平面与平面平行的性质定理
- 格式:doc
- 大小:24.50 KB
- 文档页数:5
证明面面平行的判定定理
面面平行是立体几何学中一个非常重要的概念。
在三维空间中,
如果两个平面是平行的,那么它们永远不会相交。
而面面平行的判定
定理可以帮助我们准确地判断两个平面是否平行。
本文将详细介绍面
面平行的判定定理,包括定义、性质和应用。
一、定义
在三维空间中,两个平面是平行的,当且仅当它们的法线向量平行。
因此,要判断两个平面是否平行,我们只需要比较它们的法线向
量是否平行即可。
二、性质
1. 如果两个平面是平行的,那么它们永远不会相交。
2. 两个平面的法线向量分别为n和m,如果n和m平行,那么这
两个平面是平行的。
3. 如果两个平面是平行的,那么它们的法线向量长度相等。
三、应用
在求解立体几何学问题时,面面平行的判定定理是非常有用的。
比如,在计算两个平面之间的距离时,我们可以先判断它们是否平行,再利用向量的知识求解距离。
又比如,在求解两个平面的夹角时,我
们也可以利用这个定理来进行计算。
另外,在工程和建筑设计中,面面平行的判定定理也有着广泛的应用。
比如,在设计房屋或者建筑物时,我们需要保证墙壁之间是平行的,才能保证建筑物的稳定性和美观性。
此外,在工程测量中,面面平行的判定定理也可以用来判断不同建筑物的墙面是否平行,从而帮助我们得出准确的测量结果。
综上所述,面面平行的判定定理是立体几何学中一个非常重要的定理,它可以帮助我们准确地判断两个平面是否平行,并在工程、建筑设计和测量方面有着广泛的应用。
因此,学好面面平行的判定定理对我们的学习和工作都是非常有帮助的。
2.2.1 直线与平面平行的判定:知识要点 直线与平面平行的判断方法有两种1 根据定义:直线和平面没有公共点,则直线和平面平行 . ( 一般用反证法. )2. 判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平 面平行.(符号表示为: a ,b ,a//b a// . 图形如图所示) . 二:例题判定定理证明:已知: a α, b α,且 a ∥b求证: a∥α例 1 :求证:空间四边形相邻两边中点的连线平行于经过另 外两边所在的平面。
已知:如图空间四边形 ABCD 中,E 、F 分别是 AB 、 求证: EF ∥平面 BCD 证明:例 2: 正方体 ABCD —A 1B 1C 1D 1中,E 为 DD 1的中点,试判断 BD 1与平面AEC 的位置 关系,说明理由a AF点 BC1CB三练习:1. 判断下列说法是否正确,并说明理由.○1 平面 外的一条直线 a 与平面 内的无数条直线平行则直线 a 和平面 平行;○2平面 外的两条平行直线 a,b ,若 a// ,则b// ;○3 直线a 和平面 平行,则直线 a 平行于平面 内任意一条直线; ○4 直线 a 和平面 平行,则平面 中必定存在直线与直线 a 平行. A. l 1 ∥α B. l 2 α C. l 2 ∥α或l 2 α D. l 2 与α相交 3.以下说法(其中 a ,b 表示直线, 表示平面)①若 a ∥b , b ,则 a ∥ ②若 a ∥ ,b ∥ ,则 a ∥b ③若 a ∥b , b ∥ ,则 a ∥ ④若 a ∥ ,b ,则 a ∥b 其中正确说法的个数是( ) .A. 0 个B. 1 个C. 2 个D. 3 个4.已知a ,b 是两条相交直线, a ∥ ,则 b 与 的位置关系是( ). A. b ∥ B. b 与 相交 C. b α D. b ∥ 或 b 与 相交5. 如果平面 外有两点 A 、B ,它们到平面 的距离都是 a ,则直线 AB 和平面 的 位置关系一定是( ) .A. 平行B. 相交C. 平行或相交D. AB 6.平面 与△ ABC 的两边 AB 、 AC 分别交于 D 、E ,且 AD ∶DB=AE ∶EC ,求证: BC ∥平面 .7.P 是平行四边形 ABCD 所在平面外一点, E 为PB 的中点, O 为 AC ,BD 的交点. (1)求证:EO ‖平面PCD ; (2)图中EO 还与哪个平 面平行?8. 在正方体 ABCD- A 1B 1C 1D 1中, E 、F 分别为棱 BC 、C 1D 1的中点. 求证: EF ∥平面 BB 1D 1D2. 已知直线 l 1、l 2 , 平面α, l 1 ∥l 2 , l 1∥α 那么 l 2 与平面 α 的关系是( ).2.2 平面与平面平行的判定:知识要点平面与平面平行的判断方法有三种 1. 