两个平面平行的性质
- 格式:doc
- 大小:61.50 KB
- 文档页数:2
证明面面平行的方法
一、面面平行的判定定理:如果一个平面内有两条相交,直线都平行于另一个平面,那么这两个平面平行。
二、如果两个平面都垂直同一条直线,那么这两个平面是互相平行的。
三、根据两个平面平行的定义,证明两个平面没有公共点。
1面面平行
指的是两个平面平行。
如果两个平面没有公共点,则称这两个平面平行。
如果两个平面的垂线平行,那么这两个平面平行。
如果一个平面内有两条相交直线与另一个平面平行,那么这两个平面也平行。
2平面
是指面上任意两点的连线整个落在此面上,一种二维零曲率广延,这样一种面,它与同它相似的面的任何交线是一条直线。
是由显示生活中的实物抽象出来的数学概念,但又与这些实物有根本的区别,既具有无限延展性,又没有大小、宽窄、薄厚之分,平面的这种性质与直线的无限延展性又是相通的。
直线、平面平行的判定及其性质新课讲解:1、直线与平面平行的判定及其性质(1)线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
线线平行⇒线面平行(2)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
线面平行⇒线线平行2、平面与平面平行的判定及其性质(两条相交直线即可代表一个平面)(1)两个平面平行的判定定理①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。
线面平行→面面平行②如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
线线平行→面面平行③垂直于同一条直线的两个平面平行.(2)两个平面平行的性质①如果两个平面平行,那么某一个平面内的直线与另一个平面平行。
面面平行→线面平行②如果两个平行平面都和第三个平面相交,那么它们的交线平行。
面面平行→线线平行题型一:直线与平面平行的判定要点:利用判定定理时关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线。
例1.(2011·天津改编)如图,在四棱锥PABCD 中,底面ABCD 为平行四边形,O 为AC 的中点,M 为PD 的中点。
求证:PB ∥平面ACM 。
变式练习1:如图,正方体ABCD-A 1B 1C 1D 1中,E 为DD 1中点。
求证:BD 1∥平面AEC 。
变式练习2:如图,若PA ⊥平面ABCD ,四边形ABCD 是矩形,E 、F 分别是AB 、PD 的中点,求证:AF ∥平面PCE 。
A B CD A 1B 1C 1D 1E例2.正方体ABCD-A1B1C1D1中,侧面对角线AB1、BC1分别有E、F,且B1E=C1F,求证:EF∥平面ABCD.变式练习1:如图,正方体ABCD-A1B1C1D1中,E在AB1上,F在BD上,且B1E=BF.求证:EF∥平面BB1C1C.题型二:平面与平面平行的判定例3.如图,在正方体ABCDA1B1C1D1中,M、N、P分别为所在边的中点.求证:平面MNP∥平面A1C1B。
证明面面平行的判定定理
面面平行是立体几何学中一个非常重要的概念。
在三维空间中,
如果两个平面是平行的,那么它们永远不会相交。
而面面平行的判定
定理可以帮助我们准确地判断两个平面是否平行。
本文将详细介绍面
面平行的判定定理,包括定义、性质和应用。
一、定义
在三维空间中,两个平面是平行的,当且仅当它们的法线向量平行。
因此,要判断两个平面是否平行,我们只需要比较它们的法线向
量是否平行即可。
二、性质
1. 如果两个平面是平行的,那么它们永远不会相交。
2. 两个平面的法线向量分别为n和m,如果n和m平行,那么这
两个平面是平行的。
3. 如果两个平面是平行的,那么它们的法线向量长度相等。
三、应用
在求解立体几何学问题时,面面平行的判定定理是非常有用的。
比如,在计算两个平面之间的距离时,我们可以先判断它们是否平行,再利用向量的知识求解距离。
又比如,在求解两个平面的夹角时,我
们也可以利用这个定理来进行计算。
另外,在工程和建筑设计中,面面平行的判定定理也有着广泛的应用。
比如,在设计房屋或者建筑物时,我们需要保证墙壁之间是平行的,才能保证建筑物的稳定性和美观性。
此外,在工程测量中,面面平行的判定定理也可以用来判断不同建筑物的墙面是否平行,从而帮助我们得出准确的测量结果。
