第一章AD基础知识_固体火箭发动机气体动力学
- 格式:ppt
- 大小:959.00 KB
- 文档页数:50
固体推进剂火箭发动机的基本问题(上册)目录11前言11第一章固体推进剂火箭发动机介绍——概论131.引言152.固体推进剂发动机的描述和发展简史172.1 现代固体推进剂发动机的描述172.2 发展简史213.分类233.1 第一级火箭发动机(助推器)243.2 用作末级的火箭发动机和用作空间飞行器的火箭发动机263.3 卫星的运载火箭283.4 探空火箭293.5 起制导和控制作用的辅助火箭发动机303.6 飞机助飞火箭发动机323.7 军事上的应用323.8 其它方面的应用354.固体推进的重要性375.本书内容简介50第二章喷管流动和特征参数581.准一元流理论——等熵膨胀621.1 引言621.2 准一元流方程的推导631.2.1 质量守恒631.2.2 动量守恒641.2.3 能量守恒661.3.1 简化的守恒方程681.3 等熵流动681.3.2 一种热容量为常数的单组分理想气体69 1.4 喷管流动721.4.1 等熵流动中的壅塞721.4.2 拉瓦尔喷管中的流动741.4.3 激波751.4.4 喷管中的非一元流791.4.5 喷管流动公式821.5 推力及火箭的性能参数831.5.1 推力公式的推导831.5.2 理论推力公式;最大推力841.5.3 推力系数851.5.4 特征速度871.5.5 比冲881.5.6 其它性能和设计参数902.多组分反应气流的影响912.1 引言912.2 冻结或平衡等熵流动912.2.1 冻结流动922.2.2 平衡流动952.2.3 平衡喷管流动与冻结喷管流动性能的比较96 2.3 松弛流动973.两相流动效应993.1 引言993.2 理论;对性能的影响1003.2.1 无颗粒滞后的两相流动1003.2.2 有颗粒滞后的两相流动方程1023.2.3 无因次滞后参数τ1043.2.4 大滞后极限τ》11063.2.5 小滞后极限τ《11073.2.6 关于τ等于中间值的数值计算1083.2.7 本章第3.2.2节内理论中所忽略现象的影响109 3.3 对喷管设计的影响1103.4 实验结果1114.喷管热交换1124.1 引言1124.2 无冷却喷管壁中的非稳态热传导1144.3 通过附面层的稳态湍流热交换1154.4 热交换的进一步考虑1185.关于其它偏离理想条件的讨论1205.1 非一元流对喷管性能和设计的影响1205.2 附面层的生成1225.3 喷气流分离1245.4 向外的排气流与周围环境的相互作用1256.推力矢量控制1276.1 引言1276.2 机械控制面1286.3 流体喷射1296.3.1 现象描述1296.3.2 理论分析1316.3.3 与实验结果的比较1326.3.4 喷射流体的选择1346.3.5 热气活门1356.4 机械式与流体喷射式推力矢量控制的比较135 7.固体火箭发动机与喷管设计新概念的配合问题135第三章固体推进剂性能1431.引言1461.1 混合比的定义1471.2 推进剂和燃烧产物的组分1501.2.1 推进剂——均质推进剂和异质推进剂1501.2.2 燃烧产物1572.