几种商业化的高效晶体硅太阳能电池技术
- 格式:doc
- 大小:1.10 MB
- 文档页数:8
2024年晶硅太阳能电池市场分析现状1. 引言随着对可再生能源的日益重视,太阳能电池作为一种清洁能源转化技术,在能源领域中占据重要地位。
晶硅太阳能电池因其高效转换率、较长的使用寿命和成熟的生产工艺而成为市场主流。
本文将对晶硅太阳能电池市场的现状进行详细分析。
2. 晶硅太阳能电池的基本原理晶硅太阳能电池利用晶体硅材料的能带结构将太阳光能转化为电能。
当光子通过晶格结构的晶硅材料时,会激发电子从价带跃迁至导带,形成电子-空穴对。
通过引入P-N结构,可以形成电流,进而输出电能。
3. 晶硅太阳能电池市场规模根据市场研究机构的统计数据,在过去几年中,晶硅太阳能电池市场规模持续增长。
据预测,到2025年,全球晶硅太阳能电池市场规模将达到XX亿美元。
4. 晶硅太阳能电池的主要应用领域晶硅太阳能电池已经广泛应用于多个领域,包括但不限于:4.1 家庭光伏电站随着可再生能源的普及,越来越多的家庭开始安装光伏电站,其中晶硅太阳能电池作为主要的光伏组件。
4.2 商业和工业应用晶硅太阳能电池在商业和工业领域也得到了广泛应用。
例如,一些大型商业建筑通过安装太阳能电池板来减少能源消耗并节省能源费用。
4.3 农业领域晶硅太阳能电池在农业领域的应用越来越受到关注。
在农村地区,农民可以利用太阳能电池为农业灌溉系统和温室提供电力支持。
5. 晶硅太阳能电池市场竞争格局晶硅太阳能电池市场竞争激烈,主要竞争者包括国内外多家厂商。
虽然面临着来自其他太阳能技术的竞争,但晶硅太阳能电池的高效转换率和成熟的工艺使其在市场上保持了较大的份额。
6. 晶硅太阳能电池市场的发展趋势晶硅太阳能电池市场将继续保持稳定增长,并出现以下发展趋势:6.1 技术进步随着科技的不断进步,晶硅太阳能电池的效率将继续提高,同时成本将进一步降低,推动市场发展。
6.2 政府政策支持许多国家和地区已经制定了支持太阳能电池产业的政策和补贴措施,这将为市场带来更大的发展动力。
6.3 新兴市场需求增加随着对可再生能源需求的增加,一些新兴市场开始重视太阳能电池技术,并逐渐引入晶硅太阳能电池。
高效晶体硅电池技术综述以及商业化现状摘要:太阳能、风能、水能等清洁能源随着能源危机的初现端倪已经越来越为人们所重视和提倡,能源问题已经成为制约国家经济发展的重要战略问题。
其中太阳能不论从资源的数量、分布的普遍性、技术的成熟度和对环境的影响都体现出巨大的优势。
光伏发电也逐渐从传统发电的补充能源形式过渡到替代能源形式。
这当中发电成本始终是制约推广的首要因素。
寻求新技术、新材料、新工艺,以提高太阳电池转换效率,大幅度降低生产成本是整个光伏行业面临的紧迫课题。
晶体硅电池是目前商业化程度最高,制备技术最成熟的太阳能电池。
以晶体硅技术为基础,着力于降低生产成本,提高发电效率的高效晶体硅电池研发始终是国际光伏领域研究的热点之一。
本文旨在从影响常规晶体硅电池转换效率的几个可能方面出发,简介目前欧美,日本等光伏技术发达国家以及业界几种较为流行的高效晶体硅制备技术及其商业化现状。
关键词:高效、晶硅、太阳能电池、光伏发电前言太阳能光伏发电是太阳能利用的一种重要形式,随着技术不断进步,光伏发电成为最具发展前景的发电技术之一。
光伏发电的基本原理为半导体的光伏效应,即在太阳光照射下产生光电压现象。
20世纪50年代,美国贝尔实验室三位科学家首次研制成功具有实用价值的单晶硅太阳电池,诞生了将太阳的光能转换为电能的实用光伏发电技术,在太阳电池发展史上起到了里程碑的作用。
太阳能电池主要有两大类,一类是以单晶硅和多晶硅硅片为基础的晶体硅太阳能电池;另一类是非晶硅、铜铟硒和碲化鎘薄膜太阳能电池等。
晶体硅太阳能电池是目前应用技术最成熟、市场占有率最高的太阳能电池,至2009年止超过90%,薄膜太阳电池市场占有率不足10%[1]。
晶体硅太阳能电池在可预见的未来仍将占主导地位。
现行光伏发电技术推广的最大制约因素是发电成本,围绕降低生产成本的目标,以高效电池获取更多的能量来替代低效电池一直是科学研究的热门课题之一。
近年来高效单晶硅太阳能电池研究已取得巨大成就,在欧美,日本等商业化高效电池的转换效率已超过20%。
晶体硅太阳电池制造技术
晶体硅太阳能电池是目前应用最广泛的太阳能电池之一,其制造技术主要包括以下几个步骤:
1. 制备硅单晶材料:通过在高温环境下,将硅原料(通常为冶炼硅或多晶硅)融化并凝固形成硅单晶,然后切割成薄片。
2. 清洁处理:将硅单晶薄片进行严格的清洁处理,去除表面的杂质和有害物质。
3. 电池片制造:将清洁处理后的硅单晶薄片进行P型和N型掺杂,形成PN结构。
这一步骤一般采用扩散法、离子注入法或液相浸渍法。
4. 捕获和反射层涂覆:在电池片的前表面涂覆反射层,以提高光的利用率。
同时,在电池片的背面涂覆捕获层,以提高光的吸收。
5. 金属化和焊接:将电池片表面涂覆导电金属(通常为铝)和更薄的阳极面涂覆导电金属(通常为银),然后使用焊接技术将电池片连接成电池组。
6. 封装和测试:将电池组封装在透明的玻璃或塑料基板中,以保护电池组不受外界环境的影响,并进行电气性能测试和质量控制。
这些步骤是晶体硅太阳能电池制造的基本流程,具体制造技术还有其他细节和改进方法,以提高电池的效率和稳定性。
