钢结构螺栓连接实例
- 格式:pptx
- 大小:3.03 MB
- 文档页数:48
第三章钢结构螺栓连接第一节概述螺栓作为钢结构主要连接紧固件,通常用于钢结构中构件间的连接、固定、定位等,钢结构中使用的连接螺栓一般分普通螺栓和高强度螺栓两种。
选用普通螺栓作为连接的紧固件,或选用高强度螺栓但不施加紧固轴力,该连接即为普通螺栓连接,也即通常意义下的螺栓连接;选用高强度螺栓作为连接的紧固件,并通过对螺栓施加紧固轴力而起到连接作用的钢结构连接称高强度螺栓连接。
图!"#"$为两种螺栓连接工作机理的示意,其中图!"#"$(%)为摩擦型高强度螺栓连接的工作机理,通过对高强度螺栓施加紧固轴力,将被连接的连接钢板夹紧产生摩擦效应,当连接节头受外力作用时,外力靠连接板层接触面间的摩擦来传递,应力流通过接触面平滑传递,无应力集中现象。
普通螺栓连接在受外力后,节点连接板即产生滑动,外力通过螺栓杆受剪和连接板孔壁承压来传递,如图!"#"$(&)。
图!"#"$螺栓连接工作机理示意图!"#"’为典型螺栓连接拉伸曲线,从曲线上可以把螺栓连接工作过程分为四个阶段:阶段$为静摩擦抗滑移阶段,即为摩擦型高强度螺栓连接的工作阶段,对普通螺栓连接,阶段$不明显,可忽略不计,连接接头直接进入阶段’;阶段’为荷载克服摩擦阻力,接头产生滑移,螺栓杆与连接板孔壁接触进入承压状态,此阶段为摩擦型高强度螺栓连接的极限破坏状态;阶段#为螺栓和连接板处于弹性变形阶段,荷载—变形曲线呈现线性关系;阶段!为螺栓和连接板处于弹塑性变形阶段,最后螺栓剪断或连接板破坏(拉脱、承压和净截面拉断),整个连接接头破坏,曲线的终点即为普通螺栓连接的极限破坏状态;若采用高强度螺栓,则为承压型高强度螺栓连接的极限破坏状态。
图!"#"$螺栓连接的典型拉伸曲线对于高强度螺栓连接,阶段#和阶段!中连接板面间的摩擦效应仍然存在,该两阶段通称摩擦—承压型高强度螺栓连接,连接的设计计算应采用变形准则方法进行,即给定一个连接接头变形量(!),可以通过连接拉伸曲线(%&’(!))得到相应接头承载力,对于允许连接接头有一定变形的结构,可以采用摩擦—承压型高强度螺栓连接,其优点是比摩擦型连接提高了连接的承载力,避免了接头发生极限破坏(承压型连接)。
第一节钢结构的连接方法钢结构是由钢板、型钢通过必要的连接组成基本构件,如梁、柱、桁架等;再通过一定的安装连结装配成空间整体结构,如屋盖、厂房、钢闸门、钢桥等。
可见,连接的构造和计算是钢结构设计的重要组成部分。
好的连接应当符合安全可靠、节约钢材、构造简单和施工方便等原则。
钢结构的连接方法可分为焊缝连接、铆钉连接和螺栓连接三种(详见附图十三)。
一、焊缝连接焊接是现代钢结构最主要的连接方法。
其优点是不削弱构件截面(不必钻孔),构造简单,节约钢材,加工方便,在一定条件下还可以采用自动化操作,生产效率高。
此外,焊缝连接的刚度较大密封性能好。
焊缝连接的缺点是焊缝附近钢材因焊接的高温作用而形成热影响区,热影响区由高温降到常温冷却速度快,会使钢材脆性加大,同时由于热影响区的不均匀收缩,易使焊件产生焊接残余应力及残余变形,甚至可能造成裂纹,导致脆性破坏。
焊接结构低温冷脆问题也比较突出。
二、铆钉连接铆接的优点是塑性和韧性较好,传力可靠,质量易于检查和保证,可用于承受动载的重型结构。
但是,由于铆接工艺复杂、用钢量多,因此,费钢又费工。
现已很少采用。
三、螺栓连接螺栓连接分为普通螺栓连接和高强度螺栓连接两种。
普通螺栓通常用Q235钢制成,而高强度螺栓则用高强度钢材制成并经热处理。
高强度螺栓因其连接紧密,耐疲劳,承受动载可靠,成本也不太高,目前在一些重要的永久性结构的安装连接中,已成为代替铆接的优良连接方法。