理论性能计算1612.1 平衡组分方程1612.1.1 基本组分的定义1612.1.2 控制方程——原子守恒方程和化学平衡方程165 2.2 平衡组分的简化计算1712.2.1 气态燃烧产物1712.2.2 含有一种凝结物质的燃烧产物1762.3 计算平衡组分的一般方法1782.3.1 哈夫法1792.3.2 怀特法1832.3.3 布林克莱法1862.4 将布林克莱法应用于含H、Li、Be、B、C、Al、N、Cl、O 和F的推进剂的示例1912.5 推进剂性能的计算1962.5.1 平衡混合物热力学1972.5.2 性能计算——绝热火焰温度;性能计算的一般问题;冻结喷管流动的性能;平衡喷管流动的性能;影响系数;某些推进剂的性能2002.6 关于导致最大性能的固体推进剂组分的研究2122.6.1 关于高能燃烧剂添加剂的研究2122.6.2 关于粘结剂的研究2142.6.3 关于氧化剂的研究2152.6.4 关于液体喷射的研究2172.6.5 备注2173.1.1 以压力测量为依据的方法2183.性能的实验测定2183.1 实验室方法2183.1.2 以速度测量为依据的方法2193.2 火箭发动机实验2223.2.1 普通的实验台2223.2.2 发动机中气体流速的测量2254.理论与实验的比较227第四章发动机工作2301.引言2332.各种燃速规律2342.1 曾经提出过的燃速规律(某些参数的影响)2352.2 测定燃速的方法2393.1 端面燃烧药柱2423.发动机工作特性(压力和药厚随时间的变化)242 3.2 中心开孔的药柱2463.3 推进剂药柱的几何形状2543.4 球形药柱2683.5 双燃速固体推进剂药柱2713.6 关于发动机工作期间所得压力-时间曲线的备注281 4.在特定情况下发动机几何形状的最佳化2835.固体升华发动机2896.结束语292第五章稳态燃烧现象的实验研究2961.引言2972.双基均质推进剂的燃烧3002.1 研究均质固体推进剂的实验方法3012.2 实验结果3053.异质推进剂组分物理化学特性的确定3073.1 线性热分解率3083.1.1 测量装置3083.1.2 实验结果3153.1.2.1 燃烧剂3153.1.2.2 氧化剂3153.1.3 热分解测量的重要性3183.2 某些氧化剂的燃速3184.为分析异质固体推进剂燃烧机理而提出的模型实验323 4.1 氧化剂小球在气态燃烧剂气流中的燃烧3244.2 多孔芯燃烧器3304.3 气相中的化学反应动力学3344.4 压制的固体推进剂试件3354.5 金属的燃烧3425.关于异质推进剂燃烧机理的研究3445.1 直接方法3445.2 间接方法3555.2.1 低压区间3555.2.2 中等压力(5~50大气压)区间357 5.2.3 平台区间3615.2.4 高压(p>100大气压)区间3645.3 关于燃烧区的总结365第六章固体推进剂稳态燃烧理论3711.气动热化学基本方程3741.1 引言3741.2 方程的由来3751.3 控制方程组的积分式3751.4 控制方程组的微分式3771.5 传递现象;反应率3791.6 热力学关系;变量数目的计算3821.7 交界面处的守恒条件3832.均质固体推进剂燃烧理论3852.1 绝热理论3852.1.1 简史3852.1.2 赖斯-金内尔及帕尔-克劳福德理论387 2.1.3 约翰逊-纳赫巴和斯波尔丁理论390 2.1.3.1 关于约翰逊-纳赫巴模型的定义390 2.1.3.2 控制气相问题的基本方程组3912.1.3.3 气相问题的边界条件3922.1.3.4 气相问题的无因次数学表达式3932.1.3.5 气相问题解的上下界3952.1.3.6 气相问题的迭代解3972.1.3.7 表面气化过程3992.1.3.8 无反向表面气化率定律的推导3992.1.3.9 表面平衡边界条件4012.1.3.10 中间表面边界条件4022.1.3.11 无反向表面气化过程的燃速与压力的依赖关系4042.1.3.12 约翰逊-纳赫巴关于过氯酸铵绝热燃速的研究结果4062.1.3.13 