解析式为y=﹣(x﹣2)2+1,展开得y=﹣x2+4x﹣3.故答案为y=﹣x2+4x﹣3.点评:本题考查了待定系数法求函数解析式,知道二次函数的顶点式是解题的关键.组卷二次函数中等题难度 4.5 级51.(2013•贵港)如图,在平面直角坐标系xOy中,若动点P在抛物线y=ax2上,⊙P恒过点F(0,n),且与直线y=﹣n始终保持相切,则n=(用含a的代数式表示).考点:二次函数综合题.专题:压轴题.分析:设P (m,am2).如图,连接PF .设⊙P与直线y=﹣n 相切于点E,连接PE.根据题意知PE、PF是⊙P 的半径,所以利用两点间的距离公式得到=am2+n,通过化简即可求得n的值.解答:解:如图,连接PF.设⊙P与直线y=﹣n相切于点E,连接PE.则PE⊥AE.∵动点P在抛物线y=ax2上,∴设P(m,am2).∵⊙P恒过点F(0,n),∴PF=PE,即=am2+n.∴n=.故答案是:.点评:本题考查了二次函数综合题,此题涉及到了二次函数图象上点的坐标特征,两点间的距离等知识点.根据题意得到PF是⊙P的半径是解题的关键.组卷二次函数中等题难度 4.5 级52.(2013•荆门)若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=9.考点:抛物线与x轴的交点.专题:压轴题.分析:首先,由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=﹣时,y=0.且b2﹣4c=0,即b2=4c;其次,根据抛物线对称轴的定义知点A、B关于对称轴对称,则A(﹣﹣3,n),B(﹣+3,n);最后,根据二次函数图象上点的坐标特征知n=(﹣﹣3)2+b(﹣﹣3)+c=b2+c+9,所以把b2=4c代入即可求得n的值.解答:解:∵抛物线y=x2+bx+c与x轴只有一个交点,∴当x=﹣时,y=0.且b2﹣4c=0,即b2=4c.又∵点A(m,n),B(m+6,n),∴点A、B关于直线x=﹣对称,∴A(﹣﹣3,n),B(﹣+3,n)将A点坐标代入抛物线解析式,得:n=(﹣﹣3)2+b(﹣﹣3)+c=b2+c+9∵b2=4c,∴n=×4c+c+9=9.故答案是:9.点评:本题考查了抛物线与x轴的交点.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.组卷二次函数中等题难度 4.5 级53.(2012•百色)如图,已知一动圆的圆心P在抛物线y=x2﹣3x+3上运动.若⊙P半径为1,点P的坐标为(m,n),当⊙P与x轴相交时,点P的横坐标m的取值范围是3﹣<m<2或4<m<3+.考点:二次函数综合题.。
28.(本题满分9分)如图17,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM 为12米. 现以O 点为原点,OM 所在直线为x 轴建立直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD- DC- CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,则这个“支撑架”总长的最大值是多少?48.(贵州省贵阳市)如图,有长为30m 的篱笆,一面利用墙(墙的最大可用长度为10m ),围成中间隔有一道篱笆(平行于AB )的矩形花圃.设花圃的一边AB 为x m ,面积为y m 2.(1)求y 与x 的函数关系式;(2)如果要围成面积为63m 2的花圃,AB 的长是多少?(3)能围成面积比63m 2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.1.(07年佛山市中考第24题)如图,隧道的截面由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8m ,宽AB 为2m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系,y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6m . (1)求抛物线的解析式; (2)一辆货运卡车高4.5m ,宽2.4m ,它能通过该隧道吗? (3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.4m 的隔离带,则该辆货运卡车还能通过隧道吗?28.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.(本题满分10分)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?第24题图某药品每盒成本价20元,根据有关规定,试销期间单价不低于成本价,又不高于每盒30元,某药店在试销过程中发现,每天的销售量每天的销售量y (盒)与销售单价x(元)的关系可近似的看作如图的一次函数。
