dijkstra算法 java最短路径
- 格式:docx
- 大小:12.63 KB
- 文档页数:2
在交通网络中,常常会提出许多这样的问题:两地之间是否有路相通?在有多条通路的情况下,哪一条最近?哪一条花费最少等。
交通网络可以用带权图表示,图中顶点表示域镇,边表示两城之间的道路,边上权值可表示两城镇间的距离,交通费用或途中所需的时间等。
以上提出的问题就是带权图中求最短路径的问题,即求两个顶点间长度最短的路径。
最短路径问题的提法很多。
在这里仅讨论单源最短路径问题:即已知有向图(带权),我们希望找出从某个源点S∈V到G中其余各顶点的最短路径。
例如:下图(有向图G14),假定以v1为源点,则其它各顶点的最短路径如下表所示:图G14从有向图可看出,顶点v1到v4的路径有3条:(v1,v2,v4),(v1,v4),(v1,v3,v2,v4),其路径长度分别为:15,20和10。
因此v1到v4的最短路径为(v1,v3,v2,v4 )。
为了叙述方便,我们把路径上的开始点称为源点,路径的最后一个顶点为终点。
那么,如何求得给定有向图的单源最短路径呢?迪杰斯特拉(Dijkstra)提出按路径长度递增产生诸顶点的最短路径算法,称之为迪杰斯特拉算法。
迪杰斯特拉算法求最短路径的实现思想是:设有向图G=(V,E),其中,V={0,2,…,n-1},cost是表示G的邻接矩阵,G.arcs [i][j] .adj 表示有向边<i,j>的权。
若不存在有向边<i,j>,则G.arcs [i][j] .adj 的权为无穷大(这里取值为32767)。
设S是一个集合,其中的每个元素表示一个顶点,从源点到这些顶点的最短距离已经求出。
设顶点v0为源点,集合S的初态只包含顶点v0。
数组D记录从源点到其他各顶点当前的最短距离,其初值为D[i]= G.arcs[v0][i].adj ,i=1,…,n-1。
从S之外的顶点集合V-S 中选出一个顶点w,使D[w]的值最小。
于是从源点到达w只通过S 中的顶点,把w加入集合S中调整D中记录的从源点到V-S中每个顶点v的距离:从原来的D[v] 和D[w]+ G.arcs [w][v] .adj中选择较小的值作为新的D[v]。
最短路径Dijkstra算法的改进Dijkstra算法是一种经典的图算法,用于找到图中两个顶点之间的最短路径。
该算法主要用于带有非负权重的有向图。
虽然Dijkstra算法在实际应用中表现良好,但是也存在一些限制,例如不能处理带有负权重的边的图。
为了解决Dijkstra算法的缺点,研究者们提出了一些改进算法,以便在更多的情况下都能找到最短路径。
本文将介绍两种Dijkstra算法的改进方法:堆优化Dijkstra算法和A*算法。
堆优化Dijkstra算法Dijkstra算法的时间复杂度为O(V^2),其中V是图中的顶点数量。
当图规模较大时,算法的效率会受到影响。
为了提高算法的运行效率,可以使用堆优化的方法。
堆优化Dijkstra算法使用堆数据结构来存储顶点,并根据顶点到起始点的距离构建小顶堆。
在每次选择下一个最短路径的顶点时,只需弹出堆顶元素,而不需要对整个集合进行遍历。
这样可以将算法的时间复杂度降低至O(ElogV),其中E是图中的边数量。
A*算法A*算法是一种基于Dijkstra算法的改进算法,它在选择下一个顶点时不仅考虑当前的距离,还考虑到目标顶点的估计距离。
通过引入启发式函数(heuristic function),A*算法可以更快地收敛到最短路径。
具体来说,A*算法维护一个估计距离的优先队列,并根据当前累计距离和到目标的估计距离来选择下一个顶点。
这样可以更加智能地搜索路径,提高算法的效率。
总结通过引入堆优化和A*算法等改进方法,可以使Dijkstra算法在更多的场景下发挥作用。
在实际应用中,根据问题的特点选择合适的算法是非常重要的。
希望本文对读者对最短路径Dijkstra算法的改进有所帮助。
dijkstra算法城市最短路径问题Dijkstra算法是一种经典的图算法,用于求解带有非负权重的图的单源最短路径问题。
在城市的交通规划中,Dijkstra算法也被广泛应用,可以帮助我们找到最短的路线来节省时间和成本。