表面平衡的燃速随压力而变的关系4072.1.3.14 气相反应区的结构4102.2 非绝热理论4112.2.1 热损失的作用4112.2.2 热损失的类型4112.2.3 包括热损失的能量守恒方程4122.2.4 热损失对燃速影响的原因4132.2.5 热损失与表面温度的关系4142.2.6 在燃速分析中非绝热性所引起的修正4142.2.7 具有无反向表面率过程的非绝热分析4152.2.8 关于双特征值解的解释4172.2.9 约翰逊-纳赫巴非绝热理论与实验结果的比较417 2.2.10 具有表面平衡的非绝热性分析4193.复合推进剂某些组分的分解理论4203.1 引言4203.2 热板热分解理论4213.2.1 多孔板4223.2.2 不可穿透板4253.3 推进剂组分的热分解4253.3.1 燃烧剂组分4253.3.2 硝酸铵4263.3.3 过氯酸铵4284.异质固体推进剂燃烧理论4284.1 引言4284.2 两温概念4294.3 有关扩散火焰与预混火焰相互作用的概念4304.4 夹层燃烧模型4325.金属颗粒的燃烧理论4345.1 引言4345.2 各种燃烧金属性态的描述和分类4355.3 含有不挥发-不可溶氧化物的金属小球的燃烧理论438 5.3.1 稀异质扩散火焰4385.3.2 金属小球的燃烧4405.3.3 关于铝球燃烧改进的理论分析所应采用的假设4421976《固体推进剂火箭发动机的基本问题上》由于是年代较久的资料都绝版了,几乎不可能购买到实物。
1.课程属性火箭武器专业(即武器系统与工程专业的火箭弹方向)的专业课程体系包括固体火箭发动机气体动力学、固体火箭发动机原理、火箭弹构造与作用、火箭弹设计理论和火箭实验技术。
“固体火箭发动机气体动力学”属于专业基础课,是该专业的先修课程。
2.为什么要学习固体火箭发动机气体动力学课程固体火箭发动机的工作过程是由推进剂燃烧和燃气流动构成的,燃气流动既是燃烧的直接结果,也是固体火箭发动机产生推进动力所需要的。
因此,燃气流动是“固体火箭发动机原理”的重要组成部分。
“固体火箭发动机原理”课程将固体火箭发动机内的流动处理成燃烧室内的零维流和喷管中的一维流,如果不学习本课程,一方面不易理解固体火箭发动机内的流动过程,对学好“固体火箭发动机原理”课程是不利的;另一方面,对毕业后继续深造的学生而言,缺乏必要的气体动力学知识,难以深入开展本学科领域的基础理论研究,而本科毕业后直接从事固体火箭研制工作的学生将难以利用先进的计算工具进行工程设计与性能分析,不能适应时代发展和技术进步的要求。
通过“固体火箭发动机气体动力学”课程的学习,学生既可以结合固体火箭发动机中的燃气流动问题,系统了解和掌握气体动力学的基本理论和计算方法,构建起完备的专业知识结构,同时也为学好后修课程奠定了坚实的理论基础,提高解决固体火箭发动机设计、内弹道计算、性能分析等实际工程技术问题的能力。
3.“固体火箭发动机气体动力学”的知识结构把握课程的知识结构是学好“固体火箭发动机气体动力学”的前提。
本课程由三个知识模块组成,即气体动力学基础知识、固体火箭发动机中一维定常流动和激波、膨胀波与燃烧波。
(1)气体动力学模块(14学时)该模块由教材的第一至第三章组成,是相对独立、自成系统的知识模块,目的是建立起基本的气体动力学系统知识,为学习第二个知识模块奠定必要的气体动力学理论基础。