定义:两平面没有公共点,则两平面平行2. 判定定理:如果一个平面内有两条相交直线都平行于另一个平面, 那么这两个平面平行. 用符号表示为: a ,b ,a b P // a// ,b// 图形如图所示图形如图所示 3. 推论:①如果一个平面内有两条相交直线分别平行于 另一个平面内的两条直线,那么这两个平面平行 ②垂直于同一条直线的两个平面平行 . ③平行与同一平面的两个平面平行 . 二:例题 判定定理证明 : 已知:如图, m , n , 求证://mn ( 思考 1 :如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线, 那么这两个平面平行吗 ?为什么? )(思考 2:.在判断一个平面是否水平时,把水准器在这个平 面内交叉地放两次,如果水准器的气泡都是居中的,就 可以判定这个平面和水平面平行,你能说出理由吗?) 例 2:已知正方体 ABCD-A 1B 1C 1D 1, 求证:平面 AB 1D 1 // 平面 C 1BD 。
课题:直线与平面,平面与平面平行的判定定理和性质定理一、考点梳理:1.直线与平面平行的判定定理和性质定理23.(1).转化与化归思想——平行问题中的转化关系(2).判断线面平行的两种常用方法面面平行判定的落脚点是线面平行,因此掌握线面平行的判定方法是必要的,判定线面平行的两种方法: (1)利用线面平行的判定定理;(2)利用面面平行的性质,即当两平面平行时,其中一平面内的任一直线平行于另一平面. 二、基础自测:1.判断:(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面. ( ) (2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线. ( ) (3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行. ( ) (4)若α∥β,直线a ∥α,则a ∥β. ( ) 2.下列说法中正确的是( )①一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线l 和平面α平行,那么过平面α内一点和直线l 平行的直线在α内.A .①②③④B .①②③C .②④D .①②④3.设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m ∥l ,且m ⊥α,则l ⊥α;②若m ∥l ,且m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=m ,β∩γ=l ,γ∩α=n ,且n ∥β,则l ∥m . 其中正确命题的个数是( )A .1B .2C .3D .44如图,正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,则BD 1与平面AEC 的位置关系为________.三、考点突破:考点一、直线与平面平行的判定与性质【例1】如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =2,AA ′=1,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;讨论:证明线面平行的关键点及探求线线平行的方法(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线;(2)利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行;(3)注意说明已知的直线不在平面内,即三个条件缺一不可.在本例条件下,线段A ′C 上是否存在一点P 使得PM ∥平面BCC ′B ′?考点二、平面与平面平行的判定与性质【例2】如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心, A 1O ⊥底面ABCD ,AB =AA 1= 2. 证明:平面 A 1BD ∥平面CD 1B 1;讨论:判断面面平行的常用方法(1)利用面面平行的判定定理; (2)面面平行的传递性(α∥β,β∥γ⇒α∥γ); (3)利用线面垂直的性质(l ⊥α,l ⊥β⇒α∥β). 四、检测提高1如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.