二次函数综合题库经典例题:1.如图1,抛物线)1)(3(-+=xxay与x轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(-2,6).(1)求a的值及直线AC的函数关系式;(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.①求线段PM长度的最大值;②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.2.已知:抛物线2y ax bx c=++与x轴交于A、B两点,与y轴交于点C.其中点A在x轴的负半轴上,点C在y轴的负半轴上,线段OA、OC的长(OA<OC)是方程2540x x-+=的两个根,且抛物线的对称轴是直线1x=.(1)求A、B、C三点的坐标;(2)求此抛物线的解析式;(3)若点D是线段AB上的一个动点(与点A、B不重合),过点D作DE∥BC交AC于点E,连结CD,设BD 的长为m,△CDE的面积为S,求S与m的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.3.如图,抛物线223y x x=-++与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.yxBDOAEC(1)直接写出A 、B 、C 三点的坐标(2)连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF DE ∥交抛物线于点F ,设点P 的横坐标为m ;①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?②设BCF △的面积为S ,求S 与m 的函数关系式.专题训练:1.已知抛物线y =12x 2+x -52.(Ⅰ)用配方法求出它的顶点坐标和对称轴;(Ⅱ)若抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.3.已知二次函数222m mx x y --=。
二次函数一、选择题(将唯一正确的答案填在题后括号内)1.抛物线y =-2(x -1)2-3与y 轴的交点纵坐标为( )A.-3B.-4C.-5D.-12. 在抛物线y =x 2-4上的一个点是( )A.(4,4)B.(1,一4)C.(2,0)D.(0,4)3.抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为( )A . b=2, c=2 B. b=2,c=0C . b= -2,c=-1 D. b= -3, c=24.把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式 ( )A.()22412+--=x yB. ()42412+-=x y)C.()42412++-=x yD. 321212+⎪⎭⎫ ⎝⎛-=x y5. 二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B .(1,8) C .(-1,2)D .(1,-4)6.抛物线()223y x =+-可以由抛物线2y x =平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位7.如图,已知正方形ABCD 的边长为4 ,E 是BC 边上的一个动点,AE ⊥EF , EF 交DC 于F , 设BE =x ,FC =y ,则当点E 从点B 运动到点C 时,y 关于x 的函数图象是( ).-/8. 在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为252s t t =+,则当物体经过的路程是88米时,该物体所经过的时间为( ) 秒B. 4秒秒D. 8秒9.如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE =BF =CG =DH ,设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )x y2412Oxy2412Ox y2412O xy2412O10.抛物线y=ax2+bx+c的图象如图,则下列结论:①abc>0;②a+b+c=2;③a>21;④b<1.其中正确的结论是()A.①②B.②③C.②④D.③④11. 如图,两条抛物线12121+-=xy、12122--=xy与分别经过点()0,2-,()0,2且平行于y轴的两条平行线围成的阴影部分的面积为()A.8 B.6 C.10 D.4|12、如图为抛物线2y ax bx c=++的图像,为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是 ( )A.a+b=-1 B.a-b=-1 C.b<2a D.ac<0二、填空题13.已知函数y=ax2+bx+c,当x=3时,函数的最大值为4,当x=0时,y=-14,则函数关系式____.14.请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式.15.已知实数yx,满足yxyxx+=-++则,0332的最大值为。