螺栓连接的优点是安装方便,特别适用于工地安装连接,也便于拆卸,适用于需要装拆结构和临时性连接。
其缺点是需要在板件上开孔和拼装时对孔,增加制造工作量;螺栓孔还使构件截面削弱,且被连接的板件需要相互搭接或另加拼接板或角钢等连接件,因而比焊接连接多费钢材。
第二节 焊接方法、焊缝类型和质量级别一、钢结构中常用的焊接方法焊接方法很多,钢结构中主要采用电弧焊,薄钢板(mm t 3 )的连接有时也可以采用电阻焊或气焊。
1.电弧焊电弧焊是利用焊条或焊丝与焊件间产生的电弧热,将金属加热并熔化的焊接方法。
有一工字形钢梁,采用I50a (Q235钢),承受荷载如图8-83所示。
F=125kN ,因长度不够而用对接坡口焊缝连接。
焊条采用E43型,手工焊,焊缝质量属Ⅱ级,对接焊缝抗拉强度设计值2205/w t f N mm =,抗剪强度设计值2120/w v f N mm =。
验算此焊缝受力时是否安全。
图8-83 习题解:依题意知焊缝截面特性:A=119.25cm 2,Wx =1858.9cm 3,Ix=46472cm 4,Sx=1084.1cm 3,截面高度h=50cm ,截面宽度b=158mm ,翼缘厚t=20mm ,腹板厚tw=12.0mm 。
假定忽略腹板与翼缘的圆角,计算得到翼缘与腹板交点处的面积矩S 1=20×158×(250-10)=×105mm 3。
对接焊缝受力:125V F kN ==;2250M F kN m =⨯=⋅ 焊缝应力验算:最大正应力:622325010134.5/205/1858.910w t x M N mm f N mm W σ⨯===<=⨯ 最大剪应力:33224125101084.11024.3/120/464721012w x v x w VS N mm f N mm I t τ⨯⨯⨯===<=⨯⨯ 折算应力:22127.2/205/w zs t N mm f N mm σ=<= 故焊缝满足要求。
图8-84所示的牛腿用角焊缝与柱连接。
钢材为Q235钢,焊条用E43型,手工焊,角焊缝强度设计值2f 160/w f N mm =。
T=350kN ,验算焊缝的受力。
图8-84 习题 图8-84-1 焊缝截面计算简图解:(注:焊缝上下翼缘长度114mm 有些问题,应取2130210110l t mm -=-⨯=,黄钜枝06年6月19日)如图8-84-1,截面特性计算如下:2(11425242882)0.75667.2f A h mm =⨯+⨯+⨯⨯= 228820.73225.6w f A h mm =⨯⨯=32741288288[2882114(16)252()4]0.77.913101222f f I h mm =⨯⨯+⨯+⨯+⨯⨯⨯=⨯焊缝受力:247.52N kN ==;247.52V kN ==; 49.5M V e kN m =⋅=⋅ 应力验算:危险点为a 、b 两点,下面分别验算: 对a 点: 32247.51043.67/5667.2N aN N mm A σ⨯===62749.510160100.09/7.91310M a af My N mm I σ⨯⨯===⨯ 2243.67100.09143.76/195.2/N Mw a a f f N mm f N mm σσβ+=+=<=对b 点:32247.51076.73/3225.6V bw V N mm A τ⨯=== 243.67/N Nb a N mm σσ==62749.51014490.16/7.91310M b bf My N mm I σ⨯⨯===⨯22133.87/160/w f N mm f N mm =<=故焊缝强度满足要求。
