四年级行程问题分类
- 格式:docx
- 大小:38.63 KB
- 文档页数:16
第三部分行程问题第一讲行程基础【专题知识点概述】行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现。
行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。
行程问题思维灵活性大,辐射面广,但根本在于距离、速度和时间三个基本量之间的关系,即:距离=速度⨯时间,时间=距离÷速度,速度=距离÷时间。
在这三个量中,已知两个量,即可求出第三个量。
掌握这三个数量关系式,是解决行程问题的关键。
在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。
一、行程基本量我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度⨯总时间。
【重点难点解析】1.行程三要素之间的关系2.平均速度的概念3.注意观察运动过程中的不变量【竞赛考点挖掘】1.注意观察运动过程中的不变量【习题精讲】【例1】(难度等级※)邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?法一:先求出去的时间,再求出返回的时间,最后转化为时刻。
①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。
小学数学必考的四类行程问题,解题就按这个思路来!行程问题是小学数学考试的四大题型之一(计算、数论、几何、行程)。
今天我们一起学习一下如何解决这一类问题!1【一般相遇追及问题】包括一人或者二人时(同时、异时)、地(同地、异地)、向(同向、相向)的时间和距离等条件混合出现的行程问题。
建议熟练应用标准解法,即s=v×t结合标准线段画图(基本功)解答。
由于只用到相遇追及的基本公式即可解决,在解题的时候,一旦出现比较多的情况变化时,结合自己画出的图分段去分析情况。
例题甲乙两人相距200米,甲每分钟走45米,乙每分钟行55米。
几分钟后两人相距500米?分析与解:1.反方向运动:相背:(500-200)÷(45+55)=300/100=3(分钟)相遇再相背:(500+200)÷(45+55)=700/100=7(分钟)2.同方向运动:追上再超过:(500+200)÷(55-45)=700/10=70(分钟)追不上:(500-200)÷(55-45)=300/10=30(分钟)展开剩余84%2【复杂相遇追及问题】(1)多人相遇追及问题多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
比一般相遇追及问题多了一个运动对象,即一般我们能碰到的是三人相遇追及问题。
解题思路完全一样,只是相对复杂点,关键是标准画图的能力能否清楚表明三者的运动状态。
例题有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?(2)多次相遇追及问题即两个人在一段路程中同时同地或者同时异地反复相遇和追及,俗称“反复折腾型问题”。
分为标准型(如已知两地距离和两者速度,求n次相遇或者追及点距特定地点的距离或者在规定时间内的相遇或追及次数)和纯周期问题(少见,如已知两者速度,求一个周期后,即两者都回到初始点时相遇、追及的次数)。
四年级数学拓展行程问题
行程问题是小学四年级数学中的一个重要内容,以下是一些常见的行程问题及其解法:
1. 相遇问题:两个物体同时从两地相向而行,经过一段时间后在途中相遇,这类问题叫做相遇问题。
其基本数量关系为:速度和×相遇时间=路程。
2. 追及问题:两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度要慢些,在一定时间之内,后面的追上前面的物体,这类问题就叫做追及问题。
其基本数量关系为:速度差×追及时间=路程。
3. 火车过桥问题:火车过桥是指火车车头上桥直到火车车尾离桥的整个过程,即火车行驶的路程是桥长与火车长度之和。
4. 流水行船问题:船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流
水行船问题。