综上所述,面面平行的判定定理是立体几何学中一个非常重要的定理,它可以帮助我们准确地判断两个平面是否平行,并在工程、建筑设计和测量方面有着广泛的应用。
因此,学好面面平行的判定定理对我们的学习和工作都是非常有帮助的。
两平面平行的性质
两个平面平行,在一个平面内的任意一条直线平行于另外一个平面;2.两个平面平行,和一个平面垂直的直线必垂直于另外一个平面;3.两个平行平面,分别和第三个平面相交,交线平行。
线面平行的判定
定理1:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
已知:a∥b,α不包含a,α包含b,求证:a∥α
向量法证明:设a的方向向量为a,b的方向向量为b,面α的法向量为p。
∵α包含b
∴b⊥p,即p·b=0∵a∥b,由共线向量基本定理可知存在一实数k使得a=kb
那么p·a=p·kb=kp·b=0 即a⊥p ∴a∥α
定理2:平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。
已知:a⊥b,b⊥α,且a不在α上。
求证:a∥α
证明:设a与b的垂足为A,b与α的垂足为B。
假设a与α不平行,那么它们相交,设a∩α=C,连接BC由于不在直线上的三个点确定一个平面,因此ABC首尾相连得到△ABC
∵B∈α,C∈α,b⊥α∴b⊥BC,即∠ABC=90°
∵a⊥b,即∠BAC=90°∴在△ABC中,有两个内角为90°,这是不可能的事情。
∴假设不成立,a∥α。
平面与平面平行1.两个平面的位置关系:2.两个平面平行的判定定理如果一个平面内有两条直线分别平行于另一个平面,那么这两个平面平行.(记忆口诀:线面平行,则面面平行)3、两个平面平行的性质定理如果两个平行平面同时与第三个平面相交,那么它所有的平行.(记忆口诀:面面平行,则线线平行)4.两个平行平面距离和两个平行平面同时的直线,叫做两个平面的公垂线,公垂线夹在平行平面间的部分叫做两个平面的,两个平行面的公垂线段的,叫做两个平行平面的距离.1.两个平面平行的判定定理:如果一个平面的两条相交直线都与另一个平面平行,那么这两个平面平行.2.两个平面平行的性质定理:如果两个平行平面都与第三个平面相交,那么交线平行.●点击双基1.下列命题中,正确的是A.经过不同的三点有且只有一个平面B.分别在两个平面内的两条直线一定是异面直线C.垂直于同一个平面的两条直线是平行直线D.垂直于同一个平面的两个平面平行答案:C2.设a、b是两条互不垂直的异面直线,过a、b分别作平面α、β,对于下面四种情况:①b∥α,②b⊥α,③α∥β,④α⊥β.其中可能的情况有A.1种B.2种C.3种D.4种解析:①③④都有可能,②不可能,否则有b⊥a与已知矛盾.答案:C3.α、β是两个不重合的平面,a、b是两条不同直线,在下列条件下,可判定α∥β的是A.α、β都平行于直线a、bB.α内有三个不共线点到β的距离相等C.a、b是α内两条直线,且a∥β,b∥βD.a、b是两条异面直线且a∥α,b∥α,a∥β,b∥β解析:A错,若a∥b,则不能断定α∥β;B错,若A、B、C三点不在β的同一侧,则不能断定α∥β;C错,若a∥b,则不能断定α∥β;D正确.答案:D4.a 、b 、c为三条不重合的直线,α、β、γ为三个不重合的平面,直线均不在平面内,给出六个命题:.⇒⎭⎬⎫;⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫αγγαβαγβγαααβαβαγγ∥∥∥⑥∥∥∥⑤∥∥∥④∥∥∥③∥∥∥②∥∥∥①a a a c a c c c b a b a b a c b c a ;;;;其中正确的命题是________________.(将正确的序号都填上) 答案:①④⑤⑥例1.如图,正方体ABCD -A 1B 1C 1D 1中,M 、N 、E 、F 分别是棱A 1B 1、A 1D 1、B 1C 1、C 1D 1中点.(1) 求证:平面AMN ∥平面EFDB ; (2) 求异面直线AM 、BD 所成角的余弦值. 解:(1) 易证EF ∥B 1D 1 MN ∥B 1D 1 ∴EF ∥MN AN ∥BE 又MN∩AN =N EF∩BE =E ∴面AMN ∥面EFDB(2) 易证MN ∥BD ∴∠AMN 为AM 与BD 所成角 易求得 cos ∠AMN =1010变式训练1:如图,α∥β,AB 交α、β于A 、B , CD 交α、β 于C 、D ,AB ⋂CD =O ,O 在两平面之间, AO =5,BO =8,CO =6.