泷州中学2015届高三艺术生数学第一轮复习教学案——对数函数的图象和性质2
- 格式:doc
- 大小:79.00 KB
- 文档页数:2
5.3对数函数的图像和性质【教学目标】1.知识与技能①了解对数函数的图象与性质规律.②掌握对数函数的性质,能初步运用性质解决问题.2.过程与方法通过让学生观察、思考、交流、讨论、发现函数图像性质;让学生通过观察对数函数的图象,归纳出对数函数的性质,利用对数函数的性质初步解决一些有关求函数定义域、比较两个数的大小的题型。
3.情感、态度与价值观①培养学生数形结合的思想、分类讨论归纳的数学思想方法以及分析推理的能力;②培养学生对问题进行质疑的意识,培养学生在学习的过程中交流的习惯,培养学生严谨的科学态度.【教学重点】理解对数函数的图象和性质,对数函数图像性质的应用.【教学难点】底数a对图象的影响及对数函数性质的应用.【教学方法】先学后教,当堂训练【学习方法】自主探究,合作交流【课时】1课时【教学用具】三角板,多媒体【教学过程】一、复习回顾1. 对数函数概念;2. y=log2x以及y=log0.5x函数图像及其性质。
二、自主探究,合作交流1.检查学生课前准备情况,是否已作出两组对数函数的图像。
2.观察对数函数y=log2x,y=log3x,y=log5x图像有什么异同,类比归纳底数a﹥1时对数函数图像形状及性质;3.观察y=log 0.2x ,y=log 0.3x ,y=log 0.5x 图像有什么异同,类比归纳底数0﹤a ﹤1时对数函数图像及性质。
4.学生合作交流,探究归纳出对数函数图像及性质:三、 例题讲解,及时训练。
1.例1:求下列函数的定义域:(1) y=log a x 2 (2) y=log a (4-x)(师规范格式讲一题,另一学生板演,学生纠错)基础训练1:求下列函数的定义域: (1) y=log 5 (2)y=log 5(1-x)(学生板演,学生评价)2.例2 比较下列各题中两个数的大小:⑴ log 23.4 , log 28.5⑵ log 0.31.8 , log 0.32.7(师讲解一题,学生思考另一题,板演)探讨:如何比较log a 3.1 与 log a 5.9 的大小( 其中a>0 , a ≠1 )?基础训练2:比较下列各题中两个数的大小:⑴ lg6 lg8⑵ log 0.56 log 0.54121 x(学生口答,说理由)归纳:同底数比较大小时(1)当底数确定时,则可由函数的单调性直接进行判断;(2)当底数不确定时,应对底数进行分类讨论。
《对数函数图像及其性质》教学设计一、教学目标(1) 理解对数函数的概念、掌握对数函数的图象和性质.(2) 培养学生自主学习、综合归纳、数形结合的能力.(3) 培养学生用类比方法探索研究数学问题的素养;(4) 培养学生对待知识的科学态度、勇于探索和创新的精神.(5) 在民主、和谐的教学气氛中,促进师生的情感交。
二、教学重点、难点和关键重点:对数函数的概念、图象和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识.难点:底数a对对数函数的图象和性质的影响;关键:对数函数与指数函数的类比教学[关键]由指数函数的图象过渡到对数函数的图象,通过类比分析达到深刻地了解对数函数的图象及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图象,数形结合,加强直观教学,使学生能形成以图象为根本,以性质为主体的知识网络,同时在例题的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突出重点、突破难点.三、教学手段:TI图形计算器与计算机相结合辅助教学四、教学方法:(1)启发引导学生思考、分析、实验、探索、归纳.(2)采用“从特殊到一般”、“从具体到抽象”的方法.(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法.(4)多媒体课件演示法.五、学法:(1)对照比较学习法:学习对数函数,处处与指数函数相对照.(2)探究式学习法:学生通过分析、探索,得出对数函数的定义.(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质.(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距六、教学过程设计教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结(一)熟悉背景、引入课题如图4—2材料:某种细胞分裂时,由1个分裂成2个,2个分裂成4个 ……,如果要求这种细胞经过多少次分裂,大约可以得到细胞1万个,10万个 ……,不难发现:分裂次数y 就是要得到的细胞个数x 的函数,即x y 2log =;图 4—21.引导学生观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5log 5xy = 都不是对数函数.○2 对数函数对底数的限制:0(>a ,且)1≠a .3.根据对数函数定义填空;例1 (1)函数 y=log a x 2的定义域是___________ (其中a>0,a ≠1)(2) 函数y=log a (4-x) 的定义域是___________ (其中a>0,a ≠1)(3)y=log a (9-x 2) 的定义域是___________ (其中a>0,a ≠1) 说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理解,所以把教材中的解答题改为填空题,节省时间,点到为止,以避免挖深、拓展、引入复合函数的概念。