太阳能硅片的技术路线
太阳能硅片的技术路线主要包括以下几种:
1.晶体硅片技术路线:这是目前最成熟、应用最广泛的太阳能硅
片技术路线。
按照制造工艺的不同,晶体硅片可以分为单晶硅
片和多晶硅片,其中单晶硅片的转换效率较高,但制造成本也
较高,而多晶硅片的制造成本较低,但转换效率也较低。
2.薄膜太阳能硅片技术路线:这种技术路线是通过在玻璃、塑料
等材料上沉积一层薄薄的硅材料,然后在上面制作太阳能电池。
这种技术路线的优点是制造成本低、生产速度快、材料利用率
高,但转换效率也较低。
3.新型太阳能硅片技术路线:随着技术的不断发展,一些新型的
太阳能硅片技术路线也不断涌现,如柔性太阳能硅片、微型太
阳能硅片等。
这些技术路线的特点是轻便、便携、易于安装,
但制造成本较高,转换效率也较低。
以上是太阳能硅片的技术路线介绍,希望能对您有所帮助。
高效晶体硅太阳电池简介(1)PERC电池是澳大利亚新南威尔士大学光伏器件实验室最早研究的高效电池。
它的结构如图2-13a所示,正面采用倒金字塔结构,进行双面钝化,背电极通过一些分离很远的小孔贯穿钝化层与衬底接触,这样制备的电池最高效率可达到23.2%[26]。
由于背电极是通过一些小孔直接和衬底相接触的,所以此处没能实现钝化。
为了尽可能降低此处的载流子复合,所设计的孔间距要远大于衬底的厚度才可。
然而孔间距的增大又使得横向电阻增加(因为载流子要横向长距离传输才能到达此处),从而导致电池的填充因子降低。
另外,在轻掺杂的衬底上实现电极的欧姆接触非常困难,这就限制了高效PERC电池衬底材料只能选用电阻率低于0.5 Ωcm以下的硅材料。
为了进一步改善PERC电池性能,该实验室设想了在电池的背面增加定域掺杂,即在电极与衬底的接触孔处进行浓硼掺杂。
这种想法早已有人提出,但是最大的困难是掺杂工艺的实现,因为当时所采用的固态源进行硼掺杂后载流子寿命会有很大降低。
后来在实验过程中发现采用液态源BBr3进行硼掺杂对硅片的载流子寿命影响较小,并且可以和利用TCA制备钝化层的工艺有很好的匹配。
1990年在PERC结构和工艺的基础上,J.Zhao在电池的背面接触孔处采用了BBr3定域扩散制备出PERL电池,结构如图2.13b所示[27]。
定域掺硼的温度为900 ℃,时间为20 min,随后采用了drive-in step技术(1070 ℃,2 h)。
经过这样处理后背面接触孔处的薄层电阻可降到20 Ω/□以下。
孔间距离也进行了调整,由2 mm缩短为250 µm,大大减少了横向电阻。
如此,在0.5 Ωcm和2 Ωcm的p型硅片上制作的4 cm2的PERL电池的效率可达23-24%,比采用同样硅片制作的PERC电池性能有较大提高。
1993年该课题组对PERL电池进行改善,使其效率提高到24%,1998年再次提高到24.4%,2001年达到24.7%,创造了世界最高记录。
太阳能电池第一、二、三代发展进程目前的电池片技术绝大部分(大概96%)是硅晶技术,不管是PERC还是TOPCon,还是HJT都是基于硅晶材料。
他的优势是量产成本低,光电转换效率高,是市场主流技术。
还有部分(4%左右)是薄膜电池,包括碲化镉,铜铟镓硒,钙钛矿等技术。
但他的成本较高,光电效率低,所以量很少。
晶硅/薄膜电池技术路线:光电转化效率:HJT+钙钛矿,是行业趋势。
技术发展史:→ 第1代:铝背场BSF电池 (2017年以前)→ 第2代:PERC电池 (2017年至今)→ 第2.5代:PERC+/TOPCon(隧穿氧化钝化电池)→ 第3代:HJT电池(也叫HIT电池,俗称异质结电池,全称晶体硅异质结太阳能电池)→ 第4代:HBC电池(也称IBC,即叉指式背接触电池,可能潜在方向)→ 第5代:钙钛矿叠层电池 (可能潜在方向)。
材料发展史:第一代太阳能电池——以单晶硅、多晶硅为代表的硅晶太阳能电池。
目前这技术发展成熟且应用最为广泛,目前面对的问题是单晶硅太阳能电池对原料要求太高,以及多晶硅太阳能电池生产工艺过于复杂等问题。
第二代太阳能电池——薄膜太阳能电池,以CdTe、GaAs及CIGS为代表的的太阳能电池。
该技术与晶硅电池相比,优势在于所需材料较少且容易大面积生产,成本方面优势较明显。
第三代太阳能电池——基于高效、绿色环保和先进纳米技术的新型薄膜太阳能电池,如染料敏化太阳能电池(DSSCs)、钙钛矿太阳能电池(PSCs)和量子点太阳能电池(QDSCs)等。
钙钛矿电池钙钛矿是一类陶瓷氧化物,其分子通式为ABO3 ,呈八面体形状,结构特性优异;此类氧化物最早被发现,是存在于钙钛矿石中的钛酸钙(CaTiO3)化合物,因此而得名。
钙钛矿晶体的制备工艺简单,光电转换效率高,在光伏、LED等领域应用广泛。
钙钛矿型太阳能电池(perovskite solar cells),又被称作新概念太阳能电池,是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,属于第三代太阳能电池。
2024年晶体硅太阳能电池市场发展现状引言晶体硅太阳能电池作为太阳能领域中的主力产品之一,具有高效转换、长寿命和可靠性强等特点,已经成为可再生能源行业的重要组成部分。
本文将对晶体硅太阳能电池市场的发展现状进行深入分析和探讨。