求CD . 解:依题意有AC ∥DBODCOOB AO = 即OD685=∴OD =548 ∴CD =548+6=578例2 . 已知平面α∥平面β,AB 、CD 是夹在平面α和平面β间的两条线段,点E 、F 分别在AB 、CD 上,且nm FDCF EBAE ==.求证:EF ∥α∥β.证明:1°若AB 与CD 共面,设AB 与CD 确定平面γ,则α∩γ=AC β∩γ=BD ∵α∥β ∴AC ∥BD 又∵FDCFEB AE =∴EF ∥AC ∥BD ∴EF ∥α∥β2°若AB 与CD 异面,过A 作AA'∥CDA 1ABC B 1 C EFM ND 1 DB Dβ αACO在AA'截点O ,使nmFD CF EB AE OA AO ===1' ∴EO ∥BA' OF ∥A'D∴平面EOF ∥α∥β ∴EF 与α、β无公共点 ∴EF ∥α∥β变式训练2:在正方体ABCD -A 1B 1C 1D 1中,M 、N 、P 分别是CC 1、B 1C 1、C 1D 1的中点. 求证:(1) AP ⊥MN ; (2) 平面MNP ∥平面A 1BD .证明:(1) 连BC 1 易知AP 在BCC 1B 1内射影是BC 1 BC 1⊥MN ∴AP ⊥MN (2) ∵⇒⎭⎬⎫PM B A BD PN ////1面MNP ∥面A 1BD例3.已知a 和b 是两条异面直线.(1) 求证:过a 和b 分别存在平面α和β,使α∥β; (2) 求证:a 、b 间的距离等于平面α与β的距离.(1) 在直线a 上任取一点P ,过P 作b'∥b ,在直线b 上取一点Q 过Q 作a'∥a 设a, b'确定一个平面α a', b 确定平面β a'∥a a ⊂α ∴a'∥α 同理b ∥α 又a'、b ⊂β ∴α∥β 因此,过a 和b 分别存在两个平面α、β(2) 设AB 是a 和b 的公垂线,则AB ⊥b ,AB ⊥a ∴AB ⊥a' a'和b 是β内的相交直线,∴AB ⊥β 同理AB ⊥α 因此,a, b 间的距离等于α与β间的距离.变式训练3:如图,已知平面α∥平面β,线段PQ 、PF 、QC 分别交平面α于A 、B 、C 、点,交平面β于D 、F 、E 点,PA =9,AD =12,DQ =16,△ABC 的面积是72,试求△DEF 的面积.解:平面α∥平面β,∴AB ∥DF ,AC ∥DE ,∴∠CAB =∠EDF .在△PDF 中,AB ∥DF ,DF =ADPA PA+AB=37AB ,同理DE =74AC .S △DEF =21DF·DE sin ∠EDF =34S △ABC =96.例4.如图,平面α∥平面β,∆ABC .∆A 1B 1C 1分别在α、βQFDECABα βP内,线段AA 1、BB 1、CC 1交于点O ,O 在α、β之间,若AB =2AC =2,∠BAC =60°,OA :OA 1=3:2. 求∆A 1B 1C 1的面积.解:∵α∥β AA 1∩BB 1=O ∴AB ∥A 1B 1 同理AC ∥A 1C 1 BC ∥B 1C 1∴△ABC ∽△A 1B 1C 1 S △ABC =21AB·AC·sin60°=2323111==OA OA B A AB ∴49111=∆∆C B A ABC S S∴111C B A S ∆=932 变式训练4:如图,在底面是菱形的四棱锥P -ABCD 中,∠ABC =60°,PA =AC =a ,PB =PD =2a ,点E 是PD 的中点.(1)证明:PA ⊥平面ABCD ,PB ∥平面EAC ;(2)求以AC 为棱,EAC 与DAC 为面的二面角θ的正切值. (1)证:因为底面ABCD 是菱形,∠ABC =60°, 所以AB =AD =AC =a ,在△PAB 中,由PA 2+AB 2=2a 2=PB 2知PA ⊥AB , 同理,PA ⊥AD ,所以PA ⊥平面ABCD . 因为=++=2++ =(+)+(+)=+ ∴ 、、共面.PB ⊄平面EAC ,所以PB ∥平面EAC .(2) 解:作EG ∥PA 交AD 于G ,由PA ∥平面ABCD ,知EG ⊥平面ABCD .作GH ⊥AC 于H ,连结EH ,则EH ⊥AC ,∠EHG 即为二面角θ的平面角.又E 是PD 的中点,从而G 是AD 的中点,EG =21a ,AG =21a ,GH =AG sin 60°=43a ,332. 1.判定两个平面平行的方法:(1)定义法;(2)判定定理. 2.