16.函数y=(x-2)(3-x)取得最大值时,x=______.17.已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标是(5,0),(-2,0),则方程ax2+bx+c=0(a≠0)的解是_____.、18.如图,已知⊙P的半径为2,圆心P在抛物线y=21x2—1上运动,当⊙P与x轴相切时,圆心P的坐标为_________________.19. 已知抛物线2y ax bx c=++(a>0)的对称轴为直线1x=,且经过点()()212y y-1,,,,试比较1y和2y的大小:1y _2y(填“>”,“<”或“=”)12题图O 第22题)A xC B20. 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.三、解答题21.已知抛物线212y x x c =++与x 轴没有交点. ·(1)求c 的取值范围;(2)试确定直线y =cx +l 经过的象限,并说明理由.22.如图,已知二次函数y =-21x 2+bx +c 的图象经过A (2,0)、B (0,—6)两点. (1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x 轴交于点C ,连结,求△ABC 的面积.…23.有一个抛物线形的桥洞,桥洞离水面的最大高度BM 为3米,跨度OA 为6米,以OA 所在直线为x 轴,O 为原点建立直角坐标系(如图所示). ⑴请你直接写出O 、A 、M 三点的坐标;⑵一艘小船平放着一些长3米,宽2米且厚度均匀的矩形木板, 要使该小船能通过此桥洞,问这些木板最高可堆放多少米(设船身 底板与水面同一平面)24.我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y (件)与售价x (元)之间存在着如下表所示的一次函数关售价x (元)】…70 90 …第20题图销售量…30001000…y(件)(利润=(售价-成本价)×销售量)(1)求销售量y(件)与售价x(元)之间的函数关系式;】(2)你认为如何定价才能使工艺品厂每天获得的利润为40 000 元25.某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万.该生产线投产后,从第1年到第x年的维修、保养费用累计为y(万元),且y=ax2+bx,若第1年的维修、保养费用为2万元,第2年为4万元.(1)求y的解析式;(2)投产后,这个企业在第几年就能收回投资]26.如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0),使S△ABD=S△ABC,求点D 的坐标.'>二次函数参考答案一、1-5 CCBCA 6-10 BABBB.11-12 AB二、13 y=-2(x-3)2 +4 14 . y= (x-2)2 -1 答案不唯一. 16、4117、x1=5 x2=-2 18、(6,2)(-6,2) 19.> 20.21三、解答题:21、解:(1)∵抛物线与x轴没有交点~∴⊿<0,即1-2c<0解得c>1 2(2)∵c>1 2∴直线y=12x+1随x的增大而增大,∵b=1 ∴直线y=12x+1经过第一、二、三象限23. 解:(1)0(0,0),A (6,0),M (3,3).(2)设抛物线的关系式为y =a (x -3)2+3,因为抛物线过点(0,0),所以0=a (0-3)2+3,解得a =-31,所以y =-31(x -3)2+3=-31x 2+2x , 要使木版堆放最高,依据题意,得B 点应是木版宽C D 的中点,把x =2代入y =-31x 2+2x ,得y =38,所以这些木版最高可堆放38米. $24.(1)设一次函数的关系式为y kx b =+,根据题意得300070100090k bk b =+⎧⎨=+⎩解之得 100,10000k b =-=所以所求的一次关系式为y= -100x+10000 (2)由题意得 (x-60)(-100x+10000)=40000即216064000x x -+=所以2(80)0x -=所以 1280x x ==22.答当定价为80元时,才能使工艺品厂每天的利润为40000元25.(1)由题意,x=1时,y=2;x=2时,y=2+4=6,分别代入y=ax2+bx,得a+b=2,4a+2b=6,解得,a=1,b=1,所以y=x2+x.(2)设G=33x-100-x2-x,则G=-x2+32x-100=-(x-16)2+156.由于当1≤x≤16时,G随x的增大而增大,故当x=4时,即第4年可收回投资.26.解:(1)将(3,0)代入二次函数解析式,得-32+2×3+m=0.解得,m=3.(2)二次函数解析式为y=-x2+2x+3,令y=0,得-x2+2x+3=0 解得x=3或x=-1.∴点B的坐标为(-1,0).(3)∵S△ABD=S△ABC,点D在第一象限,∴点C、D关于二次函数对称轴对称.∵由二次函数解析式可得其对称轴为x=1,点C的坐标为(0,3),∴点D的坐标为(2,3).。