最短路问题
- 格式:pdf
- 大小:116.12 KB
- 文档页数:4
最短路问题的求解方法最短路问题是图论中的一个经典问题,它在很多实际应用中都有着重要的作用。
在现实生活中,我们经常需要求解最短路径,比如在地图导航、网络通信、交通运输等领域。
因此,研究最短路问题的求解方法具有重要的理论意义和实际应用价值。
在图论中,最短路问题的求解方法有很多种,其中比较经典的有Dijkstra算法、Bellman-Ford算法、Floyd-Warshall算法等。
这些算法各有特点,适用于不同的场景和要求。
下面我们就逐一介绍这些算法的原理和求解方法。
Dijkstra算法是一种用于求解单源最短路径的算法,它采用贪心策略,每次找到当前距离最短的节点进行松弛操作,直到所有节点都被遍历。
Dijkstra算法的时间复杂度为O(V^2),其中V为节点的个数。
这种算法适用于边权值为正的图,可以求解从单个源点到其他所有点的最短路径。
Bellman-Ford算法是一种用于求解单源最短路径的算法,它可以处理边权值为负的图,并且可以检测负权回路。
Bellman-Ford算法的时间复杂度为O(VE),其中V为节点的个数,E为边的个数。
这种算法适用于一般情况下的最短路径求解,但是由于其时间复杂度较高,不适用于大规模图的求解。
Floyd-Warshall算法是一种用于求解所有点对最短路径的算法,它可以处理边权值为正或负的图,但是不能检测负权回路。
Floyd-Warshall算法的时间复杂度为O(V^3),其中V为节点的个数。
这种算法适用于求解图中所有点对之间的最短路径,可以同时求解多个源点到多个目标点的最短路径。
除了上述几种经典的最短路求解算法外,还有一些其他的方法,比如A算法、SPFA算法等。
这些算法在不同的场景和要求下有着各自的优势和局限性,需要根据具体情况进行选择和应用。
在实际应用中,最短路问题的求解方法需要根据具体的场景和要求进行选择,需要综合考虑图的规模、边权值的情况、时间效率等因素。
同时,对于大规模图的求解,还需要考虑算法的优化和并行化问题,以提高求解效率。
最短路问题基本内容:(1)问题的提法——寻求网络中两点间的最短路就是寻求连接这两个点的边的总权数最小的通路。
(注意:在有向图中,通路——开的初等链中所有的弧应是首尾相连的。
)(2)应用背景——管道铺设、线路安排、厂区布局、设备更新等。
D氏标号法(Dijkstra)(1)求解思路——从始点出发,逐步顺序地向外探寻,每向外延伸一步都要求是最短的。
(3)选用符号的意义:①P 标号(Permanent固定/永久性标号),从始点到该标号点的最短路权。
1、一辆送货车从配送中心所在地V1 给V6,V7 两地客户实现共同配送。
已知车辆自身成本消耗0.2 元/ 公里。
各站点间的距离(单位:公里)数如下图所示。
在V6,V7两地的线路间有一收费站,每次每台车辆通过均收费15 元。
问题:(1)用标号法求出送货车的最优送货路线(2)此次送货,车辆总的花费是多少解:把收费站的收费折算成路线后,如下图:用用标号法解出各站点距V1的最短路径用标号法解出最短路线:V1-V2-V4-V5-V6-V7按上述路线的走法花费最少,TC=95×0.2+15=34 元若避开收费站走:V1-V2-V4-V5-V6-V5-V7TC=(85+20+45)×0.2=30 元因此,最优送货路线:V1-V2-V4-V5-V6-V5-V7;此次送货,车辆总的花费是30 元。
2、下图为某地区的交通运输道路示意图。
其中V1为配送中心位置,V8为要货客户位置,现V8客户向配送中心提出了4吨订货要求,并且要越快越好。
配送中心物流计划人员已做出了用一台4吨东风卡车配送的计划安排。
但要以最快的速度将货物送达,就必须确定最短的配送路线,而该计划人员不知如何确定。
(1)请您帮该物流计划人员优化出最佳的送货路线?(2)已知车辆的平均行驶速度为50公里/小时,如早晨8:00发车,货物什么时间可以送达客户?解:用T 标号法求解得最短路线为:V1-V2-V3-V6-V7-V8。
最短路问题(short-path problem)若网络中的每条边都有一个权值值(长度、成本、时间等),则找出两节点(通常是源节点与结束点)之间总权和最小的路径就是最短路问题。