《对数函数的图像与性质》教案《《对数函数的图像与性质》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教材分析函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一。
这节教学内容是在学生学过函数的基本性质、指数、指数函数以及对数的基础上再来学习的,可以说它是上述内容的延续和发展,同时也为数学在实际应用中提供了一种新的函数模型。
因此本节内容起到了一种承上启下的作用。
对数函数在生产、生活实践中都有许多应用。
本节课的学习使学生对函数的理解、研究函数的图像和性质方法更加深刻,使学生的知识体系更加完整、系统。
二、学情分析学生之前已经学习过幂函数和指数函数,了解基本初等函数的研究方法,但根据高一学生的认知规律,他们对从形到数的翻译、从直观到抽象的转化存在一定的问题。
三、教学目标1、知识与技能:①进一步理解对数函数的意义,掌握对数函数的图像与性质;②初步利用对数函数的图像与性质来解决简单的问题。
2、过程与方法:①经历探究对数函数的图像与性质的过程,培养学生观察、分析、归纳的思维能力以及数学交流能力;②渗透类比、数形结合、分类讨论等数学思想方法。
3、情感、态度与价值观:在活动过程中培养学生的数学应用意识,感受获得成功后的喜悦心情,养成积极合作、大胆交流、虚心学习的良好品质。
四、教学重难点1、重点:①对数函数的图像和性质;②对数函数性质的初步应用,利用对数函数单调性比较数大小。
2、难点:底数对对数函数性质的影响。
五、教法学法1、教法:①启发引导学生观察、思考、联想、分析、归纳;②采用“从特殊到一般”、“从具体到抽象”的方法;③渗透类比、数形结合、分类讨论等数学思想方法。
2、学法:①类比学习:与指数函数类比学习对数函数的图像与性质;②探究性学习:在教师建立的情境下,学生通过思考、分析、探索,归纳得出对数函数的图像与性质;③小组合作学习:在归纳得出对数函数的图像与性质的过程中,通过小组内讨论交流,使问题得以圆满解决。
§13对数函数的图象和性质(1)【考点及要求】1.了解对数函数模型的实际案例,理解对数函数的概念;理解对数函数的性质,会画指数函数的图象.2.了解指数函数x y a =与对数函数log a y x =模型互为反函数(1,0≠>a a )(不要求讨论一般情形的反函数定义,也不要求求已知函数的反函数),会用指数函数模型解决简单的实际问题.【基础知识】1一般地,我们把函数____________叫做对数函数,其中x 是自变量,函数的定义域是_______【基本训练】 1.)5(log 34+-=x y 的定义域为___________,值域为___________.在定义域上,该函数单调递_______.2.(1)函数x a y =和)1,0(log ≠>=a a x y a 的图象关于 对称.(2)函数x y a log =和)1,0(log 1≠>=a a x y a的图象关于 对称.3.若0log log 22<<n m ,则实数m 、n 的大小关系是 .4.函数)1(log 22≥+=x x y 的值域是 .【典型例题讲练】例1 求函数)352(log 21.0--=x x y 的递减区间.练习 求函数)23(log 221x x y -+=的单调区间和值域.例2 已知函数)0,10(log )(>≠>-+=b a a bx b x x f a 且. (1)求)(x f 的定义域;(2)讨论)(x f 的奇偶性;练习 求下列函数的定义域:(1))16(log 2)1(x y x -=+; (2)(31)log )1x y x -=-.【课堂小结】熟悉对数函数的基本性质的运用【课堂检测】1.函数)32(log )(22--=x x x f a 当)1,(--∞∈x 时为增函数,则a 的取值范围是_____. 2.)35lg(lg x x y -+=的定义域是 .3.若函数)1,0)(1(log )(≠>+=a a x x f a 的定义域和值域都是]1,0[,则a 等于 ___.【课后作业】1.已知),32(log )(24x x x f -+=)1(求函数)(x f 的单调区间;(2)求函数)(x f 的最大值,并求取得最大值时的x 的值.2.已知函数2()log ()2a x f x x+=-)10(<<a ,判断)(x f 的奇偶性.。