其基本数量关系为:顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。
5. 环形跑道问题:在环形跑道上,两个人同时同地背向而行,经过一段时间后两人会相遇,这就是环形跑道中的相遇问题;两个人同时同地同向而行,其中一人要追上另一人,这就是环形跑道中的追及问题。
这些是行程问题中常见的几种类型,希望对你有所帮助。
如果你有具体的问题,可以提供给我,我会尽力为你解答。
(完整版)奥数四年级行程问题第三部分行程问题【专题知识点概述】行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现。
行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。
行程问题思维灵活性大,辐射面广,但根本在于距离、速度和时间三个基本量之间的关系,即:距离=速度?时间,时间=距离÷速度,速度=距离÷时间。
在这三个量中,已知两个量,即可求出第三个量。
掌握这三个数量关系式,是解决行程问题的关键。
在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。
一、行程基本量我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度?总时间。
【重点难点解析】1.行程三要素之间的关系2.平均速度的概念3.注意观察运动过程中的不变量【竞赛考点挖掘】1.注意观察运动过程中的不变量【习题精讲】【例1】(难度等级※)邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【分析与解】法一:先求出去的时间,再求出返回的时间,最后转化为时刻。
①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。
行程问题7大经典题型四年级
行程问题在数学中是一个经典的题型,旨在训练学生的逻辑思维和计算能力。
下面将介绍四年级学生常见的行程问题的七种经典题型。
1. 单程问题:给定起点和终点,要求计算从起点到终点所需的距离
或时间。
这种题型要求学生直接计算两个点之间的距离或时间差。
2. 往返问题:给定起点和终点,要求计算从起点到终点再返回起点
的总距离或时间。
这种题型要求学生计算两次单程的距离或时间,并将其相加。
3. 同步问题:给定两个人从相同的地点同时出发,要求计算他们在
指定时间或指定距离后到达的位置。
这种题型要求学生计算两个人的行程,并比较他们的位置。
4. 平均速度问题:给定两个地点之间的距离和时间,要求计算平均
速度。
这种题型要求学生将距离除以时间,得到平均速度。
5. 快慢车问题:给定两辆车的速度和距离,要求计算两辆车分别到
达终点所需的时间。
这种题型要求学生根据速度和距离的关系,计算出所需的时间。
6. 集合问题:给定多个地点之间的距离,要求计算从起点到终点经过指定的中间点的最短路径。
这种题型要求学生进行路径规划,选择最短的路径。
7. 排队问题:给定多个人按照不同的顺序排队,要求计算某个人离队伍起点或终点的距离。
这种题型要求学生计算相对位置,并进行加减运算。
通过解决这些行程问题,四年级学生可以培养逻辑思维能力和计算能力,提高他们的数学综合素质。
同时,这些问题也能够让学生在实际生活中运用数学知识,理解和应用数学的意义和价值。
第三部分行程问题第一讲行程基础【专题知识点概述】行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现。
行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。
行程问题思维灵活性大,辐射面广,但根本在于距离、速度和时间三个基本量之间的关系,即:距离=速度⨯时间,时间=距离÷速度,速度=距离÷时间。
在这三个量中,已知两个量,即可求出第三个量。
掌握这三个数量关系式,是解决行程问题的关键。
在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。
一、行程基本量我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度⨯总时间。
