晶体硅太阳能电池
- 格式:doc
- 大小:648.50 KB
- 文档页数:14
晶体硅太阳电池制造技术
晶体硅太阳能电池是目前应用最广泛的太阳能电池之一,其制造技术主要包括以下几个步骤:
1. 制备硅单晶材料:通过在高温环境下,将硅原料(通常为冶炼硅或多晶硅)融化并凝固形成硅单晶,然后切割成薄片。
2. 清洁处理:将硅单晶薄片进行严格的清洁处理,去除表面的杂质和有害物质。
3. 电池片制造:将清洁处理后的硅单晶薄片进行P型和N型掺杂,形成PN结构。
这一步骤一般采用扩散法、离子注入法或液相浸渍法。
4. 捕获和反射层涂覆:在电池片的前表面涂覆反射层,以提高光的利用率。
同时,在电池片的背面涂覆捕获层,以提高光的吸收。
5. 金属化和焊接:将电池片表面涂覆导电金属(通常为铝)和更薄的阳极面涂覆导电金属(通常为银),然后使用焊接技术将电池片连接成电池组。
6. 封装和测试:将电池组封装在透明的玻璃或塑料基板中,以保护电池组不受外界环境的影响,并进行电气性能测试和质量控制。
这些步骤是晶体硅太阳能电池制造的基本流程,具体制造技术还有其他细节和改进方法,以提高电池的效率和稳定性。
晶硅太阳能电池介绍晶体硅太阳能电池(也称为硅片太阳能电池)是一种常见且广泛应用于太阳能领域的太阳能转换技术。
它是利用硅片材料对光能的吸收和转化来产生电能的一个过程。
晶体硅太阳能电池主要由硅片、电极、导线和其他附件组成。
硅片是电池的核心部分,也是光能的主要转换区域。
硅片可分为单晶硅、多晶硅和非晶硅三种。
其中,单晶硅最为常见和普遍,它的晶格排列非常有序,电池效率相对较高。
晶体硅太阳能电池的工作原理主要涉及光电效应和PN结。
当光照射到硅片上时,光子会将电子从硅原子中激发出来,使其跃迁到空导带中,形成电流。
此时,硅片的一个表面被掺杂为N型导电层,另一个表面被掺杂为P型电导层,两者之间形成了一个PN结。
当光照射到PN结上时,电子会从N型区域流入P型区域,产生电流,同时产生电压差。
这样就完成了光能到电能的转换。
晶体硅太阳能电池的优点主要有以下几个方面:1.高效率:晶体硅太阳能电池的转换效率相对较高,可以达到20%以上,甚至高达25%。
2.长寿命:晶体硅太阳能电池的使用寿命可以达到25年以上,因此使用寿命较长,可以有效降低运维成本。
3.稳定性:晶体硅太阳能电池的稳定性较好,能够在不同环境条件下保持较高的转换效率。
4.良好的可靠性:晶体硅太阳能电池的可靠性较高,能够适应复杂多变的气候条件和环境。
5.可制造成各种形状和尺寸:晶体硅太阳能电池可以根据需求进行灵活制造,可以制作成不同形状和尺寸的太阳能板。
不过,晶体硅太阳能电池也存在一些局限性:1.成本较高:晶体硅太阳能电池的生产成本相对较高,需要较高的投资。
尽管随着技术不断进步,成本正在逐渐降低,但仍然有一定程度的限制。
2.对光强度和温度的敏感性:晶体硅太阳能电池对光强度和温度的变化较为敏感,在光强度较低或温度较高的环境下,效率会有所降低。
3.制造过程对环境的影响:晶体硅太阳能电池的生产过程中需要使用一定数量的能源和化学物质,可能会对环境造成一定的影响。
综上所述,晶体硅太阳能电池是一种广泛应用于太阳能领域的高效太阳能转换技术。
晶体硅太阳能电池和薄膜太阳能电池。
【摘要】晶体硅太阳能电池和薄膜太阳能电池是目前主流的太阳能电池技术。
晶体硅太阳能电池采用单晶硅或多晶硅制成,具有高转换效率和较长寿命的特点,广泛应用于家用光伏发电系统和大型光伏电站。
制造成本高和生产过程能耗大是其主要缺点。
薄膜太阳能电池利用薄膜材料制成,具有灵活性和轻便性,适用于建筑一体化等特殊场景。
但是转换效率较低,使用寿命短。
比较晶体硅太阳能电池和薄膜太阳能电池的效率、成本、适用场景等方面可见各有优劣。
未来,随着技术的进步和成本的下降,晶体硅和薄膜太阳能电池将继续发展,为清洁能源产业注入新动力。
【关键词】晶体硅太阳能电池、薄膜太阳能电池、原理、特点、应用、优缺点、比较、发展前景、总结。