证明:BC 1∥平面A 1CD ;2如图,已知四棱锥P -ABCD 的底面为直角梯形,AB ∥CD ,∠DAB =90°,P A ⊥底面ABCD ,且P A =AD =DC =12AB =1,M 是PB 的中点.若N 是PC 的中点,求证:DN ∥平面AMC .五、课后巩固:1.已知直线a,b,平面α,则以下三个命题:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若a∥α,b∥α,则a∥b.其中真命题的个数是()A.0B.1 C.2 D.32.右图四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是()A.①③B.②③C.①④D.②④3.已知m,n为两条不同的直线,α,β,γ为三个不同的平面,则下列命题中正确的是() A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊥α,则m∥nC.若α∥β,m∥n,m∥α,则n∥βD.若α⊥γ,β⊥γ,则α∥β4如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;5如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,在CC1上上是否存在点Q,使得平面D1BQ∥平面P AO,若存在,指出Q的位置并给与证明;若不存在,说明理由。
面面平行的判定定理和性质定理
面面平行的性质定理:
一、线线平行
1、同位角成正比两直线平行:在同一平面内,两条直线被第三条直线所封盖,如果
内错角成正比,那么这两条直线平行。
2、内错角相等两直线平行:在同一平面内,两条直线被第三条直线所截,如果同旁
内角互补,那么这两条直线平行。
3、同旁内角优势互补两直线平行。
二、线面平行
1、利用定义:证明直线与平面并无公共点;
2、利用判定定理:从直线与直线平行得到直线与平面平行;
3、利用面面平行的性质:两个平面平行,则一个平面内的'直线必平行于另一个平面。
平行平面间的距离处处相等。
已知:α∥β,ab⊥α,dc⊥α,且a、d∈α,b、
c∈β求证:ab=cd证明:连接ad、bc由线面垂直的性质定理可知ab∥cd,那么ab和cd
构成了平面abcd∵平面abcd∩α=ad,平面abcd∩β=bc,且α∥β∴ad∥bc(定理2)
∴四边形abcd是平行四边形∴ab=cd。
直线、平面平行的判定及其性质考点梳理1.直线与平面平行(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行).即:a⊄α,b⊂α,且a∥b⇒a∥α.其他判定方法;α∥β,a⊂α⇒a∥β.(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(线面平行⇒线线平行).即:a∥α,a⊂β,α∩β=l⇒a∥l.2.平面与平面平行(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(线面平行⇒面面平行).即:a⊂α,b⊂α,a∩b=M,a∥β,b∥β⇒α∥β.(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.即:α∥β,γ∩α=a,γ∩β=b⇒a∥b.一个转化关系平行问题的转化关系两点提醒(1)在推证线面平行时,必须满足三个条件:一是直线a在已知平面外;二是直线b在已知平面内;三是两直线平行.(2)把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则该直线与交线平行.考点自测1.若两条直线都与一个平面平行,则这两条直线的位置关系是().A.平行B.相交C.异面D.以上均有可能解析借助长方体模型易得.答案 D2.在空间中,下列命题正确的是().A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行解析选项A,平行直线的平行投影可以依然是两条平行直线;选项B,两个相交平面的交线与某一条直线平行,则这条直线平行于这两个平面;选项C,两个相交平面可以同时垂直于同一个平面;选项D,正确.答案 D3.(2013·长沙模拟)若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( ).A .b ⊂αB .b ∥αC .b ⊂α或b ∥αD .b 与α相交或b ⊂α或b ∥α解析 可以构造一草图来表示位置关系,经验证,当b 与α相交或b ⊂α或b ∥α时,均满足直线a ⊥b ,且直线a ∥平面α的情况,故选D.