【重点难点解析】1.行程三要素之间的关系2.平均速度的概念3.注意观察运动过程中的不变量【竞赛考点挖掘】1.注意观察运动过程中的不变量【习题精讲】【例1】(难度等级※)邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【分析与解】法一:先求出去的时间,再求出返回的时间,最后转化为时刻。
①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。
行程问题知识点1、在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,要求第三个量,这类应用题,叫做行程应用题。
也叫行程问题。
2、行程应用题的解题关键是掌握速度、时间、距离之间的数量关系:距离=速度×时间速度=距离÷时间时间=距离÷速度3、按运动方向,行程问题可以分成三类:(1)相向运动问题(相遇问题)(2)同向运动问题(追及问题)(3)背向运动问题(相离问题)应用题1、相向运动问题(1)相向运动问题(相遇问题),是指地点不同、方向相对所形成的一种行程问题。
两个运动物体由于相向运动而相遇。
(2)解答相遇问题的关键,是求出两个运动物体的速度之和。
基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间例1、两列火车同时从相距540千米的甲乙两地相向而行,经过3.6小时相遇。
已知客车每小时行80千米,货车每小时行多少千米?例2、两城市相距138千米,甲乙两人骑自行车分别从两城出发,相向而行。
甲每小时行13千米,乙每小时行12千米,乙在行进中因修车候车耽误1小时,然后继续行进,与甲相遇。
求从出发到相遇经过几小时?2、同向运动问题(追及问题)(1)两个运动物体同向而行,一快一慢,慢在前快在后,经过一定时间快的追上慢的,称为追及。
解答追及问题的关键,是求出两个运动物体的速度之差。
(2)基本公式有:追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间例1、甲乙两人在相距12千米的AB两地同时出发,同向而行。
甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。
几小时后乙能追上甲?例2、一个通讯员骑摩托车追赶前面部队乘的汽车。
汽车每小时行48千米,摩托车每小时行60千米。
通讯员出发后2小时追上汽车。
通讯员出发的时候和部队乘的汽车相距多少千米?注意:要求距离差,需要知道速度差和追及时间。
2023-2024学年四年级数学上册第六单元行程问题篇(解析版)编者的话:《2023-2024学年四年级数学上册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题、专项练习、分层试卷三大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
分层试卷部分是根据试题难度和掌握水平,主要分为基础卷、提高卷、拓展卷三大部分,其优点在于考点广泛,分层明显,适应性广。
本专题是第六单元行程问题篇。
本部分内容是行程问题,包括普通行程问题、相遇问题、追及问题、火车过桥问题等等,考点和题型偏于应用,题目综合性稍强,建议作为核心内容进行讲解,一共划分为十四个考点,欢迎使用。
【知识总览】1.行程问题是小学数学中非常常见的类型题,一般包含三个基本量:(1)路程:一共行了多长的路,一般用米或千米作单位;(2)速度:每小时(或每分钟)行的路程,速度的单位常常是路程单位与时间单位的结合,例如:千米/时、米/分、米/秒等等;(3)时间:行了几小时(分钟)。
2.行程问题的基本数量关系:速度×时间=路程;路程÷速度=时间;路程÷时间=速度【考点一】速度的认识及意义。
【方法点拨】速度是指每小时(或每分钟)行的路程,速度的单位常常是路程单位与时间单位的结合,是一个复合单位,例如:千米/时、米/分、米/秒等等。
【典型例题1】一辆汽车的速度是55千米/时,表示( ),光传播的速度是300000千米/秒,表示( )。
解析:每小时行驶55千米;每秒传播300000千米【典型例题2】(1)一辆小轿车每小时行90千米,记作( )。
读作( )。
解析:90千米/时;90千米每时(2)声音在空气中传播的速度是每秒340米,可以写成( )。
解析:340米/秒(3)一个成年人正常步行的速度是每分钟90米,可写作( )。