一、最短路径问题的定义最短路径问题,指的是在一个带权重的有向图中,找到从起点到终点的一条路径,它的权重之和最小。
在城市的交通规划中,起点和终点可以分别是两个街区或者两个交通枢纽。
二、Dijkstra算法Dijkstra算法是基于贪心策略的一种算法,用于解决带非负权重的最短路径问题。
它采用了一种贪心的思想:每次从起点集合中选出当前距离起点最近的一个点,把其移到已知的最短路径集合中。
并以该点为中心,更新它的相邻节点的到起点的距离。
每次更新距离时,选择距离起点最近的距离。
三、Dijkstra算法实现1. 创建一个到起点的距离数组和一个布尔类型的访问数组。
2. 将起点的到起点的距离设置为0,其他的节点设置为无穷大。
3. 从距离数组中选择没有访问过且到起点距离最近的点,将它标记为“已访问”。
4. 对于它的所有邻居,如果出现路径缩短的情况,就更新它们的距离。
5. 重复步骤3和4,直到所有节点都被标记为“已访问”。
6. 最后,根据到起点的距离数组,以及每个节点的前驱节点数组,可以得到从起点到终点的最短路径。
四、Dijkstra算法的时间复杂度Dijkstra算法的时间复杂度可以通过堆优化提高,但最坏情况下时间复杂度仍达到O(ElogV)。
其中,E是边的数量,V是顶点的数量。
因此,Dijkstra算法在不考虑空间复杂度的情况下,是一种高效且实用的解决城市最短路径问题的算法。
五、结论Dijkstra算法是一个广泛应用于城市交通规划领域的算法,可以帮助我们找到最优的路线来节省时间和成本。
它基于贪心策略,每次从起点集合中选择距离起点最近的点,并对其邻居节点进行松弛操作。
Dijkstra算法的时间复杂度虽然较高,但堆优化可以提高算法性能。
dijkstra最短路径算法详解
Dijkstra最短路径算法是一种常用的图算法,用于求解带权图中的单源最短路径问题,即从一个固定的源节点到图中的其他节点的最
短路径。
以下是详细的算法步骤:
1. 初始化
一开始,将源节点的距离设为0,其余节点的距离设置为正无穷,在未访问的节点集合中把源节点压入堆中。
2. 确定最短路径
从堆中取出未访问节点集合中距离源节点最近的节点v,标记其
为已访问。
之后,对于v的邻居节点w,计算从源节点到v再到w的距离,如果经过v的路径比已经计算得到的路径短,则更新路径。
更新
后的距离先暂时放入堆中,如果后边有更短的路径,则更新。
3. 重复第2步
重复第2步,直到取出的节点为终点节点,或者堆为空。
4. 算法结束
算法结束后,各节点的距离就是从源节点到它们的最短距离。
Dijkstra算法的复杂度是O(NlogN),其中N是节点个数。
其优
势在于只需要算一次即可得到所有最短路径,但是要求所有边的权值
必须非负,否则会导致算法不准确。
总之,Dijkstra算法是一种简单有效的最短路径算法,其实现也比较直观。
在处理如飞机和火车等交通路径规划问题中有较好的应用。
java实现dijkstra算法Dijkstra算法是一种用于解决最短路径问题的经典算法。
它可以在一个加权有向图中找到从起点到终点的最短路径。
在本文中,我们将使用Java语言来实现Dijkstra算法。
首先,我们需要定义一个Graph类来表示图。
该类包含一个节点列表和一个边列表。
节点列表用于存储图中的所有节点,边列表用于存储节点之间的连接关系以及对应的权重。
```javaimport java.util.*;class Graph {private List<Node> nodes;private List<Edge> edges;public Graph() {nodes = new ArrayList<>();edges = new ArrayList<>();}public void addNode(Node node) {nodes.add(node);}public void addEdge(Node source, Node destination, int weight) { Edge edge = new Edge(source, destination, weight);edges.add(edge);}// 省略其他方法}```接下来,我们需要定义一个Node类来表示图中的节点。