1. 引言1.1 太阳能电池简介太阳能电池,也称为光伏电池,是一种能够将太阳能转化为电能的设备。
它是利用半导体材料的光电效应将太阳辐射直接转换为直流电的装置。
太阳能电池是清洁能源中的重要组成部分,具有环保、可再生和低碳的特点。
太阳能电池的核心部件是光伏电池片,其主要材料包括硅、硒化镉、铜铟镓硒等。
目前市场上主要有晶体硅太阳能电池和薄膜太阳能电池两类。
晶体硅太阳能电池具有较高的转换效率和稳定性,是目前主流的太阳能电池技术;而薄膜太阳能电池则具有柔性、轻便和生产成本低的优势。
太阳能电池的应用领域广泛,包括家用光伏发电系统、工业和商业用途,以及航天航空领域等。
随着太阳能产业的快速发展,太阳能电池的效率和成本不断提升,未来将在能源领域扮演越来越重要的角色。
1.2 晶体硅太阳能电池和薄膜太阳能电池介绍晶体硅太阳能电池是目前应用最广泛的太阳能电池技术之一。
它由大面积的单晶硅或多晶硅材料组成,通过将硅材料加工成光伏电池片并组装成电池组,从而将太阳能转化为电能。
晶体硅太阳能电池具有转换效率高、稳定性好、寿命长等优点,被广泛应用于屋顶光伏发电、太阳能光伏电站等领域。
薄膜太阳能电池是一种新型的太阳能电池技术,采用薄膜材料作为光伏电池片,相比于晶体硅太阳能电池,薄膜太阳能电池具有重量轻、柔软性好、制造成本低等优点。
高效晶体硅太阳能电池介绍高效晶体硅太阳能电池是目前市场上最为常见和广泛应用的一种太阳能电池。
它的高效性和可靠性使其成为太阳能发电领域的主要选择。
本文将介绍高效晶体硅太阳能电池的原理、制造过程、优点和应用领域,并探讨其未来的发展趋势。
高效晶体硅太阳能电池是由单晶硅或多晶硅制成的。
其原理基于光伏效应,即将太阳能转化为电能。
当光线照射到太阳能电池板上时,光子与半导体材料中的电子发生相互作用,激发电子跃迁到导带。
通过电子与空穴的复合,电荷被释放出来,形成电流,最终产生电能。
制造高效晶体硅太阳能电池的过程通常由几个关键步骤组成。
首先,需要从硅矿石提取原始硅材料,并通过化学方法将其转化为硅粉。
然后,硅粉与其他材料混合均匀,形成硅溶胶。
接下来,将硅溶胶涂覆在导电玻璃或衬底上,并将其烘干,形成硅膜。
最后,通过加热和连续处理,将硅膜转化为晶体硅太阳能电池。
高效晶体硅太阳能电池具有许多优点。
首先,它们具有较高的转换效率,通常在15%至25%之间。
这意味着电池可以将大部分太阳能转化为电能,提高能源利用效率。
其次,晶体硅太阳能电池寿命长,可持续使用25年以上。
此外,它们对光强的响应较好,即在弱光条件下仍能产生较高的电能输出。
最后,高效晶体硅太阳能电池的制造工艺相对成熟和稳定,成本相对较低。
高效晶体硅太阳能电池在各个领域都有广泛的应用。
在家庭屋顶和建筑物上安装太阳能电池板,可以将太阳能转化为电能,用于供电、照明和暖气等。
此外,高效晶体硅太阳能电池也广泛应用于太阳能电池板、太阳能电池组件、充电设备和太阳能灯等产品。
随着对可再生能源和环境保护的关注度不断增加,高效晶体硅太阳能电池的未来发展前景十分广阔。
为了提高其转换效率,研究人员正在不断改进太阳能电池设计和材料。
例如,人们正在研究如何改进波长选择器,以优化太阳能电池对不同波长的光线的吸收和利用效率。
此外,研究人员还在探索新型材料,如钙钛矿材料,以提高太阳能电池的效率和稳定性。
晶体硅太阳能电池工作原理引言随着环境保护意识的提高和清洁能源的需求增加,太阳能作为一种可再生能源受到广泛关注。
其中,晶体硅太阳能电池作为最常见的太阳能电池类型,被广泛应用于光伏发电领域。
本文将深入探讨晶体硅太阳能电池的工作原理。
二级标题:晶体硅太阳能电池结构晶体硅太阳能电池的结构主要包括P-N结、P型硅层、N型硅层、金属电极和淋银层等组成部分。
三级标题:P-N结P-N结是晶体硅太阳能电池的核心部分,由P型硅和N型硅构成。
P型硅中掺入三价杂质(如硼),形成空穴,而N型硅中掺入五价杂质(如磷),形成自由电子。