正确运用两平面平行的性质.3.注意线线平行,线面平行,面面平行的相互转化:线∥线⇔线∥面⇔面∥面.●闯关训练夯实基础B 1A 1C 1 βα BCAODEACBP1.在下列条件中,可判断平面α与β平行的是 A.α、β都垂直于平面γB.α内存在不共线的三点到β的距离相等C.l 、m 是α内两条直线,且l ∥β,m ∥βD.l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β 答案:D2.设平面α∥β,A 、C ∈α,B 、D ∈β,直线AB 与CD 交于S ,若AS =18,BS =9,CD =34,则CS =_____________.解析:如图(1),由α∥β可知BD ∥AC ,∴SA SB =SC SD ,即189=SCSC 34-,∴SC =68.(1)(2)如图(2),由α∥β知AC ∥BD ,∴SB SA =SD SC =SC CD SC -,即918=SCSC -34. ∴SC =368.答案:68或3683.如图甲,在透明塑料制成的长方体ABCD —A 1B 1C 1D 1容器内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个命题:11甲乙①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱A 1D 1始终与水面EFGH 平行;④当容器倾斜如图乙时,EF ·BF 是定值. 其中正确命题的序号是_____________.解析:对于命题①,由于BC 固定,所以在倾斜的过程中,始终有AD ∥EH ∥FG ∥BC ,且平面AEFB ∥平面DHGC ,故水的部分始终呈棱柱状(四棱柱或三棱柱、五棱柱),且BC 为棱柱的一条侧棱,命题①正确.对于命题②,当水是四棱柱或五棱柱时,水面面积与上下底面面积相等;当水是三棱柱时,则水面面积可能变大,也可能变小,故②不正确.③是正确的(请给出证明).④是正确的,由水的体积的不变性可证得.综上所述,正确命题的序号是①③④.答案:①③④4.如下图,两条线段AB 、CD 所在的直线是异面直线,CD ⊂平面α,AB ∥α,M 、N 分别是AC 、BD 的中点,且AC 是AB 、CD 的公垂线段.(1)求证:MN ∥α;(2)若AB =CD =a ,AC =b ,BD =c ,求线段MN 的长.(1)证明:过B 作BB ′⊥α,垂足为B ′,连结CB ′、DB ′,设E 为B ′D 的中点, 连结NE 、CE ,则NE ∥BB ′且NE =21BB ′,又AC =BB ′, ∴MCNE ,即四边形MCEN 为平行四边形(矩形).∴MN ∥CE .又CE ⊂α,MN ⊄α,∴MN ∥α.(2)解:由(1)知MN =CE ,AB =CB ′=a =CD ,B ′D =22B B BD '-=22b c -, ∴CE =)(41222b c a --=2224141c b a -+, 即线段MN 的长为2224141c b a -+. 5.如下图,在正方体ABCD —A 1B 1C 1D 1中,AB =a .A1(1)求证:平面AD 1B 1∥平面C 1DB ;(2)求证:A 1C ⊥平面AD 1B 1;(3)求平面AB 1D 1与平面BC 1D 之间的距离. (1)证明:∵D 1B 1∥DB ,∴D 1B 1∥平面C 1DB . 同理,AB 1∥平面C 1DB . 又D 1B 1∩AB 1=B 1,∴平面AD 1B 1∥平面C 1DB .(2)证明:∵A 1C 1⊥D 1B 1,而A 1C 1为A 1C 在平面A 1B 1C 1D 1上的射影,∴A 1C 1⊥D 1B 1. 同理,A 1C ⊥AB 1,D 1B 1∩AB 1=B 1. ∴A 1C ⊥平面AD 1B 1.(3)解:设A 1C ∩平面AB 1D 1=M ,A 1C ∩平面BC 1D =N ,O 1、O 分别为上底面A 1B 1C 1D 1、下底面ABCD 的中心. 则M ∈AO 1,N ∈C 1O ,且AO 1∥C 1O ,MN 的长等于平面AD 1B 1与平面C 1DB 的距离,即MN =A 1M =NC =31A 1C =33a .培养能力6.如下图,直线a ∥直线b ,a ⊂平面α,b ⊂平面β,α⊥平面γ,β⊥平面γ,a 与b 所确定的平面不与γ垂直.如果a 、b 不是γ的垂线,则必有α∥β.证明:令α∩γ=直线a ′,β∩γ=直线b ′.分别过a 、b 上任一点在α内、β内作a ′、b ′的垂线m 、n .