最短路问题是网络理论解决的典型问题之一,可用来解决管路铺设、线路安装、厂区布局和设备更新等实际问题。
最短路问题,我们通常归属为三类:单源最短路径问题(确定起点或确定终点的最短路径问题)、确定起点终点的最短路径问题(两节点之间的最短路径)1、Dijkstra算法:用邻接矩阵a表示带权有向图,d为从v0出发到图上其余各顶点可能达到的最短路径长度值,以v0为起点做一次dijkstra,便可以求出从结点v0到其他结点的最短路径长度代码:procedure dijkstra(v0:longint);//v0为起点做一次dijkstrabegin//a数组是邻接矩阵,a[i,j]表示i到j的距离,无边就为maxlongintfor i:=1 to n do d[i]:=a[v0,i];//初始化d数组(用于记录从v0到结点i的最短路径), fillchar(visit,sizeof(visit),false);//每个结点都未被连接到路径里visit[v0]:=true;//已经连接v0结点for i:=1 to n-1 do//剩下n-1个节点未加入路径里;beginmin:=maxlongint;//初始化minfor j:=1 to n do//找从v0开始到目前为止,哪个结点作为下一个连接起点(*可优化) if (not visit[j]) and (min>d[j]) then//结点k要未被连接进去且最小begin min:=d[j];k:=j;end;visit[k]:=true;//连接进去for j:=1 to n do//刷新数组d,通过k来更新到达未连接进去的节点最小值,if (not visit[j]) and (d[j]>d[k]+a[k,j]) then d[j]:=a[k,j]+d[k];end;writeln(d[n]);//结点v0到结点n的最短路。
最短路问题数学模型
最短路问题是指在带权有向图中,求两个顶点之间的最短路径。
这个问题在现实生活中有很多应用,如在交通规划、电信网络设计、人工智能等领域。
为了解决这个问题,需要建立一个数学模型。
数学模型是指用数学方法对实际问题进行抽象和描述,从而进行定量分析和求解的方法。
对于最短路问题,可以使用图论和运筹学的方法建立数学模型。
在图论中,最短路问题可以使用迪杰斯特拉算法或弗洛伊德算法求解。
这些算法基于图的边权和,采用动态规划的思想,逐步计算每个节点到源节点的最短距离,最终得到整个图中每对节点之间的最短路径。
在运筹学中,最短路问题可以被看作是一种线性规划问题。
可以将每个节点看作是一个决策变量,节点之间的边权看作是线性约束条件,目标函数则是从源节点到目标节点的路径长度。
通过对目标函数进行最小化,可以得到最短路径的解。
总之,最短路问题数学模型可以通过图论和运筹学的方法进行建立和求解。
建立好的数学模型可以为实际问题提供科学解决方案,优化效率和效果。
- 1 -。
最短路问题的求解方法最短路问题是图论中一个经典的问题,它在实际生活中有着广泛的应用,比如在交通规划、网络通信、物流配送等领域都有着重要的作用。
在解决最短路问题时,我们通常会采用不同的算法来求解,本文将介绍几种常见的最短路求解方法。
首先,我们来介绍最简单的最短路求解方法——暴力法。
暴力法的思路是枚举所有可能的路径,并找出其中的最短路。
虽然暴力法在理论上是可行的,但在实际应用中,由于其时间复杂度较高,往往不适用于大规模的图。
因此,我们需要寻找更加高效的算法来解决最短路问题。
其次,我们可以考虑使用迪杰斯特拉算法(Dijkstra algorithm)来求解最短路问题。
迪杰斯特拉算法是一种贪心算法,它通过不断地选择距离起点最近的顶点,并更新其邻居顶点的距离,来逐步求解最短路。
迪杰斯特拉算法的时间复杂度为O(V^2),其中V表示顶点的个数。
这使得它在实际应用中具有较高的效率,尤其适用于稠密图的求解。
除了迪杰斯特拉算法外,我们还可以使用弗洛伊德算法(Floydalgorithm)来解决最短路问题。
弗洛伊德算法采用动态规划的思想,通过不断更新图中任意两点之间的最短路径长度,来逐步求解整个图的最短路。
弗洛伊德算法的时间复杂度为O(V^3),因此在大规模图的求解中也具有较高的效率。
除了上述算法外,我们还可以考虑使用A算法、贝尔曼-福特算法等其他算法来解决最短路问题。