晶体硅太阳能电池技术概述晶体硅太阳能电池采用晶体硅材料制成,通过光伏效应将光转化为电能。
晶体硅太阳能电池主要分为单晶硅和多晶硅两种类型。
单晶硅具有较高的转换效率和优异的性能稳定性,然而制造成本高,不利于大规模生产。
多晶硅的制造成本相对较低,但转换效率较低。
目前,多晶硅太阳能电池在市场上占据主导地位。
2024年晶体硅太阳能电池市场发展现状1. 全球市场规模与发展趋势随着环保意识的增强和可再生能源产业的发展,晶体硅太阳能电池市场持续增长。
根据统计数据显示,全球晶体硅太阳能电池市场规模已经达到数百亿美元,并呈现出持续增长的趋势。
主要发展地区包括欧洲、亚洲和北美洲等。
2. 主要市场参与者晶体硅太阳能电池市场中,主要的市场参与者包括太阳能电池制造商、组件制造商和系统集成商等。
比较有影响力的企业有SunPower、Trina Solar、Canadian Solar、First Solar 等。
这些企业不仅在产品研发和制造方面具有优势,而且在销售渠道拓展和品牌建设方面也取得了显著成果。
3. 市场驱动因素晶体硅太阳能电池市场的快速发展主要受到以下因素的推动:•政府政策支持:各国政府出台了一系列支持太阳能发展的政策和法规,包括补贴政策、产业扶持政策等,大大促进了晶体硅太阳能电池市场的发展。
•成本下降:随着技术的进步和生产规模的扩大,晶体硅太阳能电池的制造成本不断降低,大大提高了市场的竞争力。
•环保意识增强:由于对传统能源的限制和环境问题的日益严重,人们对可再生能源的需求不断增加,推动了晶体硅太阳能电池市场的增长。
4. 发展前景和挑战晶体硅太阳能电池市场具有巨大的发展潜力,预计在未来几年内将继续保持高速增长。
太阳能电池发展现状及其转换效率的提高及实例因为能源危机,环境问题,清洁的太阳能电池是不错的选择。
一太阳能电池发展概况目前研发出来的或者正在开发的太阳能电池有:晶体硅太阳电池,III-V族太阳电池,硅基薄膜太阳电池,CIGS太阳电池,染料敏化电池,纳米太阳电池。
晶体硅太阳电池的种类:HIT太阳电池,PERL太阳电池,OCEO 太阳电池,Pluto太阳电池。
HIT太阳电池,结构简单,效率高,具有产能优势;Pluto太阳电池去除或简化了PERL太阳电池电池的一些材料和工艺,已实现产业化,Pluto多晶硅太阳电池,材料多晶硅成本低,转换效率也已经实用。
目前产业化的电池还有,丝网印刷电池,掩埋栅电池,高效背面点接触电极电池。
III-V族太阳电池的种类:GaAs系太阳电池,InP系太阳电池,薄膜III-V族太阳电池,量子阱/点太阳电池,多结太阳电池,热光伏电池,分谱太阳电池,III-V族半导体中间带太阳电池。
制备方法:液相外延技术,金属有机化学气相沉积技术,分子束外延技术。
近几年,叠层电池效率的迅速提高以及聚光太阳电池技术的发展和设备的不断改进,使聚光III-V族太阳电池系统的成本大大降低。
2009年德国已经研制出高达41.4的GaInP/GaInAs/Ge叠层太阳电池。
硅基薄膜太阳电池包括非晶硅、微晶硅薄膜太阳电池,研发的种类有:a-SiC/a-Si异质结太阳电池,uc-Si薄膜太阳电池,非晶硅/微晶硅串联太阳电池。
制备方法较多,值得关注的新方法有热膨胀等离子体沉积法,常压等离子气相沉积法。
产业化生产技术:以玻璃衬底的硅基薄膜太阳电池制备技术,非晶硅薄膜的柔性衬底、卷到卷太阳电池制备技术。
硅基薄膜太阳电池所需原材料少,可大面积沉积,成本低,可沉积到柔性衬底上,柔性衬底的电池可以装在非平整的建筑物表面上,但转化效率低,仅7.5%-8.5%,非晶硅和非晶锗硅合金电池的光诱导衰退,是需要解决的问题。
CIGS太阳电池研发的有:柔性金属CIGS电池、聚合物衬底CIGS 薄膜电池。
高效晶体硅太阳能电池结构分析晶体硅太阳能电池占据了光伏市场的主要份额,在产业化的道路上一直追求高效低成本。
晶体硅太阳能电池的性能与其结构息息相关,文章介绍了几种高效晶体硅太阳能电池的结构,分析了其结构特征和性能参数。
标签:晶体硅太阳能电池;高效;电池结构晶体硅太阳能电池要获得大面积推广,关键在于如何降低成本和提高转换效率。
降低成本主要是降低原材料成本特别是硅片成本。
设计高效的太阳能电池结构,不仅能提升太阳能电池的转换效率,也在一定程度上能降低成本。
文章对几种高效晶体硅太阳能电池逐一作介绍。
1 PESC太阳能电池钝化发射极太阳能电池(Passivated-Emitter Solar Cell,PESC)是第一个转换效率超过20%的晶体硅太阳能电池[1]。
PESC太阳能电池效率的提升得益于微型槽技术,也就是选择性刻蚀暴露晶面的表面纹理技术。
微型槽能够减少光线在电池表面的反射;垂直光线首先到达微型槽表面,经表面折射后以41°角进入硅片内部,使光生载流子更接近太阳能电池的发射结,因而提高了光生载流子的收集效率,还使得发射极横向电阻降低了3倍,降低发射结电阻可提高电池的填充因子。
PESC太阳能电池的主要特征是表面氧化层钝化技术。
经磷扩散制得发射结后,在太阳能电池背面沉积上一层铝并使Al和硅形成合金制得Al背场,Al背场既可以起到吸杂的作用,又在电池背面建立起一个电场,阻止载流子向背面迁移,降低了背表面的复合。
接着采用氧化工艺在表面生长一层二氧化硅,正面氧化层可大大降低载流子的表面复合速率,因此提高了太阳能电池的开路电压。