P-N结的形成使得P型硅和N型硅之间形成一种电势差。
三级标题:P型硅层和N型硅层P型硅层和N型硅层分别位于P-N结的两侧。
P型硅层中的空穴在P-N结中受到电势差的作用下向N型硅层扩散,而N型硅层中的自由电子则向P型硅层扩散,形成了电子和空穴的浓度梯度。
三级标题:金属电极和淋银层晶体硅太阳能电池中,金属电极位于晶体硅片的上下表面,用于引出电流。
淋银层则用于提高电流的传导效率,减小电阻损耗。
二级标题:晶体硅太阳能电池工作原理晶体硅太阳能电池的工作原理基于光电效应。
三级标题:光电效应光电效应是指当光照射到物质表面时,光子的能量被电子吸收而导致电子获得足够的能量跃迁到导带,从而产生电流。
这是晶体硅太阳能电池转换太阳能为电能的基本原理。
三级标题:光吸收晶体硅太阳能电池中的光吸收主要发生在P-N结附近的薄层区域。
当光线照射到晶体硅中时,光子能量被硅材料中的电子吸收,激发电子从价带跃迁到导带。
三级标题:电荷分离和漂移当光子激发的电子跃迁到导带后,形成了电子空穴对。
由于P-N结形成的电势差,电子和空穴被分离。
电子被N型硅层吸收,而空穴则被P型硅层吸收。
这导致在晶体硅中形成正负电荷分离的电场。
三级标题:电流产生由于电荷分离和漂移的过程,形成了P-N结两侧的正负电荷分布。
这导致了电子从晶体硅底部的金属电极流向顶部的金属电极,形成了电流。
晶体硅太阳能电池制造工艺原理(一)晶体硅太阳能电池制造工艺引言晶体硅太阳能电池是目前最常见的太阳能电池类型之一,它利用晶体硅的半导体特性将光能转化为电能。
本文将从原理到制造工艺,逐步介绍晶体硅太阳能电池的制造过程。
光伏效应太阳能电池的工作原理基于光伏效应,即在光照的作用下,半导体材料中的能带发生偏移,使得电子从价带跃迁到导带,产生电流。
晶体硅是一种典型的半导体材料,因此被广泛应用于太阳能电池制造。
晶体硅的制备制造晶体硅太阳能电池的第一步是准备合适的晶体硅材料。
常见的制备方法有单晶法和多晶法。
单晶法通过将硅熔体缓慢冷却,使单晶硅逐渐生长;而多晶法则通过快速冷却制得多晶硅,它的晶粒较小,但制备成本较低。
制备电池片1.切割:将制备好的晶体硅材料切割成薄片,常用的切割工具是金刚石线锯。
2.研磨:用化学机械研磨(CMP)工艺对切片进行表面平整化处理,以去除切割时产生的缺陷和污染物。
3.清洗:对研磨后的切片进行清洗处理,去除表面的污染物,提高电池片的质量。
4.获取P型和N型半导体:将切片进行热扩散或离子注入工艺,使得切片的一侧生成P型半导体,另一侧生成N型半导体。
制备电池结构1.沉积透明导电膜:在电池片表面沉积一层透明导电膜,通常使用氧化锡薄膜。
2.沉积抗反射膜:为了提高电池吸收光能的效率,需要在透明导电膜上沉积一层抗反射膜。
常用的抗反射膜材料有二氧化硅等。
3.打开电池片通孔:使用激光或机械刻蚀等方法,在电池片上打开通孔,方便后续电池的连线。
4.沉积金属电极:在电池片的正负电极位置沉积金属电极,常用的金属有铝、银等。
组装与封装1.清洗:清洗电池片和其他组件,确保没有灰尘和污染物。
2.焊接连接:使用焊接技术将电池片与其他元件连接起来,形成电池组。
3.封装:将电池组放入封装材料中,通常使用聚合物材料进行封装,保护电池并提供结构支撑。
总结晶体硅太阳能电池的制造工艺涉及多个步骤,从晶体硅的制备到电池结构的形成,最终完成组装与封装。
晶体硅太阳能电池和钙钛矿晶体硅太阳能电池和钙钛矿是目前研究和应用较为广泛的两类太阳能电池技术。
晶体硅太阳能电池是一种基于晶体硅材料制造的太阳能电池,而钙钛矿太阳能电池则是利用钙钛矿材料制造的太阳能电池。
两者在结构、工作原理和性能等方面存在一定的差异,但都具有重要的应用前景。
晶体硅太阳能电池是目前商业化应用最广泛的太阳能电池技术之一。
其结构由P-N结构组成,包括P型硅和N型硅两个半导体材料。
当光照射到晶体硅太阳能电池上时,光子能量被吸收,激发电子从P区向N区移动,形成电流。