这些算法各有特点,适用于不同类型的图和不同的应用场景。
总的来说,最短路问题是一个重要且经典的问题,在实际应用中有着广泛的应用。
在求解最短路问题时,我们可以根据具体的情况选择合适的算法来求解,以提高效率和准确性。
希望本文介绍的几种最短路求解方法能够对读者有所帮助,谢谢阅读!。
最短路问题实际案例最短路问题是指在图中找出两个顶点之间的最短路径的问题,其中图可以是有向图或无向图,并且每条边可以有权重。
这个问题是在许多实际案例中都会遇到的。
以下是几个实际案例,其中涉及到最短路问题:1. 导航系统:导航系统是最常见的利用最短路问题的实例。
当用户输入起点和终点时,导航系统会计算出最短路径,并显示给用户。
这个过程中,导航系统需要考虑路程的时间或距离,同时还需要考虑道路的限速和交通情况等因素。
2. 物流配送:物流配送涉及到从一个地点到另一个地点的最短路径。
物流公司需要计算出从货物的起始点到目标点的最短路径,以最快速度将货物送达目的地。
在这个问题中,可能还会有其他限制条件,如运输工具的载重量、路段的通行能力等。
3. 电信网络:电信网络是一个复杂的网络,其中存在着许多节点和边,每个节点代表一个通信设备,边代表设备之间的通信连接。
在设计电信网络时,需要考虑到从一个节点到另一个节点的最短路径,以最小化通信的时延。
这个问题中,还会有其他因素,如网络拓扑的复杂性、网络流量的负载均衡等。
4. 交通规划:交通规划涉及到城市道路网络的设计和优化。
在设计城市交通规划时,需要考虑到不同节点之间的最短路径,以便在城市中建设高效的道路系统。
这个问题中,需要考虑到人口分布、交通流量、环境因素等复杂变量。
5. 谷歌地图:谷歌地图是一种广泛使用最短路径算法的应用。
当用户在谷歌地图上搜索起点和终点时,谷歌地图会计算出最短路径,并给出导航指引。
这个过程中,谷歌地图需要考虑到道路的限速、交通情况和实时路况等因素。
综上所述,最短路问题在许多实际案例中都有应用。
无论是导航系统、物流配送、电信网络、交通规划还是谷歌地图等,都需要计算出最短路径以满足需求。
因此,研究和解决最短路问题在实际应用中具有重要意义。
最短路最短路问题(short-path problem):若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点(通常是源节点和阱节点)之间总权和最小的路径就是最短路问题。
最短路问题是网络理论解决的典型问题之一,可用来解决管路铺设、线路安装、厂区布局和设备更新等实际问题。
单源最短路径包括确定起点的最短路径问题,确定终点的最短路径问题(与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。
在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
)算法可以采用Dijkstra 算法。
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra 算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra算法代码1#include <string.h>2#include<algorithm>3using namespace std;45const int maxnum = 100;6const int maxint = 99999999;78int dist[maxnum];9int prev[maxnum];//记录当前点的前一个结点10int c[maxnum][maxnum];11int n,line;1213void dijkstra(int n,int v,int *dist,int *prev,int c[maxnum][maxnum])//v代表源点14{15 bool s[maxnum];//判断是否已存入该点到S中16 for(int i = 1;i <= n;++i)17 {18 dist[i] = c[v][i];19 s[i] = 0;20 if(dist[i] == maxint)//代表当前点与源点没有直接相连21 prev[i] = 0;22 else23 