钢结构门式钢架施工之——高强螺栓篇一栋完整的轻型钢结构厂房,钢构件在加工厂制作完成后运至现场安装,现场构件安装方式主要有螺栓连接、焊接。
在轻钢厂房中主要采用的连接方式是螺栓连接,比如说梁柱连接、梁梁连接、屋檩墙檩连接、其它次构件连接、屋面墙面板连接等。
螺栓连接又分为高强螺栓连接、普通螺栓连接、自攻螺丝连接等等,今天着重说说高强螺栓,高强度螺栓连接具有施工简单、受力性能好、可拆换、耐疲劳、以及在动力荷载作用下不致松动等优点。
高强度螺栓的定义及表示方法定义:高强度螺栓采的螺杆、螺母及垫圈都由高强钢材制作,常用45号钢、40硼钢、20MnTiB、40Cr、35CrMoA等,制成后进行热处理,提高了强度。
按规定螺栓的性能等级在8.8级以上的称为高强度螺栓,常用的高强螺栓等级为10.9级、12.9级。
高强螺栓最小规格M12,常用M16~M30。
书面表示方式:无论是设备安装还是工程结构安装,每种螺栓都有其表示方法,但是带螺纹的一般都是以大写字母“M”开头,螺母也是一样,后面再依次标注螺栓直径及强度等级,比如:M2010.9S,其含义就是直径为20mm的、强度等级为10.9级的高强度螺栓,这里的“S”就表示螺栓是高强度螺栓。
图纸表示方式:在钢结构施工图纸中(一般是在结构图纸中),高强螺栓也是有特定的表示方法的,一般是菱形的填充图案(普通螺栓是圆形空心孔),在旁边会标注螺栓直径及孔径,如下图所示。
高强度螺栓的分类按照外形上分:可分为大六角头和扭剪型两种,大六角头高强螺栓固定端为六角型,由一个螺杆、两个垫圈及一个螺母组成;扭剪型高强螺栓固定端为圆柱头,由一个螺杆、一个垫圈及一个螺母组成,与大六角不同的是,扭剪型尾部还有一段没有螺纹的梅花头。
按照性能等级分:可分为8.8、10.9、12.9级等,现今我国使用的大六角头高强度螺栓有8.8级和10.9级两种,而扭剪型高强度螺栓只有10.9级一种。
按照受力特点分:可分为摩擦型、承压型及张拉型高强螺栓,具体受力特点及使用部位不详细赘述,在钢结构图纸的结构总说明及部分集中标注中都会说明使用哪种高强螺栓,目前使用较多的是摩擦型高强度螺栓。
钢结构的连接习题及答案例 3.1 试验算图3-21所示钢板的对接焊缝的强度。
钢板宽度为200mm ,板厚为14mm ,轴心拉力设计值为N=490kN ,钢材为Q235 ,手工焊,焊条为E43型,焊缝质量标准为三级,施焊时不加引弧板。
(a ) (b )图3-21 例题3-1 (a )正缝;(b )斜缝解:焊缝计算长度 mm l w172142200=⨯-=焊缝正应力为223/185/5.2031417210490mm N f mm N w t =>=⨯⨯=σ不满足要求,改为斜对接焊缝。
取焊缝斜度为1.5:1,相应的倾角056=θ,焊缝长度mm l w 2.21314256sin 200'=⨯-=此时焊缝正应力为2203'/185/1.136142.21356sin 10490sin mm N f mm N tl N w f w =<=⨯⨯⨯==θσ剪应力为2203'/125/80.91142.21356cos 10490cos mm N f mm N tl N w v w =<=⨯⨯⨯==θτ 斜焊缝满足要求。
48.1560=tg ,这也说明当5.1≤θtg 时,焊缝强度能够保证,可不必计算。
例 3.2 计算图3-22所示T 形截面牛腿与柱翼缘连接的对接焊缝。
牛腿翼缘板宽130mm ,厚12mm ,腹板高200mm ,厚10mm 。
牛腿承受竖向荷载设计值V=100kN ,力作用点到焊缝截面距离e=200mm 。