每个节点包含一个唯一的标识符和一个距离值,用于表示从起点到该节点的最短路径的长度。
```javaclass Node {private String id;private int distance;public Node(String id) {this.id = id;this.distance = Integer.MAX_VALUE;}public String getId() {return id;}public int getDistance() {return distance;}public void setDistance(int distance) {this.distance = distance;}}```最后,我们需要定义一个Edge类来表示图中的边。
文章标题:探索Java中二维数组的最短路径算法在计算机科学和编程领域中,寻找最短路径是一个经典问题。
而当数据以二维数组的形式给出时,如何有效地找到最短路径就尤为重要。
在本文中,我们将探讨在Java中寻找二维数组最短路径的算法,以及一些相关的理论知识和实际应用。
1. 二维数组的最短路径算法概述让我们来讨论什么是最短路径算法。
最短路径算法是一种用于寻找图中两个顶点之间最短路径的算法。
在二维数组中,我们可以将每个格子视作一个顶点,格子之间的连接关系视作图中的边,从而可以利用最短路径算法来解决二维数组中的路径问题。
2. 深度优先搜索(DFS)在二维数组中的应用深度优先搜索是一种经典的图搜索算法,在二维数组中同样可以发挥重要作用。
通过深度优先搜索,我们可以递归地遍历二维数组中的每一个格子,并根据特定条件来搜索路径。
这种算法在处理简单的二维数组最短路径问题时十分有效。
3. 广度优先搜索(BFS)在二维数组中的应用与深度优先搜索类似,广度优先搜索也是一种用于图搜索的经典算法。
在二维数组中,广度优先搜索可以非常高效地找到最短路径,特别是在求解迷宫、寻找连通性等问题时具有很强的应用能力。
4. Dijkstra算法在二维数组中的应用Dijkstra算法是一种经典的最短路径算法,通过计算起始点到所有其他点的最短路径来找到最优解。
在二维数组中,我们可以利用Dijkstra算法来解决复杂的最短路径问题,例如地图路径规划、网络数据传输等。
5. Floyd-Warshall算法在二维数组中的应用Floyd-Warshall算法是一种动态规划算法,用于求解图中所有顶点对之间的最短路径。
在二维数组中,Floyd-Warshall算法可以高效地计算出任意两个格子之间的最短路径,对于解决复杂的二维数组路径问题十分重要。
总结回顾在本文中,我们讨论了在Java中寻找二维数组最短路径的算法。
通过深度优先搜索、广度优先搜索、Dijkstra算法和Floyd-Warshall算法,我们可以高效地解决各种二维数组路径问题,为实际应用提供了重要的理论支持。
图解迪杰斯特拉(Dijkstra)最短路径算法目录前言一、最短路径的概念及应用二、Dijkstra迪杰斯特拉1.什么是Dijkstra2.逻辑实现总结前言无论是什么程序都要和数据打交道,一个好的程序员会选择更优的数据结构来更好的解决问题,因此数据结构的重要性不言而喻。
数据结构的学习本质上是让我们能见到很多前辈在解决一些要求时间和空间的难点问题上设计出的一系列解决方法,我们可以在今后借鉴这些方法,也可以根据这些方法在遇到具体的新问题时提出自己的解决方法。
(所以各种定义等字眼就不用过度深究啦,每个人的表达方式不一样而已),在此以下的所有代码都是仅供参考,并不是唯一的答案,只要逻辑上能行的通,写出来的代码能达到相同的结果,并且在复杂度上差不多,就行了。
一、最短路径的概念及应用在介绍最短路径之前我们首先要明白两个概念:什么是源点,什么是终点?在一条路径中,起始的第一个节点叫做源点;终点:在一条路径中,最后一个的节点叫做终点;注意!源点和终点都只是相对于一条路径而言,每一条路径都会有相同或者不相同的源点和终点。