prev[i] = v;//代表当前点的前一个节点是v,即源点24 }25 dist[v] = 0;//源点到源点的距离初始化为026 s[v] = 1;//源点已被遍历过,标记为12728 for(int i = 2;i <= n;++i)29 {30 int tmp = maxint;31 int u = v;32 for(int j = 1;j <= n;++j)33 {34 if((!s[j]) && dist[j] <tmp)//该点没有被遍历到并且源点到j点的距离小于记录的距离35 {36u = j;//记录下这一点37tmp = dist[j];//记录下这一点到源点的距离38 }39 }40 //找到距离最短的点退出循环41 s[u] = 1;//标记该点已经遍历过4243 for(int j = 1;j <= n;++j)44 {45 if((!s[j]) && c[u][j] <maxint)//j没有被遍历过并且从u到j还有这条路径46 {47 int newdist = dist[u] + c[u][j];//新的距离是从源点到u的距离加上从u到的距离48 if(newdist <dist[j])//如果新的距离比原来到j的距离要短49 {50 dist[j] = newdist;//则更新dist数组51 prev[j] = u;//标记j的前一个节点是u52 }53 }54 }55 }56}5758void searchpath(int *prev,int v,int u)//查找从v到u的最短路径59{60 int que[maxnum];//保存路径61 int tot = 1;62 que[tot] = u;//把终点存入路径数组63 tot++;64 int tmp = prev[u];65 while(tmp != v)66 {67 que[tot] = tmp;68 tot++;69tmp = prev[tmp];70 }71 que[tot] = v;72 for(int i = tot;i >= 1;--i)73 {74 if(i != 1)75 printf("%d->",que[i]);76 else77 printf("%d\n",que[i]);78 }79}808182int main()83{84 scanf("%d",&n);//输入结点数85 scanf("%d",&line);//输入路径数目86 int p,q,len;87 for(int i = 1;i <= n;++i)//初始化存储数组88 {89 for(int j = 1;j <= n;++j)90 {91 c[i][j] = maxint;92 }93 }94 for(int i = 1;i <= line;++i)//往存储数组里存放路径95 {96 scanf("%d%d%d",&p,&q,&len);97 if(len <c[p][q])//如果两个点之间有多条路,取路径较短的那一条98 c[p][q] = len;99 c[q][p] = len;//该语句根据实际情况写,用于无向路径中100 }101 for(int i = 1;i <= n;++i)//初始化标记数组102 dist[i] = maxint;//该数组记录从起点到该点的最短路径长度103104105 dijkstra(n,1,dist,prev,c);106 printf("从源点到最后一个顶点的最短路径长度为:%d\n",dist[n]);107 printf("从源点到最后一个顶点的路径为:");108 searchpath(prev,1,n);109}全局最短路求图中所有的最短路径。
最短路问题何谓最短路?最短路问题考虑的是有向网络N=(V,A,W),其中弧(i,j)∈A 对应的权又称为弧长或费用。
对于其中的两个顶点s,t∈V,以s 为起点,t 为终点的有向路称为s-t 有向路,其所经过的所有弧上的权(或弧长、费用)之和称为该有向路的权(或弧长、费用)。
所有s-t 有向路中权最小的一条称为s-t 最短路。