根据两平面垂直的性质定理,∵α⊥γ,β⊥γ,∴m ⊥γ,n ⊥γ.∴m ∥n . ∵a 不垂直于γ,m ⊥γ,且a 、m 在α内,∴a 与m 必是相交直线.又b 与n 在β内,且有a ∥b ,m ∥n ,∴a ∥β,m ∥β.∴α∥β. 点评:根据a ∥b ,在α、β内另找一对平行线.由α⊥γ、β⊥γ,联想到平面垂直的性质定理.本例沟通了平行与垂直、线线与线面及面面之间的联系.7.如下图,已知平面α∥平面β∥平面γ,且β位于α与γ之间.点A 、D ∈α,C 、F ∈γ, AC ∩β=B ,DF ∩β=E .(1)求证:BC AB =EFDE; (2)设AF 交β于M ,AC DF ,α与β间距离为h ′,α与γ间距离为h ,当hh '的值是多少时,△BEM 的面积最大?(1)证明:连结BM 、EM 、BE .∵β∥γ,平面ACF 分别交β、γ于BM 、CF ,∴BM ∥CF .∴BC AB =MF AM. 同理,MF AM =EF DE .∴BC AB =EFDE.(2)解:由(1)知BM ∥CF ,∴CF BM =AC AB =h h '.同理,AD ME =hh h '-.∴S BEM ∆=21CF ·AD h h '(1-hh ')sin ∠BME .据题意知,AD 与CF 是异面直线,只是β在α与γ间变化位置.故CF 、AD 是常量,sin ∠BME 是AD 与CF 所成角的正弦值,也是常量,令h ′∶h =x .只要考查函数y =x (1-x )的最值即可,显然当x =21,即hh '= 21时,y =-x 2+x 有最大值. ∴当hh '= 21,即β在α、γ两平面的中间时,S BEM ∆最大. 8.如下图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、E 、F 分别是棱A 1B 1、A 1D 1、B 1C 1、C 1D 1的中点,AB =a .A1(1)求证:平面AMN ∥平面EFDB ; (2)求异面直线BE 与MN 之间的距离.(1)证明:∵MN ∥EF ,∴MN ∥平面EFDB . 又AM ∥DF ,∴AM ∥平面EFDB .而MN ∩AM =M , ∴平面AMN ∥平面EFDB .(2)解:∵BE ⊂平面EFDB ,MN ⊂平面AMN ,且平面AMN ∥平面EFDB , ∴BE 与MN 之间的距离等于两平行平面之间的距离.作出这两个平面与平面A 1ACC 1的交线AP 、OQ ,作OH ⊥AP 于H . ∵DB ⊥平面A 1ACC 1,∴DB ⊥OH .而MN ∥DB ,∴OH ⊥MN . 则OH ⊥平面AMN . ∵A 1P =42a ,AP =423 a , 设∠A 1AP =θ,则cos θ=a a 423=322, ∴OH =AO ·sin θ=22a ·322 a =32a . ∴异面直线BE 与MN 的距离是32a .探究创新9.科学植树的一个重要因素就是要考虑阳光对树生长的作用.现在准备在一个朝正南方向倾角为α的斜坡上种树,假设树高为h m ,当太阳在北偏东β而仰角为γ时,该树在坡面上的影长为多少米?分析:如下图,DE 是高度为h 的树,斜坡AD 朝正南方向,AB 为东西方向,BC 为南北方向.∠CBD =α,∠ACB =β,∠EAC =γ,∠AED =90°-γ,影长AD =x 为未知量.但x 难以直接与上述诸已知量发生联系,故设∠DAC =θ为辅助未知量,以揭示x 与诸已知量之间的数量关系,作为沟通桥梁.解:在△ADE 中,)sin(θγ-h =)90sin(γ-x,即γcos x =)sin(θγ-h .①在△ACD 中,CD =x sin θ,AC =x cos θ. 在△ABC 中,BC =AC cos β=x cos θcos β. 在△BCD 中,tan α=BC CD =βθcos tan . ②由①推得x =)sin(cos θγγ-h .③由②推得tan θ=tan αcos β, 即θ=arctan (tan αcos β).代入③,即得树在坡面上的影长. ●思悟小结证明两平面平行的方法: (1)利用定义证; (2)利用判定定理证;(3)利用“垂直于同一直线的两个平面平行”来证.面面平行常常转化为线面平行,而线面平行又可转化为线线平行.所以注意转化思想的应用,在处理两异面直线有关的问题中,通常采用过其中一直线上的一点作另一条直线的平行线或直接连结的方法,即搭桥的方法,把异面问题转化为平面问题,从而应用平面几何知识加以解决.