而最短路径这个词不用过多解释,就是其字面意思:在图中,对于非带权无向图而言,从源点到终点边最少的路径(也就是BFS广度优先的方法);而对于带权图而言,从源点到终点权值之和最少的路径叫最短路径;最短路径应用:道路规划;我们最关心的就是如何用代码去实现寻找最短路径,通过实现最短路径有两种算法:Dijkstra迪杰斯特拉算法和Floyd弗洛伊德算法,接下来我会详细讲解Dijkstra迪杰斯特拉算法;二、Dijkstra迪杰斯特拉1.什么是DijkstraDijkstra迪杰斯特拉是一种处理单源点的最短路径算法,就是说求从某一个节点到其他所有节点的最短路径就是Dijkstra;2.逻辑实现在Dijkstra中,我们需要引入一个辅助变量D(遇到解决不了的问题就加变量[_doge]),这个D我们把它设置为数组,数组里每一个数据表示当前所找到的从源点V开始到每一个节点Vi的最短路径长度,如果V到Vi有弧,那么就是每一个数据存储的就是弧的权值之和,否则就是无穷大;我们还需要两个数组P和Final,它们分别表示:源点到Vi的走过的路径向量,和当前已经求得的从源点到Vi的最短路径(也就是作为一个标记表示该节点已经加入到最短路径中了);那么对于如下这个带权无向图而言,我们应该如何去找到从V0到V8的最短路径呢;在上文中我们已经描述过了,在从V0到V8的这一条最短路径中,V0自然是源点,而V8自然是终点;于是我根据上文的描述具现化出如下的表格;在辅助向量D中,与源点V0有边的就填入边的权值,没边就是无穷大;构建了D、P和Final,那么我们要开始遍历V0,找V0的所有边中权值最短的的边,把它在D、P、Final中更新;具体是什么意识呢?在上述带权无向图中,我们可以得到与源点有关的边有(V0,V1)和(V0,V2),它们的权值分别是1和5,那么我们要找到的权值最短的的边,就是权值为1 的(V0,V1),所以把Final[1]置1,表示这个边已经加入到最短路径之中了;而原本从V0到V2的距离是5,现在找到了一条更短的从V0 -> V1 -> V2距离为4,所以D[2]更新为4,P[2]更新为1,表示源点到V2经过了V1的中转;继续遍历,找到从V0出发,路径最短并且final的值为0的节点。
利用Dijkstra算法计算最短路径摘要福格环游地球问题是一个十分典型的最短路径求解问题,题设给出了当时世界上主要交通网络图及交通通畅的城市之间来往所需时长,并限定了福格的出行方向(福格选择的是往东走),给出起止地点后要求找出福格环游世界天数最短的最佳路径。
我们认为,这个问题的实质在于最短路径的求解和优化。
我们对比图论中的多种最短路径算法,决定利用Dijkstra算法解决这个问题。
由于Dijkstra算法要求输入图G的关联矩阵,且图G为二维赋权图,而题中给出的地图可看成是三维环状地图,因此,我们对题设地图做相关处理,将其从起点处“切断”并展开为二维图,然后根据此图建立关联矩阵。
同时,我们考虑到最短路径可能会与切断线有交点,在切断线以西找出若干地点一分为二,修改关联矩阵。
对于题目中缺失的两处数据,本文将以当时的交通数据为基础,经过合理的数据处理,结合Google Earth测距软件与题目数据的合理类比,补充缺失数据,完成关联矩阵。
得到关联矩阵后,我们分别以伦敦、纽约和上海作为起点,调整关联矩阵起点和终点,用matlab编程进行求解得到最短环游时间和最短路径,进而判断出所选择的路径是否能让他赢得赌注。
根据我们的求解结果,在这三个城市,福格均能在80天内环游地球,赢得赌注。
本文进一步对此种算法的优缺点、灵敏度与推广性进行了分析,同时初步提出了两种优化方法。
关键词:最短路径算法 dijkstra算法算法优化一、问题重述儒勒•凡尔纳的著名小说《环游世界80天》中,英国绅士福格在伦敦与人打赌能够在80天内环游世界,这在当时的1872年是一个了不起的壮举。
当时最快的旅行方式是火车和轮船,然而世界上大部分地区还是靠马车、大象、驴子或者步行来旅行。
下面是一个从伦敦环游世界不同路线的交通网络图,福格选择的是往东走,每段路线所需要的天数显示在图上(见附录一),旅行的时间基于1872年能采用的旅行方式以及距离。
我们将解决以下问题:1.我们将设计一个算法为福格选择一条最佳路径,即环游世界天数最短,并判断所选择的路径是否能让他赢得赌注。