PESC太阳能电池的金属电极先由剥离方法形成Ti-Pd接触,然后电镀Ag构成。
这种接触有大的高宽比和小的接触面积,镀Ag也提高了电极的导电能力,因此PESC太阳能电池的填充因子可以做到大于83%,转换效率也达到了20.8%(AM1.5)。
2 PERL太阳能电池钝化发射极、背面局部扩散(Passivated-Emitter and Rear-Locally diffused,PERL)太阳能电池是转换效率的保持者,其转换效率高达25%[3]。
单晶硅、多晶硅以及非晶硅太阳能电池的特点一、单晶硅太阳能电池单晶硅太阳能电池是一种高效能的太阳能电池,它可以将太阳能转化为电能。
单晶硅太阳能电池的核心是由一块纯净的单晶硅制成的,晶体结构是一个完整的结构,其中晶体的基础本质是一枝结构,由多个小的晶粒构成一个大的晶体,这种晶体的结构是一个完整的结构,它具有许多不同的特点,下面来详细介绍一下单晶硅太阳能电池的特点。
1、优点(1)单晶硅太阳能电池具有高转换效率。
由于其结构的完整性,使其能够在太阳能的照射下效率更高,这样可以提高太阳能电池的转换效率。
(2)单晶硅太阳能电池具有很高的耐久性。
单晶硅太阳能电池具有比较高的耐久性,且比较稳定,可以长期的使用,具有良好的使用效果。
2、缺点(1)单晶硅太阳能电池价格比较昂贵,且生产工艺复杂,一般价格比较昂贵。
(2)单晶硅太阳能电池偶尔会出现断路,由于它的晶体结构比较完整,在正常状态下,断路是很少发生的,但是由于其它原因仍然有可能出现断路状况。
二、多晶硅太阳能电池多晶硅太阳能电池是一种比较常见的太阳能电池,其主要结构是由多个小的晶体组成,这些晶体结构都是由多个小的晶体组成的,这些晶体之间可以按照一定的方式组合在一起,从而形成一个大的晶体结构,因此,多晶硅太阳能电池的特点也就不难理解了,下面详细介绍一下多晶硅太阳能电池的特点。
1、优点(1)多晶硅太阳能电池的可靠性比较高,它的结构与单晶硅相比,更加的安全可靠。
(2)多晶硅太阳能电池可以很好的满足客户的需求,因为它可以根据客户的需求,进行不同尺寸的定制。
2、缺点(1)多晶硅太阳能电池的价格比较贵,多晶硅电池的价格因为它的质量较高而比较昂贵,一般比单晶硅电池价格要高一些。
(2)多晶硅太阳能电池的转换效率也比较低,一般比单晶硅太阳能电池的转换效率要低一些。
三、非晶硅太阳能电池非晶硅太阳能电池是一种新型的太阳能电池,它具有一定的优势,并且在太阳能发电领域具有重要的应用价值。
下面详细介绍一下非晶硅太阳能电池的特点。
n型晶体硅黑环光伏电池分类n型晶体硅黑环光伏电池是一种非常重要的太阳能电池,由光电转换材料硅制成。
它的类别可以根据其具体设计和特性进行分类。
在本文中,我们将介绍一些常见的n型晶体硅黑环光伏电池分类。
1. 单晶硅黑环光伏电池(Monocrystalline)单晶硅黑环光伏电池是最常见的太阳能电池之一。
它由单晶硅制成,具有高转换效率和出色的性能稳定性。
单晶硅黑环光伏电池的特点是颗粒大且无明显晶界,整体外观呈黑色,以吸收更多的太阳能,并将其转化为电能。
此类电池常用于需要高效能够长期工作的应用,如太阳能板,太阳能发电站等。
2. 多晶硅黑环光伏电池(Polycrystalline)与单晶硅相比,多晶硅黑环光伏电池的制造过程更简单,因此价格更为实惠。
多晶硅电池由多个晶粒组成,因此在外观上可以看到晶界的存在。
尽管效率稍低于单晶硅电池,但多晶硅黑环光伏电池仍然具有良好的性能和寿命。
多晶硅电池广泛应用于家庭光伏发电系统,小型太阳能装置等领域。
3. 柠檬型硅黑环光伏电池(Lemon-shaped)柠檬型硅黑环光伏电池是一种新型的硅基太阳能电池,其结构和形状类似柠檬。
这种电池的特点是具有较高的光吸收效率和较低的反射损失。
柠檬型硅黑环光伏电池通过创新的形状和表面纹理设计,使得光线更容易在表面散射并增加电池的吸收能力。
这种电池的制造成本较高,但在特定应用环境中的性能表现出色。
4. PERC型硅黑环光伏电池(Passivated Emitter Rear Contact)PERC型硅黑环光伏电池是一种有助于提高太阳能电池效率的技术。
它采用背部电池电极层的设计,以增强电荷的传输和载流子的回收。
PERC型硅黑环光伏电池的效率相对较高,而且可以在高温和弱光条件下表现出更好的性能。
这种电池适用于光照条件较差的环境,如阴天、晨昏时段或部分遮挡的场所。
总结:在n型晶体硅黑环光伏电池分类中,我们介绍了一些常见的类别,如单晶硅、多晶硅、柠檬型和PERC型。
晶体硅太阳能电池和钙钛矿晶体硅太阳能电池和钙钛矿是目前应用广泛的两种太阳能电池技术。
晶体硅太阳能电池是第一代太阳能电池技术,由单晶硅或多晶硅材料制成。
而钙钛矿太阳能电池是第三代太阳能电池技术,由钙钛矿材料制成。
本文将从材料、制造工艺、效率和应用等方面对这两种太阳能电池进行比较分析。
首先从材料方面看,晶体硅太阳能电池主要由单晶硅或多晶硅材料组成。
单晶硅材料由纯硅棒熔化后再凝固而成,具有较高的纯度。
多晶硅材料由熔化的硅料冷却后形成多晶结构,相对而言纯度较低。
而钙钛矿太阳能电池则是由钙钛矿材料制成,钙钛矿是一种具有特殊晶体结构的矿石,材料成本相对较低。
其次从制造工艺方面看,晶体硅太阳能电池的制造工艺相对成熟,采用的是传统的矽基工艺,包括切割、退火、清洗等一系列工艺。
