分数除法整理与复习
- 格式:docx
- 大小:19.24 KB
- 文档页数:4
复习目标:使学生进一步掌握本章所学的基本观点和计算法例,提升学生的计算能力和解题能力。
复习要点:分数除法的计算方法,化简比。
复习难点:正确计算分数除法。
复习过程:一、复习分数除法的意义和计算法例1、这一章我们学习了分数除法的相关知识.请大家回想一下分数除法有几种种类?(1)分数除以整数,比如÷ 5;(2)一个数除以分数,它又包含整数除以分数,比如 20÷;和分数除以分数,比如÷。
(3)做第 52 页“整理和复习”的第 2 题。
2、分数除法的意义(1)第 52 页“整理和复习”的第 1 题:要把这道乘法算式改写成两道除法算式,应当怎么办呢?(指引学生依据乘、除法的关系进行改写,而后让学生将改写的算式填写在书上)(2)让学生谈谈是如何题改写成两道分数除法算式的。
(3)分数除法的意义是什么呢?(使学生明确,分数除法的意义与整数除法的意义同样,都是:已知两个因数的积与此中一个因数,求另一个因数的运算)3、分数除法的计算法例(1)分数除以整数应当如何计算?一个数除以分数应当如何计算?( 2)指引学生归纳出分数除法的一致计算法例:除以一个数( 0 除外),等于乘这个数的倒数。
(3)达成 P52“整理和复习”第 2 题。
(4)P53 练习十三第 2 题。
二、复习比的意义和基天性质1、比的意义(1)什么叫做比?(两个数相除又叫做两个数的比)什么叫做比值?(比的前项除此后项所得的商.)(2)以“ 3∶2”为例,让学生疏别说出“比号” “前项”和“后项”。
3?∶?2=┇┇┇┇前比后比项号项 ?值(3)比和比值有什么差别和联系呢?(比值是一个数,是比的前项除以比的后项所得的商,它往常用分数表示,也能够用小数表示,有时仍是整数。
而比所表示的是两个数的关系,如3∶2,固然也能够写成分数的形式,但仍读作 3 比 2。
特别重申比的后项不可以为0)(4)比和除法、分数的联系除法被除数÷(除号)除数商分数分子-(分数线)分母分数值比前项:(比号)后项比值2、比的基天性质(1)复习观点及化简方法①比的基天性质是什么?②应用比的基天性质,如何对整数比进行化简?③不是整数的比应当如何化简?(2)学生做 P52“整理和复习”第 3 题(指名学生谈谈自己是如何想的)三、讲堂练习1、练习十三的第 1 题(先让学生独立达成.校正时,要让学生说出判断正误的原因)2、做练习十四的第 2 题.3、做练习十四的第 3 题(学生独立达成.教师注意巡视,观察学生所用算法能否简易)第五单元整理和复习一、教课目标:使学生进一步掌握本章所学的基本观点和计算法例,提升学生的计算能力和解题能力。
五年级数学下册教案第五单元分数除法整理与复习北师大版在教学五年级数学下册的第五单元“分数除法整理与复习”时,我以一种生动且互动的方式进行。
一、教学内容我使用的教材是北师大版五年级数学下册,这一单元主要是对分数除法的整理与复习。
内容涵盖了分数除法的基本概念、计算法则以及实际应用。
二、教学目标我的教学目标是让学生掌握分数除法的计算方法,并能应用于解决实际问题。
同时,我也希望他们能够通过复习,巩固已学的分数知识,提高解题能力。
三、教学难点与重点在这一单元的教学中,分数除法的计算法则和应用是重点,其中分数的转化和运算规则是难点。
四、教具与学具准备我准备了多媒体教学设备和教学课件,以及一些相关的实际问题案例,以便于学生更好地理解和应用分数除法。
五、教学过程我通过一个实际问题引入:“如果有一个分数,它的分子是3,分母是4,我们怎样才能得到分子是5,分母是8的分数呢?”这个问题引起了学生的兴趣,他们积极地思考和讨论。
在复习过程中,我特别强调了分数的转化和运算规则,这是学生容易出错的地方。
我通过一些具体的例题和练习题,让学生反复练习,直到他们能够熟练地运用这些规则。
六、板书设计七、作业设计我布置了一道分数除法的应用题,题目是:“一个长方形的长是12cm,宽是8cm,求这个长方形的面积。
”我要求学生运用所学的分数除法知识来解决这个问题。