答案 D4.在空间中,下列命题正确的是( ).A .若a ∥α,b ∥a ,则b ∥αB .若a ∥α,b ∥α,a ⊂β,b ⊂β,则β∥αC .若α∥β,b ∥α,则b ∥βD .若α∥β,a ⊂α,则a ∥β解析 若a ∥α,b ∥a ,则b ∥α或b ⊂α,故A 错误;由面面平行的判定定理知,B 错误;若α∥β,b ∥α,则b ∥β或b ⊂β,故C 错误.答案 D5.在正方体ABCDA 1B 1C 1D 1中,E 是DD 1的中点,则BD 1与平面ACE 的位置关系为________.解析 如图.连接AC 、BD 交于O 点,连接OE ,因为OE ∥BD 1,而OE ⊂平面ACE ,BD 1⊄平面ACE ,所以BD 1∥平面ACE .答案 平行考向一 线面平行的判定及性质【例1】►(2012·辽宁)如图,直三棱柱ABCA ′B ′C ′,∠BAC=90°,AB =AC =2,AA ′=1,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′; (2)求三棱锥A ′MNC 的体积.(锥体体积公式V =13Sh ,其中S 为底面面积,h 为高)[审题视点] (1)连接AB ′,AC ′,在△AC ′B ′中由中位线定理可证MN ∥AC ′,则线面平行可证;此问也可以应用面面平行证明.(2)证A ′N ⊥平面NBC ,故V A ′MNC =V A ′NBC -V MNBC =12V A ′NBC ,体积可求.(1)证明 法一 连接AB ′,AC ′,如图由已知∠BAC =90°,AB =AC ,三棱柱ABCA ′B ′C ′为直三棱柱,所以M 为AB ′中点.又因为N 为B ′C ′的中点,所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′,AC ′⊂平面A ′ACC ′, 因此MN ∥平面A ′ACC ′.法二 取A ′B ′的中点P ,连接MP ,NP ,AB ′,如图,而M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′,所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′. 又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′. 而MN ⊂平面MPN ,因此MN ∥平面A ′ACC ′.(2)解 法一 连接BN ,如图由题意A ′N ⊥B ′C ′,平面A ′B ′C ′∩平面B ′BCC ′=B ′C ′,所以A ′N ⊥平面NBC .又A ′N =12B ′C ′=1,故V A ′MNC =V NA ′MC =12V NA ′BC =12V A ′NBC =16.法二 V A ′MNC =V A ′NBC -V MNBC =12V A ′NBC =16.(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行.注意说明已知的直线不在平面内.(2)证明直线与平面平行的方法:①利用定义结合反证;②利用线面平行的判定定理;③利用面面平行的性质.【训练1】 如图,在四棱锥P ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,AP =AB ,BP =BC =2,E ,F 分别是PB ,PC 的中点.(1)证明:EF ∥平面P AD ; (2)求三棱锥EABC 的体积.(1)证明 在△PBC 中,E ,F 分别是PB ,PC 的中点, ∴EF ∥BC .又BC ∥AD ,∴EF ∥AD . 又∵AD ⊂平面P AD ,EF ⊄平面P AD , ∴EF ∥平面P AD .(2)解 连接AE ,AC ,EC ,过E 作EG ∥P A 交AB 于点G ,则EG ⊥平面ABCD ,且EG =12P A .在△P AB 中,AP =AB ,∠P AB =90°,BP =2, ∴AP =AB =2,EG =22. ∴S △ABC =12AB ·BC =12×2×2= 2.∴V EABC =13S △ABC ·EG =13×2×22=13.考向二 面面平行的判定和性质【例2】►(2013·济南调研) 如图,在正方体ABCDA 1B 1C 1D 1中,M 、N 、P 分别为所在边的中点.求证:平面MNP ∥平面A 1C 1B .