这种电流经过外部电路后,就可以驱动电子设备工作。
晶体硅太阳能电池具有高转换效率、长期稳定性和可靠性强等优点,被广泛应用于屋顶光伏发电、太阳能电池板等领域。
然而,晶体硅太阳能电池也存在一些问题。
首先,制造成本较高,主要是由于材料制备和加工工艺的复杂性导致的。
其次,晶体硅太阳能电池对光的吸收范围有限,只能吸收太阳光谱中的一部分能量,无法充分利用太阳能资源。
此外,晶体硅太阳能电池在高温环境下效率会降低,限制了其在一些地区的应用。
钙钛矿太阳能电池是近年来快速发展的新型太阳能电池技术。
钙钛矿是一种具有特殊晶体结构的无机材料,具有优异的光电特性。
钙钛矿太阳能电池的工作原理是将光子能量吸收转化为电子能量,利用钙钛矿材料中的电子传导和离子传输来实现电流的产生。
钙钛矿太阳能电池具有高转换效率、低制造成本和较宽的光吸收范围等优势,被视为下一代太阳能电池技术的发展方向。
然而,钙钛矿太阳能电池也存在一些挑战和问题。
首先,钙钛矿材料相对不稳定,容易受潮、氧化和退化,限制了其长期稳定性和使用寿命。
其次,钙钛矿太阳能电池在高温和潮湿环境下性能会下降,需要进一步改进材料和工艺。
此外,钙钛矿太阳能电池的商业化应用还面临一些技术和市场的挑战,需要进一步推动研发和产业化进程。
晶体硅太阳能电池和钙钛矿太阳能电池是两类重要的太阳能电池技术。
晶体硅太阳能电池在商业化应用上具有广泛的优势和成熟的产业链,但也存在一些问题。
晶体硅太阳能电池结构及原理1.衬底层:通常采用硅衬底,它是一个薄而坚固的基底,用于支撑整个电池。
2.P-N结:位于衬底层上方的是一个P-N结,它由P型硅层和N型硅层组成。
P型硅层向上注入杂质,使之成为P型半导体,N型硅层向下注入杂质,使之成为N型半导体。
P-N结的形成是通过在硅层中引入不同杂质原子,使得两侧形成不同的杂质浓度,从而形成P-N结。
3.金属网格:位于P型硅层和N型硅层之间的金属网格,通常采用铝作为材料。
金属网格的作用是收集通过P-N结产生的电子和空穴。
4.导电层:覆盖在金属网格上方的是导电层,它通常由透明的氧化锡或氧化铟锡薄膜组成,用于将电流导出。
5.防反射层:位于导电层上方的是防反射层,它通常由二氧化硅薄膜或其他适当的材料制成,用于提高光的吸收效率。
1.吸收光能:当光线照射到晶体硅太阳能电池上时,大部分光线将被引导进入P-N结内部,与P型硅层和N型硅层的杂质原子相互作用。
光能会使杂质原子中的电子被激发,跃迁到更高的能级上,形成自由电子和自由空穴。
2.分离电荷:自由电子和自由空穴会在P-N结内部被分离出来。
由于P型硅层中的杂质原子的排列方式,自由电子将被吸引到N型硅层,并向金属网格中流动,而自由空穴则被吸引到P型硅层,并向另一面流动。
3.电流输出:自由电子和自由空穴的运动形成了电流,这个电流可以通过金属网格和导电层导出。
通过在金属网格和导电层上连接线路,可以将电流输出到外部设备或储存电池中。
总之,晶体硅太阳能电池利用光的能量将其转化为电能。
通过P-N结的形成和光的吸收、电子和空穴的分离,最终形成电流输出。
这种电池结构简单、稳定,且具有较高的转化效率,因此被广泛应用于太阳能发电系统中。
晶体硅太阳能电池的应用
晶体硅太阳能电池是目前最常见和广泛应用的太阳能电池技术之一。
它具有高效率、良好的稳定性和长寿命等优点,在许多领域有广泛的应用,包括:
1. 太阳能发电系统:晶体硅太阳能电池常用于建筑物、家庭和工业用途的太阳能电池组件,用于将太阳能转化为电能供电。
2. 光伏电力系统:晶体硅太阳能电池常用于大型光伏电站,以产生大规模的太阳能电力。
3. 光伏电池板:晶体硅太阳能电池广泛应用于制造光伏电池板,这些电池板可以安装在屋顶、墙壁和地面上,用于分布式发电。
4. 光热发电:晶体硅太阳能电池也可以用于光热发电系统,即利用太阳能集热器将阳光转化为热能,并通过热能发电装置产生电能。