两平面平行的性质定理是证明空间两直线平行的重要依据,故应切实掌握好.教学点睛1.结合图形使学生熟练地掌握两个平面平行的判定定理及性质定理.2.判定两个平面平行是本节的重点,除了依据定义、判定定理外,还可用垂直于同一条直线的两个平面平行;法向量平行的两个平面也平行等.3.为了应用两平面平行的条件,往往作第三个平面与它们相交. 拓展题例【例1】 下列命题中,错误的是A.三角形的两条边平行于一个平面,则第三边也平行于这个平面B.平面α∥平面β,a ⊂α,过β内的一点B 有唯一的一条直线b ,使b ∥aC.α∥β,γ∥δ,α、β、γ、δ的交线为a 、b 、c 、d ,则a ∥b ∥c ∥dD.一条直线与两个平面成等角是这两个平面平行的充要条件解析:D 错误.当两平面平行时,则该直线与两个平面成等角;反之,如果一条直线与两个平面成等角,这两个平面可能是相交平面.如下图,α⊥β,直线AB 与α、β都成45°角,但α∩β=l .答案:D【例2】 在四棱锥P —ABCD 中,ABCD 是矩形,P A ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点.(1)求证:MN ∥平面P AD ;(2)当MN ⊥平面PCD 时,求二面角P —CD —B 的大小. (1)证明:取CD 的中点E ,连结ME 、NE . ∵M 、N 分别是AB 、PC 的中点,∴NE ∥PD ,ME ∥AD .于是NE ∥平面P AD , ME ∥平面P AD .∴平面MNE ∥平面P AD ,MN ⊂平面MNE . ∴MN ∥平面P AD .(2)解:设MA =MB =a ,BC =b ,则MC =22b a +. ∵N 是PC 的中点,MN ⊥平面PCD , ∴MN ⊥PC .于是MP =MC =22b a +. ∵P A ⊥平面ABCD ,∴P A ⊥AM ,P A =22AM PM -=b .于是PD =2 b ,EN 是△PDC 的中位线,EN =21PD =22b .∵ME ⊥CD ,MN ⊥平面PCD ,∴EN ⊥CD ,∠MEN 即为二面角P —CD —B 的平面角. 设为α,于是cos α=EMEN =22,α=45°,即二面角P —CD —B 的大小为45°.。
两个平面平行的性质
一、教学目的:(1)掌握两个平面平行的性质;(2)能利用性质解决有关线线平行的问题;
(3)明确两平行平面间的距离并求两平行平面间的距离.
二、教学重点、难点:两个平面平行的性质;利用性质解决有关线线平行的问题.
三、教学过程:1、复习:两个平面平行的判定方法:
2、两个平面平行的性质(1):如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.
3、两个平面平行的的性质(2):如果两个平行平面同时和第三个平面相交,那么它们的交线平行.
4、练习:判断下列命题的真假,对真命题给出证明,对假命题举出反例.
1、;////,//,,βαββαα⇒⊂⊂n m n m
2、n m n m //,,//⇒⊂⊂βαβα;
3、βαβα//,//l l ⇒⊂;
4、α内的任一直线都平行于βαβ//⇒.
四、典型例子分析:
[例1]:求证:如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.
已知:
求证:
[说明]:(1)βαβα⊥⇒⎭
⎬⎫⊥l l //,可以用来判断直线与平面垂直依据. (2)和两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线;
(3)夹在这两个平行平面间的部分,叫做这两个平行平面的公垂线段;
(4)两个平行平面的公垂线的长度叫做这两个平行平面的距离.
α
β
l
[例2]:如图,b a ,是异面直线,,//,,//,αβααa b b a ⊂⊂
(1) 求证:βα//;
(2) 求证:b a ,间的距离等于平行平面α与平面β平面的距离.
[说明]:
练习:求证:夹在两个平行平面间的平行线段相等.
[思考题]:AB 、CD 为夹在两个平行平面βα,间的异面线段,M 、N 分别为AB 、CD 的中点,求证:MN//)//(βαMN .
作业:1
、一条直线和两个平行平面相交,求证它和两个平面所成的角相等.
2、两个平行平面之间的距离等于12cm ,一条直线和它们相交成060角,求这条直线上夹在这两个平面间的线段的长.
α β a b。