ij w 如何得到最短路?最短路问题的线性规划描述如下:(,)m i ni j i j i j A w x ∈∑ (1):(,):(,)1,,..1,,0,,ij ji j i j A j j i A i s s t x x s i s t ∈∈=⎧⎪t −=−=⎨⎪≠⎩∑∑ (2) 0ij x ≥ (3) 其中决策变量表示弧(i,j)是否位于s-t 路上:当=1时,表示弧(i,j)位于s-t 路上,当=0时,表示弧(i,j)不在s-t 路上。
本来,应当是0-1变量,但由于约束(2)的约束矩阵就是网络的关联矩阵,它是全幺模矩阵,因此0-1变量可以松弛为区间[0,1]中的实数(当用单纯形法求解时,将得到0-1整数解)。
ij x ij x ij x ij x 值得注意的是,我们这里将变量直接松弛为所有非负实数。
实际上,如果可以取0-1以外的整数,则约束条件并不能保证对应于非零的弧所构成的结构(记为P)一定是一条路,因为这一结构可能含有圈。
进一步分析,我们总是假设网络本身不含有负圈,而任何正圈不可能使目标函数最小,因此上面的约束条件(2),(3)可以保证当达到最优解时,P 如果包含圈,该圈一定是零圈,我们从P 中去掉所有的零圈,就可以得到最短路。
ij x ij x ij x 无圈网络与正费用网络一般采用标号设定算法。
Bellman 方程(最短路方程)将约束条件(2)两边同时乘以-1,得到其对偶问题为:m ax()t s u u − (4)..,(,)j i ij s t u u w i j A −≤∀∈ (5)根据互补松弛条件,当x 和u 分别为原问题和对偶问题的最优解时:()0,(,i j j i i j )x u u w i j −−=∀∈A (6) 因此,当某弧(i,j)位于最短路上时,即对应的变量>0时,一定有ij x j i i u u w −=j 。
但在对偶问题中,如果u 为最优解,易知u+c(c 为任意实数)仍为最优解。
因此,u 的具体数值不能唯一确定。
不妨令0su =,则u 的具体数值就可以唯一确定了。
进一步分析可以看出,j u 相当于对节点j 赋予的一个实数值(通常称为“标号”),在时0s u =j u 表示的正好是节点s 到节点j 的最短路的长度。
因此,可以得到求解最短路问题的如下递推关系:0(min{}(8)s ji ij i j u u u w ≠=⎧⎪⎨=+⎪⎩LLLLLLL LL 7)当两节点间没有弧相连接时,上面递推式中认为对应的权为无穷大。
这就是最短路问题的动态规划基本方程,称为Bellman 方程,也称为最短路方程。
正费用网络采用Dijkstra 算法:算法的基本思想是:对于V 中每一个顶点j,赋予两个数值(通常称为“标号”):一个是距离标号j u ,记录的是从起点到该顶点的最短路长度的上界;另一个是前趋标号Pred(j),记录的是当起点s 到该顶点j 的一条路长取到该上界j u 时,该条路中顶点j 前面的那个直接前趋(节点)。
算法通过不断修改这些标号,进行迭代计算。
当算法结束时,距离标号表示的是从期待内到该顶点的最短路长度。
在酸法不断修改这些标号迭代进行计算的过程中,所有顶点实际上被分成了两类:一类是离起点s 较近的顶点,它们的距离标号表示的是从点s 到该顶点的最短路长度,因此其标号不会在以后的迭代中再被改变(称为永久标号);一类是离起点s 较远的顶点,它们的距离标号表示的只是从点s 到该顶点的最短路长度的上界,因此其标号还可能会在以后的迭代中再改变(称为临时标号)。
算法的具体步骤如下:Dijkstra 算法(计算正费用网络G=(V,A,W)的最短路,起点s 编号假定为顶点1)。
STEP0 (初始化)令S=Φ,s −=V,10s u u ==,Pred(s)=0;对V 中的顶点j(j s ≠)令初始距离标号j u =∞。
STEP1 如果S=V,则j u 为节点s 到节点j 的最短路路长(最短路距可以通过数组Pred 所记录的信息反向追踪获得),结束;否则继续STEP2。
STEP2 从s −中找到距离标号最小的节点i,把它从s −删除,加入s。
对于所有从I 出发的弧(i,j)∈A,若s u >i u w ij +,则令s u =,Pred(j)=I。
转STEP1。
ii u w +j 其C++程序为:求解最短路问题的标号算法一般可以分成两类,即所谓的标号设定算法(Label-setting algorithm)和标号修正算法(Label-correcting algorithm)。