5. 移动设备充电:晶体硅太阳能电池还可以用于充电移动设备,如手机、平板电脑和笔记本电脑等,通过太阳能充电板将阳光转化为电能。
6. 农业和灌溉:晶体硅太阳能电池可以用于农业领域,供电农田灌溉系统和农业设备。
7. 交通信号灯:晶体硅太阳能电池还可用于供电道路交通信号灯,减少对传统电网的依赖。
总之,晶体硅太阳能电池具有广泛的应用领域,用于各种场景中的电力供应和充电需求,以推动可再生能源的利用和减少对化石燃料的依赖。
晶体硅太阳能电池工作原理一、引言太阳能电池作为一种新型的绿色能源,具有无污染、可再生、寿命长等优点,在全球范围内得到了广泛的应用和推广。
其中晶体硅太阳能电池是目前最常见的一种,本文将详细介绍晶体硅太阳能电池的工作原理。
二、晶体硅太阳能电池的结构晶体硅太阳能电池主要由p型硅和n型硅两个半导体材料组成。
p型硅中掺入了少量的三价元素(如铝、镓等),使其带正电荷,称为空穴(hole);n型硅中掺入了少量的五价元素(如磷、砷等),使其带负电荷,称为自由电子(free electron)。
两者相遇时会形成pn结,即p-n结。
三、光生载流子产生当光线照射在p-n结上时,光子会被吸收并激发出一个电子和一个空穴。
这个过程称为光生载流子产生。
激发出来的自由电子会向n区移动,而激发出来的空穴则会向p区移动。
四、内建电场产生当电子和空穴分别向p区和n区移动时,它们会与原有的载流子相遇并发生复合。
这个过程中,电子会填补空穴的位置,并释放出能量。
这些能量最终会被转化为内建电场。
五、光电流产生内建电场可以促使自由电子向p区移动,同时也可以促使空穴向n区移动。
这样就形成了一个光生载流子的漂移运动。
当外部连接导线时,漂移运动中的自由电子和空穴就会通过导线流回到p-n结上,形成一个光电流。
六、总结晶体硅太阳能电池的工作原理是基于光生载流子产生、内建电场产生和光电流产生三个基本过程。
当太阳光照射在p-n结上时,激发出来的自由电子和空穴分别向n区和p区移动,并在两者相遇处形成内建电场。
这个内建电场可以促使光生载流子发生漂移运动,并最终形成一个光电流输出。
第三章晶体硅太阳能电池的基本原理介绍晶体硅太阳能电池是一种利用光的能量直接转换成电能的设备。
其基本原理是通过光的能量激发硅晶体中电子的运动,从而产生电流。
晶体硅太阳能电池由P-N结构组成,即P型硅和N型硅之间形成的结。
P型硅中的杂质是三价元素,如铋、铝等,它们只有三个价电子,因此形成缺电子少的材料,被称为'P型'。
而N型硅中的杂质是五价元素,如磷、锑等,它们有五个价电子,因此形成富余电子的材料,被称为'N型'。
在N型硅中,铝或锑取代硅原子形成空位,这些空位被称为施主杂质;而在P型硅中,硅原子被磷原子取代形成多余的电子,这些多余的电子被称为受主杂质。
在P-N结中,P型和N型硅的电子浓度和空穴浓度明显不同。
P型硅中由于受主杂质的存在,电子浓度远低于空穴浓度,而N型硅由于施主杂质的存在,电子浓度远高于空穴浓度。
这样会形成在P-N结表面上的电场,这个电场被称为内建电场。
当没有外加电源时,P-N结上的内建电场将阻止电子和空穴的扩散和重新组合。
当光照射到P-N结上时,光子的能量可以激发P-N结中的电子,使其通过光电效应从价带跃迁到导带,形成电子空穴对。
由于内建电场的存在,这些电子和空穴被分离,并沿着P型硅和N型硅的电场向相应的电极移动。
通过连接一个外部负载,由于电流的流动,可以产生电能。
晶体硅太阳能电池的效率受多种因素的影响。
首先,吸收光子的能力与材料的光吸收系数有关,材料吸收光子的能力越强,效率越高。
其次,载流子的寿命也影响着电流的流动,载流子的寿命越长,效率越高。
另外,晶体硅太阳能电池的电子结构和掺杂方式也会影响其性能。
总的来说,晶体硅太阳能电池的基本原理是利用光子激发硅晶体中的电子跃迁,通过内建电场将电子和空穴分离,从而产生电流。
不过,晶体硅太阳能电池的效率相对较低,因此近年来研发人员一直致力于开发更高效、更经济的太阳能电池技术,以实现更广泛的应用。