[审题视点] 利用面面平行判定定理的证明即可. 证明如图,连接D 1C ,则MN 为△DD 1C 的中位线,∴MN ∥D 1C . ∵D 1C ∥A 1B ,∴MN ∥A 1B . 同理可证,MP ∥C 1B .而MN 与MP 相交,MN ,MP 在平面MNP 内,A 1B ,C 1B 在平面A 1C 1B 内, ∴平面MNP ∥平面A 1C 1B .要证面面平行需证线面平行,要证线面平行需证线线平行,因此“面面平行”问题最终转化为“线线平行”问题来解决.【训练2】 如图,在三棱柱ABCA 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面; (2)平面EF A 1∥平面BCHG .证明 (1)∵GH 是△A 1B 1C 1的中位线,∴GH ∥B 1C 1. 又∵B 1C 1∥BC ,∴GH ∥BC , ∴B ,C ,H ,G 四点共面.(2)∵E 、F 分别为AB 、AC 的中点,∴EF ∥BC ,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.考向三线面平行中的探索性问题【例3】►如图所示,在三棱柱ABCA1B1C1中,A1A⊥平面ABC,若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.[审题视点] 取AB、BB1的中点分别为E、F,证明平面DEF∥平面AB1C1即可.解存在点E,且E为AB的中点.下面给出证明:如图,取BB1的中点F,连接DF,则DF∥B1C1.∵AB的中点为E,连接EF,则EF∥AB1.B1C1与AB1是相交直线,∴平面DEF∥平面AB1C1.而DE⊂平面DEF,∴DE∥平面AB1C1.解决探究性问题一般要采用执果索因的方法,假设求解的结果存在,从这个结果出发,寻找使这个结论成立的充分条件,如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件(出现矛盾),则不存在.【训练3】如图,在四棱锥P ABCD中,底面是平行四边形,P A⊥平面ABCD,点M、N分别为BC、P A的中点.在线段PD上是否存在一点E,使NM∥平面ACE?若存在,请确定点E的位置;若不存在,请说明理由.解在PD上存在一点E,使得NM∥平面ACE.证明如下:如图,取PD 的中点E ,连接NE ,EC ,AE , 因为N ,E 分别为P A ,PD 的中点, 所以NE 綉12AD .又在平行四边形ABCD 中,CM 綉12AD .所以NE 綉MC ,即四边形MCEN 是平行四边形.所以NM 綉EC .又EC ⊂平面ACE ,NM ⊄平面ACE ,所以MN ∥平面ACE , 即在PD 上存在一点E ,使得NM ∥平面ACE .规范解答13——如何作答平行关系证明题【命题研究】 通过近三年的高考试题分析,对线面平行、面面平行的证明一直受到命题人的青睐,多以多面体为载体,证明线面平行和面面平行,题型为解答题,题目难度不大.【真题探究】► (本小题满分12分)(2012·山东)如图,几何体EABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD . (1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC . [教你审题] 一审 取BD 的中点O ,证明BD ⊥EO ;二审 取AB 中点N ,证明平面DMN ∥平面BEC ;找到平面BCE 和平面ADE 的交线EF ,证明DM ∥EF .[规范解答] 证明 (1)图(a)如图(a),取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,(2分)又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,(4分)因此BD⊥EO,又O为BD的中点,所以BE=DE.(6分)(2)法一如图(b),取AB的中点N,连接DM,DN,MN,图(b)因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,∴MN∥平面BEC.(8分)又因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC.(10分)又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC. 