其共同的特点:在通过迭代过程对标号进行逐步修正的过程中,每次迭代将一 个顶点从临时标号集合中移入永久标号集合中。
这样的标号算法称为标号设定算法,因为每次迭代可以设定一个顶点标号为永久标号。
标号算法一般只能用来求解无圈网络和正费用网络的最短路问题。
对于一般正费用网络的最短路问题,一般采用标号修正算法。
它的基本思想是:在每次迭代过程中,所有顶点的距离标号都是临时标号。
实际上,每个顶点的距离标号表示的是在一定限制条件下,从起点到该节点的最短路的路长。
当迭代终止时,限制条件被完全取消,因此所有顶点标号同时转化为永久标号。
这一方法实质上是采用逐步逼近的思想求解最短路方程,因此有时也称为逐次逼近法(successive approximation).Bellman-Ford 算法:该算法计算从起点到所有其他顶点的最短路。
它是Ford 于1956年最早提出的一种标号修正算法。
可以用迭代方程表示如下:(1)1(1)1(1)0,(9),1,(10)min{,min()},(11)12,1.j j k k k j j i ij u u w i u u u w k n j n +⎧=⎪=≠⎪⎨=+⎪⎪≤≤−≤≤⎩LLLLLLLLLLL LLLLLLLL LL 通过迭代求解上面的方程,是第k 次迭代得到的顶点()k j u (1)j j n ≤≤的临时标号,最后得到的即为从起点s=1到顶点(1)n j j u u −=(1)j j n ≤≤的最短路路长(永久标号)。
在算法执行过程中,与Dijkstra 算法中用Pred 数组记录信息类似,还应该记录相应的中间信息,以便确定最短路。
一般的标号修正算法:STEP0 令距离标号,前趋标号Pred(s)=0;对所有其他节点j 令0su =j u无穷大。
STEP1 如果对所有的弧(i,j)有j u ≤i u w ij +,则结束,j u 就是从起点s 到节点j 的最短路长,最短路可以通过前趋标号(Pred)获得。
否则进 行下一步。
STEP2 找到一条满足j u >i u w ij +的弧(i,j),令j u =i u w ij +,Pred(j)=i,转STEP1。
改进的标号修正算法:STEP0 令LIST={s},距离标号0su =,前趋标号Pred(s)=0;对所有其他节点j 令j u 无穷大。
STEP1 如果LIST=Φ,则结束,j u 就是从起点s 到节点j 的最短路长,最短路可以通过前趋标号(Pred)回溯获得。
否则进行下一步。
STEP2 从LIST 中删除一个节点i,对从i 出发的每条弧(i,j)判断是否满足j u >i u w ij +。
如果是,则令j u =i u w ij +,Pred(j)=i,并令LIST=LIST U {j}.当从i 出发的所有弧都检查完以后,转STEP1。
Floyd-Warshall 算法:(1)(1)(1)()0,(12),,(13m in{,},,,1,,.(14)ii ij ij k k k k ij ij ik kj u u w i j u u u u i j k n +⎧=⎪⎪=≠⎨⎪=+=⎪⎩L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L ) 这种算法可以看成是标号修正算法的一种推广。
通过迭代求解上面的方程, ()k ij u 是第k 次迭代得到的顶点i,j 的临时标号,最后得到的即为从节点 ()(1)k n ijij u u +=I 到节点j 的最短路路长(永久标号)。
算法可以具体描述如下:DTEP0 k=0。
对于所有节点i 和j,令(1)ij p =j,=0(可以认为=0),=(1)ii u ii w (1)ij u ij w(i ≠j)(若节点i 和j 之间没有弧,认为ij w =∞)。
STEP1 k=k+1。
对于所有节点i 和j,若+,令=,=;否则令()()k k ij ik u u ≤()k kj u (1)k ij p +()k ij p (1)k ij u +()k ij u (1)k ij p +=,()k ik p (1)k ij u +=+。
()k ik u ()k kj u STEP2 如果k=n,结束;否则转STEP1。