晶体硅太阳电池材料的分类
晶体硅太阳电池是一种常见的太阳能电池,其主要材料包括:
1. 晶体硅:晶体硅是太阳能电池的主要材料,其具有良好的光电转换效率和稳定性。
晶体硅可以通过单晶生长或多晶生长的方式制备,其中单晶硅具有更高的光电转换效率和更好的性能稳定性。
2. 掺杂材料:掺杂材料是为了改善晶体硅的导电性能和光电性能而添加的物质。
掺杂材料可以分为n型掺杂和p型掺杂两种。
在晶体硅太阳电池中,一般采用n型掺杂的材料,例如铝掺杂镓硅(AlGaAs)或铟掺杂镓硅(InGaAs)等。
3. 导电层和反射层:导电层和反射层是太阳能电池的重要组成部分。
导电层一般采用氧化锡(SnO2)等材料,用于形成电子通路;反射层一般采用银(Ag)等材料,用于反射太阳光并防止光损失。
4. 玻璃封装材料:玻璃封装材料是太阳能电池的保护层,可以保护晶体硅和其他材料不受环境的损害。
常见的玻璃封装材料包括硼硅酸盐玻璃(Borosilicate Glass)和钙钛矿玻璃(CaTiO3 Glass)等。
总的来说,晶体硅太阳电池的材料种类繁多,不同的材料在太阳能电池的性能和成本方面都有不同的优势和劣势。
因此,在实际应用中,需要根据具体的需求和条件选择合适的材料和结构。
晶体硅太阳能电池专业班级:机械设计制造及其自动化13秋姓名:张正红学号: 1334001250324报告时间: 2015年12月晶体硅太阳能电池摘要:人类面临着有限常规能源和环境破坏严重的双重压力,能源己经成为越来越值得关注的社会与环境问题。
人们开始急切地寻找其他的能源物质,而光能、风能、海洋能以及生物质能这些可再生能源无疑越来越受到人们的关注。
光伏技术也便随之形成并快速地发展了起来,因此近年来,光伏市场也得到了快速发展并取得可喜的成就。
本文主要就晶体硅太阳能电池发电原理及关键材料进行介绍,并对晶体硅太阳能电池及其关键材料的市场发展方向进行了展望。
关键词:太阳能电池;工作原理;晶体硅;特点;发展趋势前言“开发太阳能,造福全人类”人类这一美好的愿景随着硅材料技术、半导体工业装备制造技术以及光伏电池关键制造工艺技术的不断获得突破而离我们的现实生活越来越近!近20年来,光伏科学家与光伏电池制造工艺技术人员的研究成果已经使太阳能光伏发电成本从最初的几美元/KWh减少到低于20美分/KWh。
而这一趋势通过研发更新的工艺技术、开发更先进的配套装备、更廉价的光伏电子材料以及新型高效太阳能电池结构,太阳能光伏(PV)发电成本将会进一步降低,到本世纪中叶将降至4美分/KWh,优于传统的发电费用。
大面积、薄片化、高效率以及高自动化集约生产将是光伏硅电池工业的发展趋势。
通过降低峰瓦电池的硅材料成本,通过提升光电转换效率与延长其使用寿命来降低单位电池的发电成本,通过集约化生产节约人力资源降低单位电池制造成本,通过合理的机制建立优秀的技术团队、避免人才的不合理流动、充分保证技术上的持续创新是未来光伏企业发展的核心竞争力所在!一、晶体硅太阳能电池工作原理太阳能电池是一种把光能转换成电能的能量转换器,太阳能电池工作原理的基础是半导体PN结的光生伏特效应。
在纯净的硅晶体中,自由电子和空穴的数目相等。
如果在硅晶体中掺入能够俘获电子的硼、铝、镓或铟等杂质元素,就构成了P型半导体,如果在硅晶体中掺入能够释放电子的磷、砷或锑等杂质元素,就构成了N型半导体。
若把这两种半导体结合在一起,在交界面处便会形成PN结,并在结的两边形成势垒电场。
当太阳光照射PN结时,在半导体内的原子由于获得了光能而释放电子,产生电子-空穴对,在势垒电场的作用下,电子被驱向N型区,空穴被驱向P型区,从而在PN结的附近形成了与势垒电场方向相反的光生电场。
光生电场的一部分抵销势垒电场,其余使得在N型区与P型区之间的薄层产生了电动势,即光生伏特电动势,当接通外电路时便有电能输出。
这就是PN结接触型单晶硅太阳能电池发电的基本原理。
若把几十个、数百个太阳能电池单体串联、并联起来,组成太阳能电池组件,在太阳光的照射下,便可获得输出功率相当可观的电能。