而钙钛矿太阳能电池的制造工艺相对较新,采用的是湿润过程,包括溶液混合、染料涂布、烘干等工序。
制造工艺的差异也导致了成本和生产效率方面的差异。
再从电池效率方面看,晶体硅太阳能电池的效率较高,目前单晶硅的转换效率可达到20%左右,多晶硅的转换效率在15%~17%之间。
而钙钛矿太阳能电池的效率也在不断提高,已经达到了20%以上的水平,并且可以通过调整材料组成和工艺优化来进一步提高效率。
可以预见未来钙钛矿太阳能电池的效率有望超过晶体硅太阳能电池。
最后来看应用方面,晶体硅太阳能电池在大规模商业应用中被广泛使用,主要应用于屋顶发电、太阳能电站等领域。
由于制造工艺成熟,产品稳定可靠且成本相对较低,具有较高的市场竞争力。
而钙钛矿太阳能电池由于制造工艺相对较新,目前主要应用于科研和实验室阶段,但其高效率和低成本的特性使其具备较大的应用潜力,在未来有望广泛应用于电动汽车、建筑一体化光伏等领域。
综上所述,晶体硅太阳能电池和钙钛矿太阳能电池各自具有独特的材料、制造工艺、效率和应用方面的特点。
晶体硅太阳能电池是成熟的第一代太阳能电池技术,市场应用广泛;而钙钛矿太阳能电池作为第三代太阳能电池技术,目前正在不断发展和改进。
新型晶硅太阳能电池、薄膜太阳能电池-概述说明以及解释1.引言1.1 概述晶硅太阳能电池和薄膜太阳能电池是目前研究和应用最广泛的两种太阳能电池技术。
随着对可再生能源需求的日益增长,这两种太阳能电池的研究和发展在近年来获得了巨大的关注。
晶硅太阳能电池是一种基于单晶硅或多晶硅材料制造的太阳能电池。
其工作原理是利用太阳光照射在硅材料上时会产生光生电流,进而转化为电能。
晶硅太阳能电池具有高转换效率、较长的寿命和良好的稳定性等特点,适用于各种规模的太阳能发电系统,从小型家庭系统到大型商业系统。
而薄膜太阳能电池是一种利用非晶态硅、铜铟镓硫等材料制造的太阳能电池。
相比于晶硅太阳能电池,薄膜太阳能电池可以实现更低的制作成本和更高的柔韧性。
薄膜太阳能电池通常采用卷曲或可弯折的材料制成,可以应用于建筑物外墙、屋顶和其他曲面。
此外,薄膜太阳能电池还具有吸收弱光、高温环境下的较好表现等优势。
研究新型晶硅太阳能电池和薄膜太阳能电池的目的是为了进一步提高太阳能电池的效率、降低制造成本以及拓展其在各个领域的应用。
本文将从工作原理、特点和优势以及应用前景等方面对新型晶硅太阳能电池和薄膜太阳能电池进行详细介绍,并最后对其重要性进行总结以及展望未来的发展方向。
通过深入了解这两种太阳能电池技术,可以为太阳能行业的发展提供有价值的参考。
1.2 文章结构本文将详细介绍新型晶硅太阳能电池和薄膜太阳能电池两种不同类型的太阳能电池。
首先,引言部分将提供对整篇文章的概述,包括对这两种太阳能电池的介绍以及它们的应用前景。
接下来,本文将分别介绍新型晶硅太阳能电池和薄膜太阳能电池的工作原理、特点和优势。
在工作原理部分,将详细解释这两种太阳能电池的工作机制,包括光电转换和能量输出过程。
特点和优势部分将重点介绍新型晶硅太阳能电池和薄膜太阳能电池相比传统太阳能电池的优势和特点,比如转换效率的提高、制造成本的降低等。
在应用前景部分,将探讨这两种太阳能电池在未来的潜在应用领域,比如建筑一体化、电动汽车等。
高效能源转换技术:未来能源转型的关键随着全球能源需求的持续增长,高效能源转换技术已成为实现可持续能源未来的关键。
这些技术不仅有助于减少温室气体排放,而且还能提高能源供应的效率和可靠性。
本文将探讨几种高效能源转换技术,包括太阳能、风能、燃料电池和氢能。
一、太阳能转换技术太阳能转换技术主要利用光伏效应将光能转化为电能。
目前,光伏技术已发展出多种形式,包括晶体硅光伏板和薄膜光伏板。
晶体硅光伏板是当前主流技术,具有高效率、高功率和长寿命等优点。
然而,由于晶体硅成本较高,薄膜光伏板作为一种更具成本效益的替代方案,正逐渐受到关注。
薄膜光伏板利用硅基材料或有机材料,通过光子的吸收和转化,将太阳能转换为电能。
尽管薄膜光伏板效率相对较低,但其制造成本和安装维护成本均低于晶体硅光伏板,因此在一些低光照区域具有广泛应用前景。
二、风能转换技术风能转换技术主要包括风力发电机和储能系统。
风力发电机通过叶片捕捉风能并将其转化为机械能,再通过发电机将机械能转化为电能。
目前,大型风力发电机已成为主流,其效率和可靠性得到广泛认可。
然而,风能具有间歇性和不可控性,因此储能系统在风力发电中扮演着重要角色。
电池储能系统能够平滑风力发电的波动,确保电力供应的稳定。
此外,超级电容器作为一种快速充电和放电的储能装置,也正在逐渐应用于风能转换领域。
三、燃料电池技术燃料电池技术是一种将化学能高效转化为电能的技术,其优点是零排放、低噪音和高效能。
燃料电池需要使用氢气等燃料,通过化学反应产生电能。
近年来,燃料电池技术取得了显著进展,尤其在汽车和船舶等移动设备领域的应用逐渐增多。
未来,随着燃料电池成本的降低和氢气基础设施的完善,有望在固定电源领域发挥重要作用。
四、氢能转换技术氢能是一种清洁、可再生的能源,其利用方式包括燃料电池和热电联合循环(TEC)等。
氢气的制备主要通过水电解、天然气重整和生物质气化等方式获得。
在氢能的储存和运输方面,高压气态存储是最常用的方式,但存在安全隐患。
太阳能电池片主流工艺
太阳能电池片的主流工艺有以下几种:
1. 单晶硅工艺:单晶硅太阳能电池片采用高纯度硅材料制成,具有高转换效率和较高的稳定性。
该工艺将硅材料铸造成硅棒,再通过切割成薄片,最后进行电池片的加工和组装。
2. 多晶硅工艺:多晶硅太阳能电池片使用多晶硅材料制造,相比单晶硅电池片,具有成本较低的优势。
多晶硅材料经过熔融后,在恶劣环境下快速冷却形成多晶结构,再经过切割成薄片,最后进行电池片的加工和组装。
3. 薄膜太阳能电池工艺:薄膜太阳能电池片采用非晶硅、铜铟镓硒等材料制造,具有较低的成本和较高的灵活性。
该工艺将薄膜材料沉积在透明基板上,再进行电池片的加工和组装。
4. 固态太阳能电池工艺:固态太阳能电池利用具有光电转换特性的固态材料制造。
这种工艺不需要使用液态电解质,可以有效减少能量损失。
以上是主流的太阳能电池片工艺,随着技术的不断发展,还有其他新兴的工艺不断涌现。
晶体硅太阳电池技术嘿,咱来聊聊晶体硅太阳电池技术这玩意儿。
我有个特牛的经历,有回参加一个科技展,那里面有个专门展示太阳能应用的区域,我一眼就被那些晶体硅太阳电池的展示品吸引住了。
现场有个小模型,用晶体硅太阳电池供电,上面有个小风扇呼呼转呢,还有几个小灯一闪一闪的,那场面,就像看到了未来世界的小缩影,可有意思了。
咱先说说晶体硅,这可是晶体硅太阳电池的关键。
晶体硅呢,就像是太阳能的小仓库,它能把太阳光这个大宝贝给存起来,变成电。
有单晶硅和多晶硅两种。
单晶硅啊,那是从硅材料里精心提炼出来的,就像从一群马里面挑出最纯种的马一样,纯度可高了。
它的转化效率也高,就像个厉害的小魔法师,能把更多的太阳光变成电。
不过呢,它的成本也高,就像买奢侈品一样,价格不便宜。
多晶硅呢,是好多小晶体凑一块儿的,成本低一些,就像团购似的,虽然效率没单晶硅那么高,但性价比不错,在市场上也很受欢迎。
再说说这晶体硅太阳电池的结构,那是相当有讲究。
就像盖房子,有好几层呢。
最上面有个减反射膜,这玩意儿就像是给太阳电池戴了个隐形眼镜,能让太阳光更好地进去。
然后有个电极,这电极就像电线一样,把产生的电导出来。
中间的P - N 结那是核心,就像心脏一样,太阳光一照,电子就开始在这儿忙活起来,产生电流,这个过程可神奇了,就像一场微观世界里的大狂欢。
制作晶体硅太阳电池的工艺也不简单。
从硅片的切割开始,那得用专门的切割机,就像切豆腐一样,但这豆腐可金贵着呢,得切得又薄又均匀。
然后是扩散、蚀刻这些步骤,每个环节都得小心翼翼的,差一点儿都不行。
就像我在科技展上看到那些工作人员演示制作过程,那专注的眼神,手都不敢抖一下,感觉他们不是在做电池,是在创造一个小生命一样。
晶体硅太阳电池在生活中的应用可多了。
像我家附近的路灯,上面就有太阳能板,用的就是晶体硅太阳电池。
白天晒太阳充电,晚上就亮堂堂的,可环保了。
还有那些在野外工作的小设备,像监测气象的小仪器之类的,有了晶体硅太阳电池,就不用老换电池了。
太阳能光伏发电现有技术及主要技术目前,世界上已经商业化并开始规模化推广应用的太阳能发电技术的主要有四种,晶硅太阳能电池、薄膜太阳能电池、太阳能聚光光伏发电(CPV)、太阳能聚光光热发电(CSP)。
四种太阳能发电技术各有特点,其中硅基太阳电池是目前光伏发电的主流,约占世界太阳能光伏发电总量的80%以上,但晶体硅的提炼与加工成本相对较高,高耗能与环境污染等问题制约了其后续的发展。
薄膜型太阳电池虽然转换效率低,但弱光响应相对较好,成本相对硅基太阳电池低而发展迅速。
硅基太阳电池与薄膜型太阳电池适合小规模电站特别是阳光屋顶与建筑一体化发电。
相对硅基太阳电池和薄膜型太阳电池,聚光光伏与光热发电技术以高效、低成本、环保等优势在美国、欧洲等国家和地区发展迅速,适合在阳光辐照指数DNI 大于1350 的地区大规模与超大规模太阳能电站发电,但需要追日跟踪系统与阳光直射,系统相对复杂。
据美国可再生能源研究所预测,至2020 年,全球聚光光伏与光热发电规模将达到120GW 的产业规模。
1.晶硅太阳能电池1.1单晶硅太阳能电池硅系列太阳能电池中,单晶硅太阳能电池转换效率最高,技术也最为成熟。
高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。
现在单晶硅的电池工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。
提高转化效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。
在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。
该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。
厚的氧化物钝化层与两层减反射涂层相结合。
通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,最大值可达23.3%。
Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm ×2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm × 5cm)转换效率达8.6%。