该模块的主要知识点为♦课程背景♦流体与气体,气体的输运性质,连续介质假设,热力学基本概念与基础知识:系统,环境,边界,状态,过程,功,热量,焓,比热比,热力学第二定律,理想气体,等熵过程方程,气体动力学基本概念:控制体,拉格朗日方法,欧拉方法,迹线,流线,作用在流体上的外力,扰动♦拉格朗日方法与欧拉方法的关系,连续方程,动量方程,能量方程,熵方程♦流动定常假设,一维流动假设,一维定常流的控制方程组,伯努利方程,气流推力,声速,对数微分,马赫数,马赫锥,理想气体一维定常流的控制方程组,滞止状态,滞止过程,滞止参数,动压,气体可压缩性,临界状态,最大等熵膨胀状态,速度系数,气体动力学函数(2)固体火箭发动机中的一维定常流动模块(8学时)该模块为教材的第四章,是气体动力学知识在固体火箭发动机中的具体应用,分别针对喷管、长尾管、燃烧室装药通道展开讲述,最后简要介绍多驱动势广义一维流动。
固体火箭发动机原理第一章绪论1.1绪论火箭发动机:自身携带燃料和氧化剂的喷气发动机(推进剂燃烧不需要依靠空气中的氧气)吸气发动机:自身只携带燃料,燃烧所需要的氧化剂需要吸收空气中的氧气,吸气发动机只能在大气层中工作。
固体火箭发动机(solid propellant rocket engine):使用固体推进剂,燃料和氧化剂预先均匀混合液体火箭发动机(liquid propellant rocket engine):使用液体推进剂(由液态燃料和液态氧化剂组成),常见的有单组元推进剂——肼,以及双组元推进剂——液氢和液氧1.2 固体火箭发动机的基本结构和特点固体火箭发动机的基本结构:固体推进剂装药、燃烧室、喷管、点火装置。
固体火箭发动机的类型:固体、液体、固液混合火箭发动机固体推进剂(是固体火箭发动机的能源和工质)种类:双基、复合、复合改双基推进剂装药方式:自由装填(通常需要挡药板使药柱固定)、贴壁浇注包覆层:用阻燃材料对装药的某些部位进行包覆,以控制燃烧面积变化规律燃烧室(是固体火箭发动机的主体,装药燃烧的工作室)特点:有一定的容积,且对高温高压气体具有承载能力材料:合金钢、铝合金、或玻璃纤维缠绕加树脂成型的玻璃钢结构形状:长圆筒型热防护法:在壳体内表面粘贴绝热层或采用喷涂法喷管(是火箭发动机的能量转换部件)拉瓦尔喷管:由收敛段、喉部、扩张段组成中小型火箭多采用锥形拉瓦尔喷管(收敛段和扩张段均为锥形)大型火箭一般使用特型拉瓦尔喷管(扩张段为双圆弧、抛物线等)喷管基本功能:1.通过控制喷管喉部面积大小以控制排出的燃气质量流率,以控制燃烧室内燃气压强2.利用先收敛后扩张的喷管结构使燃气由亚声速加速到超声速喉部材料:(喷喉处工作环境恶劣,常发生烧蚀或沉积现象),需采用耐高温耐冲刷的材料,石墨、钨渗铜等点火装置(提供足够的热量和建立一定的点火压强,使装药的全部燃烧表面瞬时点燃,尽早进入稳态燃烧)组成:电发火管+点火剂(烟火剂或黑火药)或点火发动机(尺寸较大的装药)固体火箭发动机的特点:优点:1.结构简单(固体火箭发动机最主要的优点)。
固体火箭发动机工作原理可以概括为:高压气体驱动燃烧室内固体燃料迅速燃烧,产生高温高压燃气,通过喷管排出,产生反作用力推动火箭发动机壳体做功。
具体的工作原理可以细分为以下几个步骤:1. 装药固化:首先将固体火箭发动机的燃烧室和喷管进行预装药,这些药柱通常是由高分子聚合物基复合材料制成。
随后通过增压的方式使燃烧室和喷管内部达到一定的压力,一般为几百个大气压。
在发动机工作时,这个压力会显著降低。
装药的作用就是在这个压力降低的过程中形成燃烧,使装药迅速固化,形成燃烧产物的骨架,保证燃气的畅通。
2. 点燃延期:紧接着上面步骤之后,点燃火箭发动机的燃烧室。
这时需要一个点火装置点燃火药,使其开始燃烧。
然而,单靠火药自身的燃烧产生的推力无法将整个发动机推动,因此需要一根延迟管。
这根延迟管实际上是一根长度的软管,一头接在燃烧室上,一头接在喷管上。
火药燃烧时产生的气体通过喷管向外喷射,同时通过延迟管将火药燃烧时产生的气体导入喷管,产生向下的推力。