二、晶硅太阳能电池特点(一)晶硅电池包括单晶硅和多晶硅,在硅系列太阳能电池中,单晶硅太阳能电池的转换效率无疑是最高的,技术也最成熟,在大规模应用和工业生产中仍旧占据主导地位。
虽然晶体硅太阳能电池被广泛应用,但晶体硅的禁带宽度Eg=1.12eV,太阳能光电转换理论效率相对较低;硅材料是间接能带材料,在可见光范围内,硅的光吸收系数远远低于其它太阳能光电材料,如同样吸收95%以上的太阳光,GaAS太阳电池只需要5~10μm,而硅太阳电池在150~200μm 以上,才能有效地吸收太阳能;高性能单晶硅电池是建立在高质量单晶硅材料和相关成熟的加工工艺基础上。
提高转换效率主要是靠单晶硅表面微结构处理和分区掺杂工艺。
由于受单晶硅材料价格及相应繁琐的电池工艺影响,致使单晶硅成本据高不下;硅太阳电池尺寸相对较小,若组成光伏系统,要用数十个相同的硅太阳电池连接起来,造成系统成本较高。
这些因素严重影响了其广泛应用。
为解决单晶硅太阳能电池的制造过程复杂、能耗大的缺点,用浇铸法或晶带法制造的多晶硅太阳能电池的开发取得了进展。
但是多晶硅材料质量比单晶硅差,有许多晶界存在,电池效率比单晶硅低;晶向不一致,表面织构化困难。
但多晶硅太阳能电池经过不断的努力,目前其能量转换效率与单晶硅太阳能电池已基本上在同一个数量级。
特别是多晶硅电池可以制成方形,在制作太阳能电池组件时面积利用率高。
今后,在如何开发新技术以得到低价格的多晶硅材料,如何得到高效率、大面积多晶硅太阳能电池等方面还有许多工作可做。
(二)晶硅太阳能的发展趋势高效电池是光伏的突围之匙,近年来晶硅太阳能电池的转换效率取得重大进展,浆料及丝网印刷技术进步最快;但随之而来的是银的消耗日益突出,其成本已占到电池成本的17%左右,如图2-4为量产太阳能电池的转换效率。
图2-4量产太阳能电池的转换效率晶体硅电池发展的趋势是低成本、高效率,这是光伏技术的发展方向。
低成本的实现途径包括效率提高、成本下降及组件寿命提升三方面。
效率的提高依赖工艺的改进、材料的改进及电池结构的改进。
成本的下降依赖于现有材料成本的下降、工艺的简化及新材料的开发。
组件寿命的提升依赖于组件封装材料及封装工艺的改善。
因而,晶体硅电池发电的平价上网时间表除了与产业规模的扩大有关外,最重要的依赖于产业技术(包括设备和原材料)的改进。
仅靠工艺水平的改进对电池效率的提升空间已经越来越有限,电池效率的进一步提升将依赖新结构、新工艺的建立。
具有产业化前景的新结构电池包括选择性发射极电池、异质结电池、背面主栅电池及N型电池等。
这些电池结构采用不同的技术途径解决了电池的栅线细化、选择性扩散、表面钝化等问题,可以将电池产业化效率提升2~3个百分点。
为了进一步降低成本、提高效率,各国光伏研究机构和生产商不断改善现有技术,开发新技术。
如新南威尔士大学研究了近20年的先进电池系列PESC、PERC、PERL电池,2001年,PERL电池效率达到24.7%,接近理论值,是迄今为止的最高记录。
后来由此衍生了南京中电的SE电池与尚德的PLUTO电池,PLUTO电池的本质即是将实验室PERL电池进行量产,SE电池可以算是尚德PLUTO电池的一个简化版,它们都是从PE系列电池演变而来,因为无论是PESC、PERC,还是PERL 电池均含有SE电池最典型的选择性发射极技术,SE技术只选取PE系列收益最明显、同时产业化相对容易的前表面结构部分。
相对于尚德PLUTO是对PERL技术的“高仿”电池,中电SE电池可视为“低仿”,如图2-5 PERL电池结构是PERL电池结构图。
图2-5 PERL电池结构PERL电池具有高效率的原因在于:(1)电池正面采用“倒金字塔”,这种结构受光效果优于绒面结构,具有很低的反射率,从而提高了电池的短路电流JSC.(2)淡磷、浓磷的分区扩散。