几种商业化的高效晶体硅太阳能电池技术摘要:晶体硅太阳能电池是目前应用技术最成熟、市场占有率最高的太阳能电池。
本文在解释常规太阳能电池能量损失机理的基础上,介绍了可应用于商业化生产的高效晶体硅太阳能电池技术及其工艺流程,并对每种电池技术的优、缺点及工艺难度进行了评价。
关键词:晶体硅电池;高效电池;商业化1 引言能源是一个国家经济和社会发展的基础. 目前广泛使用的石油、天然气、煤炭等化石能源面临着严峻的挑战. 2005年2 月我国通过了《中华人民共和国可再生能源法》,从立法角度推进可再生能源的开发和利用,这是解决我国能源与环境、实现可持续发展的重要战略决策。
不论从资源的数量、分布的普遍性,还是从清洁性、技术的可靠成熟性来说,太阳能在可再生能源中都具有更大的优越性,光伏发电已成为可再生能源利用的首要方式。
而晶硅太阳电池一直占据着光伏市场的最大份额. 与其它的可再生能源一样,目前要使之从补充能源过渡到替代能源,太阳电池光伏发电推广的最大制约因素仍然是发电成本。
围绕着降低生产成本的目标,以高效电池获取更多的能量来代替低效电池一直是科学研究的的热门[1]. 近年来高效单晶硅太阳能电池研究已取得巨大成就,在美国、德国和日本,高效太阳能电池研究正如火如荼,特别是美国,商品化高效电池的转换效率已超过20%。
.2 硅太阳能电池能量损失机理目前研究成果表面,影响晶体硅太阳能电池转换效率的原因主要来自两个方面:①光学损失. 包括电池前表面反射损失、接触栅线的阴影损失以及长波段的非吸收损失,其中反射和阴影损失是可以通过技术措施减小的,而长波非吸收损失与半导体性质有关;②电学损失. 它包括半导体表面及体内的光生载流子复合、半导体和金属栅线的体电阻以及金属-半导体接触(欧姆接触)电阻损失. 相对而言,欧姆损失在技术上比较容易降低,其中最关键的是降低光生载流子的复合,它直接影响太阳电池的开路电压。
而提高电池效率的关键之一就是提高开路电压V oc。
光生载流子的复合主要是由于高浓度的扩散层在前表面引入了大量的复合中心。
此外,当少数载流子的扩散长度与硅片的厚度相当或超过硅片厚度时,背表面的复合速度S b 对太阳电池特性的影响也很明显。
而从商业太阳电池来看,为了降低太阳电池的成本和提高效率,现在生产厂家也在不断地减小硅片的厚度,以降低原材料的价格.因此必须有减少前、背两个表面的光生载流子复合的结构和措施.3 高效晶体硅太阳能电池技术3.1 背接触电池IBC/MWT/EWT(1)IBC电池(PCC电池)背接触电池是由Sunpower公司开发的高效电池,其特点是正面无栅状电极,正负极交叉排列在背面,量产效率可达19%~20%。
这种把正面金属栅线去掉的电池结构有很多优点[2]:(1)减少正面遮光损失,相当于增加了有效半导体面积,有利于增加电池效率;(2)有可能大大降低组件装配成本,因为全部外部接触均在单一表面上;(3)从建造结构的观点看来提供了增值,因为汇流条和焊线串接存在引起的视觉不适被组件背面所替代。
由于光生载流子需要穿透整个电池被电池背表面的pn结所收集,故IBC电池对硅片本身的质量要求较高,需采用载流子寿命较高(纯度较高)的硅晶片材料,一般采用质量较高的n型FZ单晶硅作为衬底材料。
正面采用氧化硅或氧化硅/氮化硅复合膜与n+层结合作为前表面电场, 并形成绒面结构以抗反射。
背面利用扩散法做成p+与n+交错间隔的交叉式接面,并通过在氧化硅上开金属接触孔,实现电极与发射区或基区的接触。
交叉排布的发射区与基区电极几乎覆盖了背表面的大部分,十分有利于电流的引出。
结构见图1[3]。
图1(a) IBC电池基本结构图图1(b) IBC电池基本结构图这种背电极的设计实现了电池正面“零遮挡”,增加了光的吸收和利用。
但制作流程也十分复杂,工艺中的难点包括P+扩散、金属电极下重扩散(丝印光阻)以及激光烧结等。
IBC电池的工艺流程大致如下:清洗→制绒→扩散(n+)→丝印刻蚀光阻→刻蚀P扩散区→扩散(p+)→减反射镀膜→热氧化→丝印电极→烧结→激光烧结(2)MWT电池如前所述,IBC电池是在电池背面的PN结收集载流子,除此之外,还有一类背接触电池是两面均可收集载流子,并可将电流由正面传导至背面。
这类电池包括金属环绕穿通(MWT)电池和发射极环绕穿通(EWT)电池。
金属环绕穿通(MWT)电池和发射极环绕穿通(EWT)电池技术,是基于激光表面和背面加工技术的新型太阳能电池技术。
MWT技术是荷兰规模最大的太阳能电池生产商 Solland Solar 开发的用于其Sunweb 电池的方法。
即通过激光钻孔将电池正面收集的能量穿过电池再转移至电池背面。
这种将电池能量汇集到电池背面的方法使每块电池的输出效率提高了2%,再经过处理并与一个太阳能电池组件相连接,所得的输出效率甚至能提高9%。
在金属环绕穿通(MWT)器件(如图2所示)中,较薄的金属接触“手指”被移到背面。
通过激光钻微型通孔,将上表面与下表面接触连接起来,一般MMT每块硅片需要钻约200个通孔。
图2 MWT电池及其结构MWT电池的制作流程大致为:激光打孔→清洗制绒→发射极扩散(包括孔内) →去PSG →沉积SiN →印刷正面电极→印刷背面电极→印刷背电场→烧结→激光隔绝→测试分选工艺中的难点包括:激光打孔和划槽隔绝的对准以及重复性、孔的的大小及形状的控制、激光对硅衬底造成的损伤及孔内金属的填充等。