又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.(12分)法二如图(c),延长AD,BC交于点F,连接EF.图(c)因为CB=CD,∠BCD=120°,所以∠CBD =30°. 因为△ABD 为正三角形, 所以∠BAD =60°,∠ABC =90°, 因此∠AFB =30°, 所以AB =12AF .(8分)又AB =AD ,所以D 为线段AF 的中点.连接DM ,由点M 是线段AE 的中点,因此DM ∥EF .(10分)又DM ⊄平面BEC ,EF ⊂平面BEC , 所以DM ∥平面BEC .(12分)[阅卷老师手记] (1)对题目已知条件分析不深入,不能将已知条件与所证问题联系起来; (2)识图能力差,不能观察出线、面之间的隐含关系,不能作出恰当的辅助线或辅助面; (3)答题不规范,跳步、漏步等.证明线面平行问题的答题模板(一)第一步:作(找)出所证线面平行中的平面内的一条直线; 第二步:证明线线平行;第三步:根据线面平行的判定定理证明线面平行; 第四步:反思回顾.检查关键点及答题规范. 证明线面平行问题的答题模板(二)第一步:在多面体中作出要证线面平行中的线所在的平面;第二步:利用线面平行的判定定理证明所作平面内的两条相交直线分别与所证平面平行;第三步:证明所作平面与所证平面平行; 第四步:转化为线面平行; 第五步:反思回顾.检查答题规范. 【试一试】如图,在几何体ABCDEFG 中,下底面ABCD 为正方形,上底面EFG 为等腰直角三角形,其中EF ⊥FG ,且EF ∥AD ,FG ∥AB ,AF ⊥面ABCD ,AB =2FG =2,BE =BD ,M 是DE 的中点.(1)求证:FM ∥平面CEG ; (2)求几何体GEFC 的体积. (1)证明取CE 的中点N ,连接MN ,GN ,则MN 綉FG 綉12AB .故四边形MNGF 为平行四边形. ∴MF ∥GN .又MF ⊄平面CEG ,GN ⊂平面CEG , ∴FM ∥平面CEG .(2)解 在Rt △ABD 中,AB =AD =2,BD =22, ∴BE =2 2.∵AF ⊥平面ABCD ,AB ⊂平面ABCD , ∴AF ⊥AB .在正方形ABCD 中,AB ⊥AD . 又AD ∩AF =A ,∴AB ⊥平面ADEF .又AE ⊂平面ADEF ,∴AB ⊥AE . ∴在Rt △ABE 中,AE =8-4=2.又在Rt △AEF 中,EF =1,∴AF =4-1= 3. 又EF ∥AD ,EF ⊄平面ABCD ,AD ⊂平面ABCD , ∴EF ∥平面ABCD .同理由FG ∥AB ,可得FG ∥平面ABCD .又EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG . ∴平面EFG ∥平面ABCD . 又AF ⊥平面ABCD ,AF =3, ∴点C 到平面EFG 的距离等于3, ∴V GEFC =V CEFG =13×S △EFG ·d=13×⎝⎛⎭⎫12×1×1×3=36A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是().A.l∥αB.l⊥αC.l与α相交但不垂直 D.l∥α或l⊂α解析l∥α时,直线l上任意点到α的距离都相等;l⊂α时,直线l上所有的点到α的距离都是0;l⊥α时,直线l上有两个点到α距离相等;l与α斜交时,也只能有两个点到α距离相等.答案 D2.平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是().A.AB∥CD B.AD∥CB C.AB与CD相交D.A,B,C,D四点共面解析充分性:A,B,C,D四点共面,由平面与平面平行的性质知AC∥BD.必要性显然成立.答案 D3.(2012·北京模拟)以下命题中真命题的个数是().①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b⊂α,则a∥α;④若直线a∥b,b⊂α,则a平行于平面α内的无数条直线.A.1 B.2 C.3 D.4解析命题①l可以在平面α内,不正确;命题②直线a与平面α可以是相交关系,不正确;命题③直线a可以在平面α内,不正确;命题④正确.答案 A4.(2013·汕头质检)若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中正确的是().A.若m、n都平行于平面α,则m、n一定不是相交直线B.