行程问题(一)我们把研究路程、速度、时间这三者之间关系的问题,称为行程问题。
行程问题主要包括相遇问题、相背问题的追及问题。
例1.甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?例2.南北两村相距90千米,甲、乙两人分别从两村同时出发相向而行,甲比乙每小时多行2千米,5小时后两人相遇。
两人的速度各是什么?例3.两地相距900千米,甲、乙两列火车同时从两地出发相向而行。
甲车每小时行驶60千米,乙车每小时行驶90千米,两车在途中相遇后继续前进。
从两车相遇算起,它们开到对方的出发点各需要多长时间?例4.甲每小时行8千米,乙每小时行6千米,两人于相隔32千米的两地同时相背而行,几小时后二人相隔144千米?例5.下午放学时,弟弟以每分40米的速度步行加家,5分后,哥哥以每分60米的速度也从学校步行回家。
哥哥出发后,经过几分可以追上弟弟?(假定从学校到家和路程足够远,哥哥追上弟弟时仍没有到家。
)例6.幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒跑6米,晶晶每秒跑4米。
问:冬冬第一次追上晶晶时两人各跑了多少米?第二次追上晶晶时两人各跑了多少圈?练习与思考1. 甲、乙两艘轮船分别从两港同时出发相向而行,甲船每小时行驶19千米,乙船每小时行驶13千米,经过8小时两艘轮船在途中相遇。
两港间的水路长多少千米?2. 甲、乙两车分别从相距240千米的A、B两地同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,两车出发后多少时间相遇?3. 东、西两镇相距45千米,甲、乙两人分别从两镇同时出发相向而行,甲每小时行的路程是乙的2倍,5小时后两人相遇。
甲乙两人的速度各是多少?4. 两地相距6600千米,甲、乙两列火车同时从两地出发,相向而行。
甲车每小时行驶100千米,乙车每小时行驶120千米,两车在途中相遇后继续前进。
从相遇时算起,两车开到对方的出发点各需多少小时?5. 甲每小时行9千米,乙每小时比甲少行3千米,两人于相隔20千米的两地同时相背而行,几小时后两人相隔80千米?6. 甲每小时行12千米,乙每小时行8千米,甲自南庄向南行,同时乙自北庄向北行,经过5小时后,两人相隔103千米 。
一、基本简单行程及变速问题1,强强跑100米用10秒,旗鱼每小时能游120千米,请问:谁的速度更快?2,墨墨练习慢跑,12分钟跑了3000千,按照这个速度慢跑25000米需要多少分钟?如果他每天都以这个速度跑10分钟,连续跑一个月,,他一共跑了多少千米?3,A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了1小时,如果要按照原定的时间到达B城,汽车在后一半行程上每小时应该行驶多少千米?4,甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米,4小时后它们相距多少千米?这时甲提高速度打算用2小时追上乙,那么甲每小时应该飞行多少千米?5,萱萱一家开车去外地旅游,原计划每小时行驶45千米,实际上由于高速公路堵车,汽车每小时只行驶30千米,这样就晚到两小时,问:萱萱一家在路上实际花了几个小时?6,甲从A地出发去B地办事情,下午1点出发,晚上7点准时到达,如果他想下午两点出发,晚上7点准时到达,每小时就必须多行2千米,求AB两地之间的距离。
7,小欣家离学校1000米,平时他步行25分钟后准时到校。
有一天他晚出发10分钟,为避免迟到,小欣先乘公共汽车,然后步行,结果仍然准时到校,已知公共汽车的速度是小欣步行速度的6倍,问:小欣这天上学步行了多少米?8,甲乙两人分别从AB两地同时出发,6小时后相遇在中点,如果甲延迟1小时出发,乙每小时少走4千米,两人仍在中点相遇,问:甲乙两地相距多少千米?二、基本相遇问题:两人相遇型:9,A、B两地相距4800米,甲乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两人从出发地到相遇需要多长时间?10,在第4题中,如果甲乙两人的速度大小不变,但甲出发时改变方向,即两人同时同向出发,问:乙出发后多久可以追上甲?11,甲乙两地相距350千米,A车在早上8点从甲地出发,以每小时40千米的速度开往乙地。