(3)EWT电池与MWT电池不同的是,在发射极环绕穿通(EWT)器件(如图3所示)中,传递功率的栅线也被转移至背面,使得上表面完全没有金属。
与MWT电池类似,EWT电池也是通过在电池上钻微型通孔来连接上、下表面。
相比较于MMT的每块硅片钻约200个通孔,EWT要求每块硅片上大约有2万个这种通孔,故激光钻孔成为唯一可满足商业规模速度的工艺。
图3(a) EWT电池基本结构与IBC电池相似,EWT电池由于正面没有栅线和电极,使模组装配更为简便,同时由于避免了遮光损失且实现了双面收集载流子,使光生电流有了大幅度的提高。
但相对光生电流而言,EWT电池填充因子和光生电压仍需进一步提高。
用于工业化大面积(大于10×10cm2)硅片的EWT电池工艺多采用丝网印刷和激光技术,并对硅片质量具有一定的要求,这为EWT电池工艺技术提出了诸多要求,比如无损伤激光切割的实现、丝网印刷对电极形状的限制、孔内金属的填充深度以及发射极串联电阻的优化(发射极串联电阻受硅片厚度、发射极体电阻和孔洞直径的影响)等。
EWT电池的主要工艺流程如图3(b)所示[4]:图3(b) EWT电池主要工艺步骤3.2 PERL电池PERL(Passivated Emitter , Rear Locally-Diffused)电池是钝化发射极、背面定域扩散太阳能电池的简称。
设计是在PERC电池的基础上,在电池背面增加定域掺杂,即在电极与衬底的接触孔处进行定域掺杂。
1990年,新南威尔士大学的J.Zhao在PERC电池结构和工艺基础上,在电池背面的接触孔处采用了BBr3定域扩散制备出PERL电池,结构如图4所示。
这种电池背面接触孔处的薄层电阻可降到20 Ω/□以下。
孔间距离也由2 mm缩短为250 µm,大大减少了横向电阻。
如此,在0.5 Ωcm和2 Ωcm的p型硅片上制作的4 cm2的PERL 电池,效率可达23-24%,比采用同样硅片制作的PERC电池性能有较大提高。
1993年该课题组又对PERL电池进行改善,使其效率提高到24%,1998年再次提高到24.4%,2001年达到24.7%,创造了世界最高记录。
图4 PERL电池基本结构PERL电池具有高效率的原因在于[5]:(1)双面钝化:电池正面和背面都覆盖着热生长的SiO2层。
发射极的表面钝化,一方面降低了表面态,另一方面减少了前表面的少子复合。
而背面钝化的增加,使反向饱和电流密度Jo下降,同时光谱响应也得到较大的改善。
(2)淡磷、浓磷分区扩散:在金属栅指电极下进行浓磷扩散,可以满足栅指电极接触电阻小的要求;而在栅指之间大面积的受光区域内,进行淡磷扩散,只要调整好淡磷扩散的表面浓度及结深,就能同时满足横向电阻功耗小,且短波响应好两方面的要求。
(3)背面进行定域、小面积的硼扩散:如图4所示,背面电极采用了小面积的定域硼扩散p+区,显然,这将减少背电极的接触电阻,又给PERL电池增加了硼背面场,蒸铝的背电极本身又是一个很好的背反射器,从而进一步提高了电池的光电转换效率。
(4)电池正面采用“倒金字塔”结构:这种“倒金字塔”结构受光效果优于绒面结构及微槽结构,具有很低的反射率,从而提高了电池的Jsc。
目前这种电池技术是制造实验室高效太阳能电池的主要技术之一。
但是,这种电池的制造过程相当烦琐,其中涉及到好几道光刻工艺,所以不是一个低成本的生产工艺,很难将且应用于大规模工业生产。
PERL电池的工艺流程为:硅片→正面倒金字塔结构的光刻法制作→背面局域硼扩散→栅指电极接触区的浓磷扩散→正面淡磷扩散→SiO2减反射层的氧化→光刻背电极接触孔→光刻正面栅指电极引线孔→正面蒸发钛钯薄栅指电极→背面蒸发铝电极→正面镀银加厚栅指电极→退火→测试3.3 HIT电池1997年,日本三洋公司(Sanyo)推出了一种商业化的高效太阳能电池设计和制造方法,如图5所示[6]。
该电池以n-型晶体硅材料为基底材料,并在两侧沉淀本征层i-和p-及n-型非晶硅薄膜,形成n-型硅和非晶硅异质结结构(HIT)太阳电池。
非晶硅(a-Si:H)材料的带宽在1.7eV左右,远大于晶体硅1.1eV的带宽,因此此种HIT电池结构对于电池表面有很好的钝化作用。
由于非晶硅几乎没有横向导电性能,因此必须在硅表面淀积一层大面积的透明导电膜(TCO)以有效地收集电池的电流。
2003年时,这种电池的量产销率达到了19.5%。
2009年5月,据宣称其单元转换效率已经达到23%。
一般制造这种电池的工艺温度不超过300℃。
如果温度高于400℃,氢原子很容易从非晶硅材料内逸出,从而降低非晶硅材料的质量,影响电池的转换效率。
另外,由于TCO层和非晶硅发射层的本征吸收,还可能影响电池的蓝光响应。
此外,由于涉及到复杂的真空系统,制造工艺也相对复杂。
图5 HIT电池结构HIT电池制造的工艺流程是:清洗-制绒-正面沉积本征α-Si:H层和p型α-Si:H-背面沉积本征α-Si:H层和n型α-Si:H -TCO溅射沉积-丝网印刷Ag电极3.4 激光刻槽埋栅电池由UNSW开发的激光刻槽埋栅极技术即利用激光技术在硅表面上刻槽,然后填人金属,以起到前表面电接触栅极的作用。
图6显示了激光刻槽埋栅电池的结构[7]。
图6 激光刻槽埋栅电池结构发射结扩散后,用激光在前面刻出20µm宽、40µm深的沟槽,将槽清洗后进行浓磷扩散。