栅指电极下的浓磷扩散可以减少栅指电极接触电阻;而受光区域的淡磷扩散能满足横向电阻功耗小,且短波响应好的要求;(3)背面进行定域、小面积的硼扩散P+区。
这会减少背电极的接触电阻,又增加了硼背面场,蒸铝的背电极本身又是很好的背反射器,从而进一步提高了电池的转化效率;(4)双面钝化。
发射极的表面钝化降低表面态,同时减少了前表面的少子复合。
而背面钝化使反向饱和电流密度下降,同时光谱响应也得到改善;但是这种电池的制造过程相当繁琐,其中涉及到好几道光刻工艺,所以不是一个低成本的生产工艺。
其他如SunPower公司开发出一种采用丝网印刷工艺的低成本背面点接触电池,效率已达22%;三洋公司生产的HIT电池,研发效率可达23.7%;德国Konstanz ISEC采用n型ZEBRA IBC技术研发的双面电池得到了21.1%效率,背面的光照可得到20%额外的输出功率。
太阳电池硅片技术发展趋势是薄片化,降低硅片厚度是减少硅材料消耗、降低晶硅太阳电池成本的有效技术措施,是光伏技术进步的重要方面。
30多年来,太阳电池硅片厚度从70年的450~500μm 降低到目前的150~180μm,降低了一半以上,硅材料用量大大减少,对太阳电池成本降低起到了重要作用,是技术进步促进成本降低的重要范例之一,如表2-2太阳电池显示了太阳电池硅片厚度的降低。
表2-2太阳电池硅片厚度的降低(三)晶硅太阳能电池转换效率的损失机理太阳能电池转换效率受到光吸收、载流子输运、载流子收集的限制。
现有的影响太阳能电池效率的因素主要有电学损失和光学损失,光学损失主要是表面反射、遮挡损失和电池材料本身的光谱效应特性;电量转换损失包括载流子损失和欧姆损失。
太阳光之所以仅有很少的百分比转换为电能,原因归结于不管是哪一种材料的太阳能电池都不能将全部的太阳光转换为电流,晶体硅太阳电池的光谱敏感最大值没有与太阳辐射的强度最大值完全重合,在光能临界值之上一个光量子只产生一个电子—空穴对,余下的能量又被转换为未利用的热量,光的反射引起阳光中的一部分不能进入电池中。
如硅的带隙Eg=1.12eV,对应波长大于1.1μm 的光透过,不能被吸收;波长小于1.1μm的光子能量如果大于Eg,一个光子只产生一个电子,多余能量不能利用,以热的形式损失;硅表面反射率35%,造成较大的反射损失;其他如二极管非线性损失、复合损失、接触电阻损失都造成硅电池效率的下降。
对于单晶硅硅太阳能电池,转换效率的理论最高值是28%。
只有尽量减少损失才能开发出效率足够高的太阳能电池。
影响晶体硅太阳能电池转换效率的原因主要来自两个方面,如图2-6所示:(1)光学损失,包括电池前表面反射损失、接触栅线的阴影损失以及长波段的非吸收损失。
(2)电学损失,它包括半导体表面及体内的光生载流子复合、半导体和金属栅线的接触电阻,以及金属和半导体的接触电阻等的损失。
这其中最关键的是降低光生载流子的复合,它直接影响太阳能电池的开路电压。
光生载流子的复合主要是由于高浓度的扩散层在前表面引入大量的复合中心。
此外,当少数载流子的扩散长度与硅片的厚度相当或超过硅片厚度时,背表面的复合速度对太阳能电池特性的影响也很明显。
图2-6普通硅太阳能电池的多种损失机制(四)提高晶硅太阳能电池转换效率的方法围绕提高晶硅太阳能电池的转换效率,目前正在采用的有效技术有:1、优化晶体硅材料:太阳电池的效率与硅材料的电阻率及少子寿命有着极其密切的联系,理论和实践都证明0.5-3Ω·cm左右的工业生产直拉单晶硅片及铸锭多晶硅片都可以有很好的效果。
为了降低光致衰减,目前单晶有向高电阻率发展的趋势。
2、高方阻技术:采用均匀高方阻技术,高方阻PN结具有高表面活性磷浓度、低非活性磷浓度、深结的特点。
3、先进的金属化技术:金属栅线由不透光的银颗粒及玻璃体组成。
为了降低栅线遮挡造成的电池效率损失,可以缩小细栅的宽度、采用超细主栅或无主栅、背面接触、栅线内反射、选择性扩散技术、激光刻槽埋栅电池。
4、光陷阱结构:一般高效单晶硅电池采用化学腐蚀制绒技术,制得绒面的反射率可达到10%以下。