钢材为Q345,焊条E50型,焊缝质量标准为三级,施焊时不加引弧板。
解:将力V 移到焊缝形心,可知焊缝受剪力V=100kN ,弯矩 m kN Ve M ⋅=⨯==202.0100翼缘焊缝计算长度为mm 106122130=⨯-腹板焊缝计算长度为mm 19010200=-(a ) (b )图3-22 例题3-2(a )T 形牛腿对接焊缝连接;(b )焊缝有效截面焊缝的有效截面如图3-22b 所示,焊缝有效截面形心轴x x -的位置cm y 65.60.1192.16.107.100.1196.02.16.101=⨯+⨯⨯⨯+⨯⨯=cm y 55.1365.62.1192=-+=焊缝有效截面惯性矩4223134905.62.16.1005.411919121cm I x =⨯⨯+⨯⨯+⨯=翼缘上边缘产生最大拉应力,其值为22461/265/59.981013491065.61020mm N f mm N I My w t x t =<=⨯⨯⨯⨯==σ 腹板下边缘压应力最大,其值为22462/310/89.2001013491055.131020mm N f mm N I My w c x a =<=⨯⨯⨯⨯==σ 为简化计算,认为剪力由腹板焊缝承受,并沿焊缝均匀分布223/180/63.521019010100mm N f mm N A V w v w =<=⨯⨯==τ腹板下边缘正应力和剪应力都存在,验算该点折算应力222222/5.2912651.11.1/6.22063.5239.2003mmN f mm N w t a =⨯=<=⨯+=+=τσσ焊缝强度满足要求。
一、概述轻钢结构是一种轻型、高强度的建筑结构体系,其螺栓端板连接是轻钢结构中常见的连接方式之一。
合理的螺栓端板连接设计可以保证轻钢结构的稳定性和安全性。
本文将介绍轻钢结构螺栓端板连接的实用设计方法。
二、螺栓端板连接的基本原理1. 螺栓端板连接是通过螺栓将端板和轻钢构件连接在一起,实现结构的稳定性和承载能力。
2. 螺栓端板连接的设计必须考虑材料的选用、螺栓的规格、螺栓孔的尺寸、连接件的强度等因素。
三、螺栓端板连接设计的步骤1. 确定连接的受力情况,包括受力方向、受力大小和受力点的位置。
2. 选择合适的材料,包括螺栓、端板和连接件的材料,要求具有足够的强度和刚度。
3. 确定螺栓的规格,包括直径和长度,要满足连接的承载能力要求。
4. 设计螺栓孔的尺寸和布置方式,确保螺栓孔与螺栓的配合精度和连接的稳固性。
5. 计算连接件的强度和刚度,确保连接件能够承受连接的受力。
6. 绘制螺栓端板连接的详细图纸,包括连接件的尺寸和布置方式,以及螺栓孔的位置和尺寸。
四、螺栓端板连接设计的注意事项1. 考虑连接的可拆卸性,确定螺栓端板连接的拧紧方式和拆卸方式,以便于后期的维护和更换。
2. 防止连接件的松动和腐蚀,采取合适的防腐措施和加固措施。
3. 考虑连接的变形和温度影响,根据设计要求采取合适的补偿和控制措施。
五、结论轻钢结构螺栓端板连接的设计是轻钢结构设计中重要的一环,合理的设计可以确保轻钢结构的稳定性和安全性。
设计人员在进行螺栓端板连接设计时,需要充分考虑连接的受力情况、材料选用、螺栓规格、螺栓孔尺寸等因素,并严格按照设计要求绘制详细的连接图纸。
还需要注意设计中的可拆卸性、防松动和腐蚀、温度影响等因素,为轻钢结构螺栓端板连接的稳定性和安全性提供技术支持。
六、螺栓端板连接的实例分析为了更好地理解螺栓端板连接的设计方法,我们可以通过一个实际的案例来进行分析。
假设我们需要设计一个轻钢结构的屋顶连接,以支撑屋顶的重量并保证结构的稳定性。