若m、n都垂直于平面α,则m、n一定是平行直线C.已知α、β互相平行,m、n互相平行,若m∥α,则n∥βD.若m、n在平面α内的射影互相平行,则m、n互相平行解析A中,m、n可为相交直线;B正确;C中,n可以平行β,也可以在β内;D中,m、n也可能异面.故正确的命题是B.答案 B二、填空题(每小题5分,共10分)5.过三棱柱ABCA1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.解析过三棱柱ABCA1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共6条.答案 66.α、β、γ是三个平面,a 、b 是两条直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(把所有正确的题号填上).解析 ①中,a ∥γ,a ⊂β,b ⊂β,β∩γ=b ⇒a ∥b (线面平行的性质).③中,b ∥β,b ⊂γ,a ⊂γ,β∩γ=a ⇒a ∥b (线面平行的性质).答案 ①③三、解答题(共25分)7.(12分)如图,在四面体ABCD 中,F 、E 、H 分别是棱AB 、BD 、AC 的中点,G 为DE 的中点.证明:直线HG ∥平面CEF .证明 法一 如图,连接BH ,BH 与CF 交于K ,连接EK .∵F 、H 分别是AB 、AC 的中点,∴K 是△ABC 的重心,∴BK BH =23.又据题设条件知,BE BG =23,∴BK BH =BE BG ,∴EK ∥GH .∵EK ⊂平面CEF ,GH ⊄平面CEF ,∴直线HG ∥平面CEF .法二如图,取CD 的中点N ,连接GN 、HN .∵G 为DE 的中点,∴GN ∥CE .∵CE ⊂平面CEF ,GN ⊄平面CEF ,∴GN ∥平面CEF .连接FH ,EN∵F 、E 、H 分别是棱AB 、BD 、AC 的中点, ∴FH 綉12BC ,EN 綉12BC ,∴FH 綉EN ,∴四边形FHNE 为平行四边形,∴HN ∥EF . ∵EF ⊂平面CEF ,HN ⊄平面CEF ,∴HN ∥平面CEF .HN ∩GN =N ,∴平面GHN ∥平面CEF .∵GH ⊂平面GHN ,∴直线HG ∥平面CEF .8.(13分)如图,已知ABCDA 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,G 在BB 1上,且AE =FC 1=B 1G =1,H 是B 1C 1的中点.(1)求证:E ,B ,F ,D 1四点共面;(2)求证:平面A 1GH ∥平面BED 1F .证明 (1)∵AE =B 1G =1,∴BG =A 1E =2,∴BG =A 1E ,∴A 1G =BE .又同理,C 1F 綉B 1G ,∴四边形C 1FGB 1是平行四边形, ∴FG 綉C 1B 1綉D 1A 1,∴四边形A 1GFD 1是平行四边形. ∴A 1G 綉D 1F ,∴D 1F 綉EB ,故E 、B 、F 、D 1四点共面.(2)∵H 是B 1C 1的中点,∴B 1H =32.又B 1G =1,∴B 1G B 1H =23.又FC BC =23,且∠FCB =∠GB 1H =90°,∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG , ∴HG ∥FB .又由(1)知A 1G ∥BE ,且HG ∩A 1G =G , FB ∩BE =B ,∴平面A 1GH ∥平面BED 1F .。
《平面与平面平行的性质定理》学案
知识点一:平面与平面平行的性质定理1
定理(文字语言):
定理(符号语言):定理(图形语言):
转化:转化到
知识点二:平面与平面平行的性质定理2
定理(文字语言):
定理(符号语言):定理(图形语言):
转化:转化到
证明定理2:
练习:
1.平面α平面β,AB,CD是夹在α和β间的两条线段,E,F分别为AB,CD的中点,则直线EF与α
的关系是
2.平面α平面β,P是α,β外一点,过P 点的两条直线AC,BD分别交α于A,B,交β于C,D,
且PA=6,AC=9,AB=8,则CD 的长为
例题:
求证:夹在两个平行平面间的平行线段相等.写出符号语言,并证明.
已知:
求证:
例题:
已知:平面α
平面β平面γ,两条直线,l m 分别与平面α,β,γ相较于点A,B,C 和点D,E,F
求证:AB DE BC EF
=
可得结论:
在上题中,若AB=1,BC=2,DF=15,则DE=。