迪杰斯特拉算法是一种用于求解单源最短路径的经典算法,它被广泛应用于网络路由、电信领域以及各种其他实际问题中。
本文将从以下几个方面详细介绍迪杰斯特拉算法的原理、实现以及应用,以帮助读者深入理解并掌握该算法。
一、迪杰斯特拉算法的原理迪杰斯特拉算法的核心思想是通过逐步确定从起点到其他顶点的最短路径来求解单源最短路径问题。
其具体原理包括以下几个步骤:1. 初始化:将起点到所有其他顶点的距离初始化为无穷大,起点到自身的距离为0,并建立一个空的集合S来存放已确定最短路径的顶点。
2. 选择最近顶点:从未确定最短路径的顶点中选择距离起点最近的顶点u加入集合S。
3. 更新距离:对于顶点集合V-S中的每个顶点v,如果通过顶点u可以找到一条比当前最短路径更短的路径,则更新起点到顶点v的距离。
4. 重复步骤2和步骤3,直到集合S包含所有顶点。
通过上述步骤,迪杰斯特拉算法可以求解出起点到图中所有其他顶点的最短路径。
二、迪杰斯特拉算法的实现迪杰斯特拉算法可以通过多种数据结构来实现,其中最常见的是使用优先队列来存储未确定最短路径的顶点,并通过松弛操作来更新顶点的距离。
下面将介绍一种基于优先队列的迪杰斯特拉算法实现方法:1. 初始化距离数组dist[],其中dist[i]表示起点到顶点i的最短距离,将所有顶点初始化为无穷大,起点初始化为0。
2. 将起点加入优先队列,并将其距离更新为0。
3. 循环执行以下步骤直到优先队列为空:(1)从优先队列中取出距离起点最近的顶点u。
(2)遍历顶点u的所有邻接顶点v,对于每个邻接顶点v,如果通过顶点u可以找到一条更短的路径,则更新顶点v的距离,并将其加入优先队列。
通过上述实现,我们可以得到起点到所有其他顶点的最短路径。
三、迪杰斯特拉算法的应用迪杰斯特拉算法在实际应用中有着广泛的应用场景,其中最典型的应用包括网络路由、电信领域以及地图路径规划等。
1. 网络路由:在计算机网络中,迪杰斯特拉算法被用于寻找最短路径,以确保数据包以最短的路径到达目的地,提高网络传输效率。
Dijkstra算法求解单源最短路径问题一、单源最短路径问题描述给定一个带权有向图G=(V,E),其中每条边的权都是非负数。
给定V中的一个顶点,称为源。
计算从源到所有其他定点的最短路径长度。
这里的路径长度就是指各边权之和。
该问题称为单源最短路径问题(Single-Source Shortest Paths)。
二、Dijkstra算法思想将图G中所有的顶点V分成两个顶点集合S和T。
以v为源点已经确定了最短路径的终点并入S集合中,S初始时只含顶点v, T则是尚未确定到源点v最短路径的顶点集合。
然后每次从T集合中选择S集合点中到T路径最短的那个点,并加入到集合S中,并把这个点从集合T删除。
直到T集合为空为止。
三、算法描述(步骤)1、选一顶点v为源点,并视从源点v出发的所有边为到各顶点的最短路径:①记录从源点v到其它各顶点的路径长度数组dist[],开始时,dist是源点v到顶点i的直接边长度,即dist中记录的是邻接阵的第v行。
②设一个用来记录从源点到其它顶点的路径数组path[],path中存放路径上第i个顶点的前驱顶点。
2、在上述的最短路径dist[]中选一条最短的,并将其终点(即<v,k>)k加入到集合s中。
3、调整T中各顶点到源点v的最短路径。
因为当顶点k加入到集合s中后,源点v到T中剩余的其它顶点j就又增加了经过顶点k到达j的路径,这条路径可能要比源点v到j原来的最短的还要短。
调整方法是比较dist[k]+g[k,j]与dist[j],取其中的较小者。
4、再选出一个到源点v路径长度最小的顶点k,从T中删去后加入S中,再回去到第三步,如此重复,直到集合S中的包含图G的所有顶点。
四、算法实现(数据结构)1、算法实现输入:一个大于1的整数n.输出:●一个随机生成的有向图G=(V,E),对于每一条边,有一个非负数字c(u,v)与之相关。
●对于每个顶点v∈V,得到从v0到v的最短路径的长度。
dijkstra算法java最短路径
Dijkstra算法是一种用于寻找图中两个节点之间最短路径的算法。
它采用的是贪心策略,将图中的节点分为两个集合:已访问节点集S和未访问节点集T。