2小时后B车以每小时50千米的速度从乙地开往甲地。
问:什么时候两车在途中相遇?12,一辆公共汽车和一辆小轿车从相距350千米的两地同时出发,相向而行,公共汽车每小时行40千米,小轿车每小时行60千米。
问:(1)2小时后两车相距多少千米?(2)经过几小时后两车第一次相距50千米?13,甲乙两车分别从AB两地同时出发相向而行,已知甲车每小时行驶40千米,两车6小时后相遇,相遇后他们继续前行,又经过3小时,甲车到达B地,问:乙车还要过多久才能到达A地?14,甲乙两地相距450千米,快车和慢车分别从甲乙两地出发相向而行,快车每小时行60千米,慢车每小时行30千米,问:(1)如果两车同时出发,几小时后相遇?(2)如果慢车比快车早出发3小时,当两车相遇时快车走了多远?15,甲乙两车同时从东西两地出发,相向而行,甲车每小时行36千米,乙车每小时行30千米,两车在距离中点9千米处相遇,求东西两地间的距离。
16,甲乙两人分别在A地和B地,甲从A地到B地需要20分钟,乙从B地到A地需要30分钟,如果两人同时出发相向而行,多长时间可以相遇?17,甲乙两人分别从AB两地同时出发,相向而行,AB两地相距48千米,甲的速度是乙的速度的3倍,请问:当甲乙相遇的时候,甲走了多远?18,AB两地相距400千米,甲乙两车分别从AB同时出发,相向而行,甲车的速度为每小时60千米,乙车的速度为每小时40千米,问:(1)从出发算起,多久后甲乙两车第一次相距100千米?(2)从出发算起,多久后甲乙两车第二次相距100千米?19,甲乙两人分别从AB两地同时出发相向而行,已知甲每分钟走50米,乙走完全程要18分钟,出发3分钟后,甲乙仍相距450米,问还要过多少分钟,甲乙两人才能相遇?20,甲乙两车分别从AB两站同时出发,相向而行。
已知甲车的速度是乙车的2倍,甲乙到达途中C站的时刻依次为5点和17点,问:两车何时相遇?21,甲乙两人分别从相距24千米的AB两地同时出发同向而行,一段时间后甲在C点追上乙,如果甲每小时多走1千米,而乙每小时少走1千米,则甲追上乙的时间就少用两小时,且追上的地点与C点相距12千米,问:如果甲乙两人以原速分别从AB两地同时出发相向而行,几个小时相遇?三人相遇型:22,有甲乙丙三人,甲每分钟走40米,乙每分钟走50米,丙每分钟走60米,AB两地相距2700米,甲乙两人分别从AB两地同时出发相向而行,他们出发15分钟后,丙从B地出发去追赶乙,问:(1)甲在与乙相遇后多少分钟又与丙相遇?(2)又过了多少分钟丙才追上乙?23,东西两城相距75千米,小明从东向西走,每小时走6.5千米,小强从西向东走,每小时走6千米,小辉骑自行车从东向西行,每小时15千米,三人同时出发,途中小辉遇见小强后立即折回向东骑,遇见了小明又折回向西骑,再遇见小强又折回向东骑……,这样往返,直到三人在途中相遇为止,问:小辉共骑了多少千米?24,甲乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A地出发到B地去,出发6小时后,甲车遇到一辆迎面开来的卡车。
又过了1小时,乙车也遇到这辆卡车,问:这辆卡车的速度是多少?25,有甲乙丙三人,甲每分钟走60米,以每分钟走50米,丙每分钟走40米,如果甲从A 地,乙丙从B地,三人同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求AB两地间的距离。
26,甲乙两人同时从A地出发向B地前进,甲骑自行车,乙步行。
与此同时,丙从B地出发向A地前进,甲骑9千米后与丙相遇,而乙走了6千米后就与丙相遇,如果甲骑车的速度是乙步行的速度的三倍,求AB两地间的距离。
27,甲乙丙三人步行速度相同,骑车的速度也相同,骑车的速度是步行速度的3倍,现在甲从A地向B地行进,乙丙两人从B地向A地行进,三人同时出发,出发时,甲乙步行,丙骑车。
途中,当甲丙相相遇时,丙将车交给甲骑,自己改为步行,三人仍按原来的方向继续前进;当甲乙相遇,甲将车给乙骑,自己又从新改为步行,三人仍按原来的方向继续前进,问:三人之中谁最先到达目的地?谁最后到达目的地?28,AB两城相距56千米,甲乙丙三人分别以每小时6千米,5千米,4千米的速度前进。