八、课后反思及拓展延伸通过这一单元的教学,我发现学生在分数除法的计算上还有些困难,特别是在分数的转化和运算规则上。
在课后,我计划进行一些针对性的辅导和练习,以帮助学生克服这些困难。
我还想拓展学生的思维,引导他们思考分数除法在实际生活中的应用。
例如,我们可以讨论一些与分数除法相关的问题,如购物时的折扣计算、烹饪时的食材配比等。
通过这些实际问题的讨论和解决,让学生更好地理解和运用所学的知识。
重点和难点解析在五年级数学下册的第五单元“分数除法整理与复习”的教学中,我发现了几个需要重点关注的细节。
分数除法知识点倒数1. 倒数的意义:如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。
倒数是对两个数来说的,并不是孤立存在的。
2、求倒数的方法:把这个数的分子和分母调换位置。
1的倒数仍是1;0没有倒数。
分数除法1. 分数除法的意义与整数除法的意义相同:已知两个因数的积与其中一个因数,求另一个因数的运算。
2.一个数除以不为0的数等于乘这个数的倒数。
3.比较商与被除数的大小。
除数小于1,商大于被除数;除数等于1。
商等于被除数;除数大于1,商小于被除数。
分数四则混合运算顺序1.先算乘除,再算加减,有括号的先算括号里面的,同级运算从左到右。
2.分数连除运算可转化成连乘运算,能约分的先约分再计算;3.在进行的分数的运算时,可运用运算定律可以使计算简便。
分数解决问题知识点一:“已知一个数的几分之几是多少,求这个数”的问题解法方程解法:(1)找出单位“1”,设未知量为x;找出题中的数量关系式;列出方程。
一般是;比,占三个字后面的是单位一。
如果没有睡的几分之几,谁就是单位一。
如:全班的()等量关系式:全班人数x( ).“已知比一个数多(或少)几分之几的数时多少,求这个数”的问题四年级比五年级多()等量关系式:五年级人数X(1+ )=四年级的人数,五年级有多少人?3.光明小学六年级有95人,比五年级的人数少16算术法:(1)找出单位“1”;(2)找出已知量和已知量占单位“1”的几分之几;(3)列除法算式即:已知量÷已知量占单位“1”的几分之几=单位“1”的量知识点一、二、三总结:(1)找单位“1”的关键词(2)已知单位“1”用乘法,未知单位“1”用除法。
知识点四:“已知一个数是另一个数的几分之几与这两个数的和,求这两个数”的问题解法4.饲养小组养的白兔和黑兔共有18只,其中黑兔的只数是白兔的1。
白兔和黑兔各有多少5只?知识点五:工程问题解决工程合修天数问题的方法一设:设这项工程为一具体的数量或者“1”二列:根据“工作总量÷两队工作效率之和=工作时间”列式三算:计算并验算写答5.一条隧道,单独由甲队来修,需要10天完成;单独由乙队来修,需要15天完成。
分数除法(整理与复习)
古佛九年制学校李婷学习目标:
一、复习倒数的意义、分数除法计算以及解决问题。
二、通过复习回忆,再现知识,培养自觉整理所学知识的习惯。
三、进一步培养学生学习数学的兴趣和学习能力。
重点难点:
一、复习分数除法所包含的主要内容。
二、整理出分数除法问题的解决策略。
过程设计:
一、读书自学,自主探究:
1.请学生说说第三单元学习了哪些内容?请学生翻阅本单元的教学内容,在课堂练习本上对本单元的知识点进行梳理。
投影展示学生梳理的情况,交流补充。
教师小结
2.学生提出对以上的知识点学习中自己认为你学得最好的是哪一部分,哪些地方还有疑问或困难?教师根据情况做出符号。
二、分组合作,讨论解疑:
1.复习倒数的认识。
(1)教师提问:什么是倒数?认识倒数的意义。
(2)学生回忆特殊数1和0的倒数,再次记忆。
(3)学生找不同数的倒数,确认怎样找一个数的倒数的方法。
2.复习分数除法的意义和计算方法。
(1)教师请分数除法计算学得比较好的学生在全班介绍这部分知识的要点和要注意的问题。
其它学生质疑问难。
(2)教师作小结:通过同学的介绍,我们发现同学们对分数除法的计算方法掌握得不错。
刚才我们利用流程图来整理了本单元的知识,你能用表格对分数的除法计算的知识加以详细的整理吗?