算法从源节点开始,每次从T中选择到源节点距离最短的节点加入S集合,并更新S集合中各节点到源节点的最短路径。
直到T集合中的节点全部加入S集合,算法结束。
Dijkstra算法的Java实现如下:
●public class Dijkstra{
●public static void main(String[]args){
●创建图
●Graph graph=new Graph();
●graph.addVertex("A");
●graph.addVertex("B");
●graph.addVertex("C");
●graph.addEdge("A","B",10);
●graph.addEdge("A","C",20);
●graph.addEdge("B","C",30);
●计算最短路径
●dijkstra(graph,"A");}
●private static void dijkstra(Graph graph,String startVertex){
●初始化
●Set<String>visited=new HashSet<>();
●Map<String,Integer>distances=new HashMap<>();
●for(String vertex:graph.getVertices()){
●distances.put(vertex,Integer.MAX_VALUE);}
●distances.put(startVertex,0);
●遍历所有节点
●for(String vertex:graph.getVertices()){
●找到未访问节点中距离源节点最小的节点
●String nearestVertex=findNearestVertex(distances,visited);
●将该节点加入已访问节点集合
●visited.add(nearestVertex);
●更新该节点到其他节点的最短路径
●for(String neighbor:graph.getAdjacentVertices(nearestVertex)){
●intnewDistance=distances.get(nearestVertex)+graph.getEdgeWeight(nearestVertex,neighbor ●if(newDistance<distances.get(neighbor)){
●distances.put(neighbor,newDistance);}}}
●输出结果
●System.out.println("从"+startVertex+"到其他节点的最短路径:");
●for(String vertex:graph.getVertices()){
●System.out.println(vertex+"的最短路径是:"+distances.get(vertex));}}
●private static String findNearestVertex(Map<String,Integer>distances,Set<String>visited){
●int minDistance=Integer.MAX_VALUE;
●String nearestVertex=null;
●for(String vertex:distances.keySet()){
●if(!visited.contains(vertex)&&distances.get(vertex)<minDistance){
●minDistance=distances.get(vertex);
●nearestVertex=vertex;}}
●return nearestVertex;}}
该算法的工作原理如下:
1.初始化距离表,将所有节点的距离初始化为无穷大。
2.从源节点开始,将源节点的距离设为0。
循环遍历所有节点:
●找到未访问节点中距离源节点最小的节点。
●将该节点加入已访问节点集合。
●更新该节点到其他节点的最短路径。
●循环结束后,距离表中存储的就是从源节点到所有节点的最短路径。
●该算法的时间复杂度为O(n^2),空间复杂度为O(n)。