甲乙两人从A城,丙从B城同时出发,相向而行,问:出发多长时间后,乙正好在甲和丙的中点?29,AB两地相距120千米,甲乙两人分别骑车从AB两地同时相向而行,甲的速度为每小时50千米,出发后1小时30分钟相遇,然后甲乙两人继续沿各自方向往前行进。
在他们相遇6分钟后,甲与迎面骑车而来的丙相遇,而丙在C地追上乙。
若甲以每小时44千米的速度,乙以每小时比原速度快6千米的车速,两人同时分别从AB出发相向而行,则甲乙二人在C点相遇,问:丙车的车速是多少?三,基本追及问题:30,小李和小明分别从相距720米的两地出发同向而行,小明在前,小李在后,且小明比小李先出发2分钟,已知小李的速度是每分钟60米,小明的速度是每分钟50米,问:当小李追上小明时,小明已经走了多少米?31,一辆公共汽车和一辆小轿车从相距300千米的两地同时出发,同向而行,公共汽车在前,每小时行40千米,小轿车在后,每小时行60千米。
问:(1)经过6小时后两车相距多少千米?(2)经过几小时后两车第一次相距100千米?32,甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米,4小时后它们相距多少千米?这时甲提高速度打算用2小时追上乙,那么甲每小时应该飞行多少千米?33小高步行上学,每分钟行75千米,小高离家12分钟后,爸爸发现他忘记带文具盒,马上骑自行车去追,每分钟375米,求爸爸追上小高所需要的时间。
34,小轿车和大货车上午9点同时同向从甲地出发,小轿车每小时行60千米,大货车每小时行48千米,请问:下午几点的时候小轿车领先大货车72千米?,35,一辆公共汽车早上6点从A城出发,以每小时40千米的速度向B城驶去,3小时后一辆小轿车以每小时75千米的速度也从A城出发到B城。
当小轿车到达B城时,公共汽车离B城还有160千米,问:公共汽车什么时候到达B城?36,甲乙两人分别从AB两地同时出发,如果相向而行,1小时候后两人相遇,如果同向而行,3小时后甲追上乙,问:甲的不行速度是乙的几倍?37,猎狗追兔子,猎狗的速度是兔子的2倍,兔子径直往洞里跑,猎狗则紧随其后,现在,猎狗距离洞口还有1000米,当猎狗跑到兔子现在的位置时,兔子距离洞口将还剩100米,问:(1)现在兔子距离洞口多少米?(2)最终兔子会被猎狗追上吗?38,甲乙两人分别由AB两地同时出发,如果相向而行,1小时后两人相遇;如果同向而行,且乙先出发2小时后,那么甲3小时后追上乙,问:甲的速度是乙的多少倍?四,列车行程问题:列车过桥:39,一列火车长180米,每秒行20米,这列火车通过320米的大桥,需要多长时间?40,一列火车以每秒20米的速度通过一座长200米的大桥,共用21秒,这列火车长多少米?41,一列火车长400米,以每分钟800米的速度通过一条长2800米的隧道,需要多长时间?42,一列火车长720米,每秒行驶15米,全车通过一个山洞用了64秒,这个山洞长多少米?43,一列火车通过一座长1000米的桥,从火车车头上桥,到车尾离开桥共用了120秒,而火车完全在桥上的时间是80秒,你知道火车有多长吗?它的速度是多少?列车与人的相遇追及:44,王老师沿着一条与铁路平行的公路散步,每分钟走60米,迎面开过来一列长300米的火车,从火车头与王老师相遇到火车尾离开他共用了20秒,求火车的速度。
45,米老鼠沿着铁路旁的一条小路行进,一列货车从后面开过来,8点货车追上米老鼠,又过30秒,货车超过了它;另有一列客车迎面驶来,9点半客车和米老鼠相遇,又过了12秒客车离开了它,如果客车的长度是货车的2倍,客车的速度是货车的3倍,请问:客车和货车什么时间相遇?两车错开需要多长时间?46,快中慢三辆车同时从甲地出发开往乙地,与此同时墨墨以每分钟100米的速度沿公路走向甲地。
已知快车出发30分钟后在途中遇上墨墨,中车出发35分钟后遇上墨墨,三辆车到达乙地的时候分别用了100分钟,120分钟,150分钟。
问:慢车出发多长时间后可以遇见墨墨?47,小高站在火车轨道旁,一辆200米的火车以每秒钟10米的速度开过,问:火车从他身边经过需要多少秒?48,与铁路平行的一条小路上,有一个行人与一个骑自行车的人同时向南行驶,行人速度为每小时3.6千米,骑车人速度为每小时10.8千米,这时,有一列火车从他们背后开过来,火车通过这行人用了22秒,通过骑车人用了26秒钟,问:这列火车的车身总长是多少米?, 49,墨墨在一条与铁路平行的小路上行走,有一列客车迎面开过来,40秒后经过墨墨,如果这列客车从墨墨背后开来,60秒后经过墨墨。