(3)学生以小组为单位,整理出分数除法计算的主要内容。
(4)展示交流整理结果。
( 同时展示几个小组的整理结果)
让学生认真观察后讨论交流。
指名说说各自的看法,以及对不完善之处的修改意见。
用投影展示总结分数除法计算的主要内容。
2.巩固练习。
(1) 知识大冲关:看谁跑得快
8/9÷2= 5/9÷3= 5/8÷7/6=
4÷4/9= 5÷2/7= 4/3÷3/4=
学生快速口答,并思考,为什么第一行算式的商比被除数小,而第二行的商比被除数大?
教师帮助学生回忆起:在除法里,当除数大于1时,商小于被除数(0除外)除数小于1时,商大于被除数,除数等于1时,商等于被除数。
(2)知识大冲关2:填一填
对刚复习的知识点的一个巩固与检测。
(3)知识大冲关3:找错误并改正。
同学们看一看老师做的这两个算式正确吗?
让学生找出错误点,并改正,明确这样的做法不对,避免犯同样的错误。
(4)知识大冲关4:算一算。
3.复习分数除法的应用题。
这一单元我们还学会了运用列方程和用算术解决有关分数的实际问题,解这样的题你认为最关键的步骤是什么?
学生回答后,教师进行补充完善。
分数除法应用题的解题步骤:
(1)、认真读题,找准单位“1”。
(2)、利用线段图,找出已知量对应的分率。
(3)、列出数量关系式,用方程或除法计算。
(4)、检验。
关键:找准单位“1”和已知量所对应的分率。
单位“1”已知用乘法,单位“1”未知用除法或方程。
出示例题:(1)许家小学修建一条跑道,计划造价20万元,实际造价是计划造价的9/10,实际造价多少万元?
(2)许家小学修建一条跑道,实际造价18万元,是原计划造价的9/10,原计划造价多少万元?
学生找出单位“1”,列出等量关系式,并列式解答。
再一次明确,单位“1”已知用乘法,单位“1”未知用除法或方程。
教师提醒:方程的未知数一般设单位“1”比较方便。
学生再次巩固怎么确定单位“1”。
三、展示交流,效果检测
知识大冲关5:解决问题
1、我国的国土面积大约是960万平方千米,其中草地面积占5/12,草地面积是森林面积的5/2,森林面积大约是多少万平方千米?
解决这样的问题最关键的是什么?(分析找准单位“1”)
自己已经掌握了什么方法解决这样的问题?(可列方程,也可以用算术方法)
请学生用自己比较熟练的方法解决。
学生汇报交流后,教师引导总结强化:已知一个数的几分之几是多少,要求这个数,用分数的除法。
(用数量除以对应的分率,就能求出单位“1”)
2、巩固练习一:判断
3、巩固练习二:解决问题(拓展训练)
(1)食堂买来一袋大米,还剩400千克,吃了5/6。
原有多少千克?
(2)全校植树,一年级植了总数的1/9,二年级植了总数的2/9,两年级共植树150棵,全校植树多少棵?
(1)爸爸买回一套服装,上衣的价格是125元,比裤子价格的2/5还贵15元,裤子的价格是多少元?
(2)张大爷养了200只鹅,鹅的只数比鸭的2/5 还少25只,张大爷养了多少只鸭?
第一题教师带领学生勾出单位“1”,明确已知数量和对应的分率分别是多少,两者之间可以相除,求出单位“1”,第二题学生自行完成并讲解。
四、清理过关,效果检测:
1.今天我们又一次对所学的知识进行了整理,谁来说说,通过本堂课的梳理,你们又有了那些收获?
2.学生自由阐述。
教师:看来,在学习中,学会整理,总结和反思,对提高我们的学习质量是非常有意义的。