这个过程需要一定的时间,这就是所谓的延期。
3. 燃气排出:当火药燃烧产生的气体通过延迟管进入喷管并达到一定压力时,这个压力会克服喷管周围的压差,推动喷管内的物质向外排出。
同时,由于燃烧室和喷管之间的压力降低,燃烧室内的火药会继续燃烧并产生新的燃气,推动火箭发动机壳体向前运动。
这个过程不断进行,直到火药燃尽或发动机壳体达到预定速度为止。
总的来说,固体火箭发动机的工作原理是基于火药燃烧时产生的气体压力和喷射物反作用力的相互作用,实现了高压气体驱动固体燃料迅速燃烧并产生推力,推动火箭发动机壳体运动的效果。
这种发动机结构简单、可靠性高、反应时间快、可以使用各种可储存推进剂等优点,因此在导弹、军用卫星、太空探测器等军事和民用领域得到了广泛的应用。
上篇热工基础概述一、课程的性质任务1、什么是热工过程,什么是热工设备?热的来源、传递、利用过程;产生热量、利用热量的设备;包含的内容有:研究系统的工作介质、体系的性质以及做功等2、该门课的性质:专业基础与技术课课程的任务:是将热力学的基本原理知识、流体力学的基本知识与工程实际上的热工设备相结合,研究热工过程中的各参数变化情况。
也就是说将讨论与热工过程有关的气体流动性质、气体性质、热的产生,传递、交换及过程中的物质交换等。
3、研究内容二、课程特点:强调“三传一反的能量交换”:动量、质量、热量传递、燃烧与烧成反应。
强调平衡概念:物料平衡、动量平衡、能平衡,强调基本:基本概念、基本定律、基本方法、基本理论知识强调理论与实践用基本的理论知识去理解硅酸盐行业常见的热工设备的工作原理。
强调分析问题、解决问题的能力。
三、课程的主要研究方法1.数学方法:微分方程和积分方程的求解及数值求解;2.分析方法:过程分析与数量级分析等;3.模型方法:物理模型及数学模型的建立;4.类比方法:热电类比及动量,质量,热量传递的类比等。
四、学习本课程的目的与意义1、掌握本专业中所用的热工理论知识,用所学的知识解决工程中出现的问题。
2、在该基础上进一步的深入研究创新,开发新型的热工设备五、本课程的基本要求1、注重研究的方法和思路:要掌握基本概念、掌握基本理论的来龙去脉,强调概念明确、思路清晰。
2、注重理论应用,多做习题,熟悉基本概念与理论。
3、答疑、作业、课堂讨论、考试。
六、课时安排(76学时)绪论(1学时)第一章气体力学在窑炉中的应用(10学时)第二章传热原理(22学时)第三章质量原理(2学时,自学)第四章燃料及其燃烧过程与设备(12学时)第五章干燥过程及设备(10学时)第六章物料烧成与窑炉(18学时)小结(1学时)实验(?学时)七、教材及教学参考书教材:孙晋涛编《硅酸盐热工基础》武汉工业大学出版社参考书(1)沈慧贤胡道和主编《硅酸盐热工工程》武汉工业大学出版社(2)蔡悦民编《硅酸盐工业热工技术》武汉工业大学出版社(3)姜金宁编《热工过程与设备》冶金工业出版社(4)杨世铭编《传热学》人民教育出版社(5)韩昭论主编《燃料及燃烧》冶金工业出版社(6)胡道和编《水泥工业热工设备》武汉工业大学出版社(7)刘振群《陶瓷工业热工设备》武汉工业大学出版社(8)孙曾绪《玻璃工业热工设备》武汉工业大学出版社第一章气体力学在窑炉中的应用内容:研究气体流动规律及相应的热工流动设备。
固体火箭发动机原理固体火箭发动机是一种应用广泛、可靠性高的推进系统,被广泛应用于航天、导弹以及其他需要大推力的领域。
本文将介绍固体火箭发动机的基本原理,包括构造、燃烧过程以及推力控制等方面。
一、固体火箭发动机构造固体火箭发动机通常由推进剂、固体推进剂、喷管和起动系统四部分组成。
1. 推进剂推进剂是固体火箭发动机中的燃料,它通常由氧化剂和燃料混合而成。
常见的氧化剂有硝酸盐、高氯酸铵等,燃料则有铝粉、聚四氟乙烯等。
推进剂的选择要考虑燃烧效率、能量密度以及制造成本等因素。
2. 固体推进剂固体推进剂是指固体火箭发动机中的载荷部分,它包裹在推进剂外部。
固体推进剂通常由硝酸酯等高能材料构成,其能够提供高强度的推力,并且有良好的稳定性和可控性。
3. 喷管喷管是固体火箭发动机中的关键部分,它用于控制和加速排出的燃气。
喷管的内壁通常涂有特殊材料,以增加耐高温和耐腐蚀性能。
喷管的设计要考虑内外气流的动力学特性,以实现最佳的燃烧效果和推力输出。
4. 起动系统起动系统是固体火箭发动机的启动装置,通常采用火花器或者点火火药来实现。
起动系统的功能是在火箭发射前点燃推进剂,使之开始燃烧并产生推力。
二、固体火箭发动机的燃烧过程固体火箭发动机的燃烧过程主要分为点火阶段、燃烧阶段和燃尽阶段三个阶段。
1. 点火阶段点火阶段是固体火箭发动机启动的过程,起动系统点燃推进剂,使之开始燃烧。
在这个阶段,火焰逐渐蔓延并传至整个推进剂表面。
2. 燃烧阶段燃烧阶段是固体火箭发动机产生推力的阶段,推进剂中的氧化剂和燃料发生氧化还原反应,产生大量的高温、高压气体。
这些气体通过喷管排出,产生巨大的推力。
3. 燃尽阶段燃尽阶段是指整个推进剂被完全燃烧殆尽的阶段。
当推进剂的燃料耗尽时,燃烧停止,推力逐渐减小,火箭进入惯性飞行状态。
三、固体火箭发动机的推力控制固体火箭发动机的推力可以通过改变推进剂的质量流率和喷管的喷口面积来控制。
1. 质量流率控制质量流率是指单位时间内推进剂的质量消耗量。
一、固体火箭发动机:由燃烧室,主装药,点火器,喷管等部件组成。
工作过程:通过点火器将主装药点燃,主装药燃烧,其化学能转变为热能,形成高温高压燃气,然后通过喷管加速流动,膨胀做功,进而将燃气的热能转化为动能,当超声速气流通过喷管排出时,其反作用力推动火箭飞行器前进。
工作原理:1能量的产生过程2热能到射流动能的转化过程优点:结构简单,使用、维护方便,能长期保持在备战状态,工作可靠性高,质量比高。
缺点:比冲较低,工作时间较短,发动机性能受气温影响较大,可控性能较差,保证装药稳定燃烧的临界压强较高。
二、1.推力是发动机工作时内外表面所受气体压力的合力。
F=F 内+F 外 F=mu e +Ae(Pe-Pa) 当发动机在真空中工作时Pa=0.这时的推力为真空推力。
把Pe=Pa 的状态,叫做喷管的设计状态,设计状态下产生的推力叫做特征推力。
2.把火箭发动机动,静推力全部等效为动推力时所对应的喷气速度,称为等效喷气速度u ef 。
3影响喷气速度的因素来自两个方面:a).推进剂本身的性质b) 燃气在喷管中的膨胀程度3.流量系数的倒数为特征速度C ∗,他的值取决于推进剂燃烧产物的热力学特性,即与燃烧温度,燃烧产物的气体常数和比热比K 值有关,而与喷管喉部下游的流动过程无关。
4.推力系数C F 是表征喷管性能的参数,影响推力系数的主要因素是面积比和压强比。
当Pe=Pa 时,为特征推力系数,是给定压强比下的最大推力系数,Pa=0时为真空推力系数。
5.发动机的工作时间包括其产生推力的全部时间,即从点火启动,产生推力开始,到发动机排气过程结束,推力下降到零为止。
确定工作时间的方法:以发动机点火后推力上升到10%最大推力或其他规定推力的一点为起点,到下降到10%最大推力一点为终点,之间的时间间隔。
6.燃烧时间是指从点火启动,装药开始燃烧到装药燃烧层厚度烧完为止的时间,不包括拖尾段。
确定燃烧时间的方法:起点同工作时间,将在推力时间曲线上的工作段后部和下降段前部各做切线,两切线夹角的角等分线与曲线的交点作为计算燃烧时间的终点。