对数函数的图像与性质教案第一章:对数函数的定义与性质1.1 对数函数的定义引入对数的概念,解释对数函数的定义举例说明对数函数的表示方法1.2 对数函数的性质解释对数函数的单调性探讨对数函数的奇偶性探讨对数函数的周期性第二章:对数函数的图像2.1 对数函数图像的绘制介绍对数函数图像的绘制方法利用图形计算器或绘图软件绘制对数函数图像2.2 对数函数图像的特点分析对数函数图像的形状探讨对数函数图像的渐近线第三章:对数函数的应用3.1 对数函数在实际问题中的应用引入实际问题,说明对数函数的应用举例说明对数函数在实际问题中的解题步骤3.2 对数函数在数学问题中的应用举例说明对数函数在数学问题中的解题步骤第四章:对数函数的进一步研究4.1 对数函数的导数引入对数函数的导数概念推导对数函数的导数公式4.2 对数函数的极值探讨对数函数的极值问题举例说明对数函数极值的求解方法第五章:对数函数的综合应用5.1 对数函数与其他函数的关系探讨对数函数与指数函数的关系探讨对数函数与三角函数的关系5.2 对数函数在综合问题中的应用引入综合问题,说明对数函数的应用举例说明对数函数在综合问题中的解题步骤第六章:对数函数图像的进一步分析6.1 对数函数的渐近线解释对数函数的渐近线概念探讨对数函数渐近线的求解方法6.2 对数函数的凹凸性与拐点引入凹凸性和拐点的概念分析对数函数的凹凸性和拐点特点第七章:对数函数图像的变换7.1 对数函数图像的水平变换介绍对数函数图像的水平变换方法举例说明对数函数图像的水平变换过程7.2 对数函数图像的垂直变换介绍对数函数图像的垂直变换方法举例说明对数函数图像的垂直变换过程第八章:对数函数图像的性质综合应用8.1 对数函数图像的面积与积分引入对数函数图像的面积概念探讨对数函数图像面积的求解方法8.2 对数函数图像的周长与极限引入对数函数图像的周长概念探讨对数函数图像周长的求解方法第九章:对数函数图像与实际问题9.1 对数函数图像在实际问题中的应用引入实际问题,说明对数函数图像的应用举例说明对数函数图像在实际问题中的解题步骤9.2 对数函数图像与数据分析介绍对数函数图像在数据分析中的应用举例说明对数函数图像在数据分析中的解题步骤第十章:总结与拓展10.1 对数函数图像与性质的总结回顾本章内容,总结对数函数图像与性质的主要知识点强调对数函数图像与性质的重要性和应用价值10.2 对数函数图像与性质的拓展探讨对数函数图像与性质的进一步研究方向引入相关领域的知识,拓展学生的视野重点和难点解析重点一:对数函数的定义与性质对数函数的定义是理解对数图像与性质的基础,需要重点关注对数函数的表示方法和对数函数的基本性质。
《对数函数的图像与性质》教案一、教学目标:1. 知识与技能:(1)理解对数函数的定义和性质;(2)能够绘制对数函数的图像;(3)掌握对数函数在实际问题中的应用。
2. 过程与方法:(1)通过观察、分析、归纳对数函数的性质;(2)利用数形结合的方法,研究对数函数的图像;(3)运用对数函数解决实际问题。
3. 情感态度与价值观:(1)培养学生的数学思维能力;(2)激发学生对数学的兴趣和好奇心;(3)培养学生运用数学知识解决实际问题的能力。
二、教学内容:1. 对数函数的定义与性质;2. 对数函数的图像特点;3. 对数函数的应用。
三、教学重点与难点:1. 重点:对数函数的定义、性质和图像特点;2. 难点:对数函数在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生探究对数函数的性质;2. 利用数形结合法,绘制对数函数的图像;3. 实例分析法,讲解对数函数在实际问题中的应用。
五、教学过程:1. 引入新课:(1)复习指数函数的图像与性质;(2)提问:指数函数与对数函数有何关系?引出对数函数的概念。
2. 自主学习:(1)让学生阅读教材,理解对数函数的定义;3. 课堂讲解:(1)讲解对数函数的定义与性质;(2)利用数学软件或板书,绘制对数函数的图像;(3)分析对数函数图像的特点。
4. 实例分析:(1)给出实际问题,让学生运用对数函数解决;(2)引导学生分析问题,解答问题。
5. 巩固练习:(1)布置练习题,让学生巩固对数函数的性质;(2)挑选学生上台板书,讲解答案。
6. 课堂小结:(2)强调对数函数在实际问题中的应用。
7. 课后作业:(1)编写对数函数的应用题;(2)让学生完成练习题,巩固所学知识。
六、教学评价:1. 课堂讲解评价:(1)评价学生对对数函数定义与性质的理解程度;(2)评价学生对对数函数图像特点的掌握情况。
2. 实例分析评价:(1)评价学生运用对数函数解决实际问题的能力;(2)评价学生在分析问题、解答问题过程中的思维品质。
对数函数的图像和性质一、教学内容分析:1、对数是学生在高一刚刚接触到的新概念,不易理解,计算的形式具有一定的复杂性.2、以对数作为基础的对数函数是高中函数学生最不易掌握的函数类型。
3、函数是高中十分重要的概念. 其中关于定义域、值域、单调性、奇偶性、对称性等函数的性质应有一个整体的认识,这在学习、解决函数问题的过程中显得十分重要,应在适当的时机对学生这种函数的整体观念加以培养,这节课的学习过程是一个可以把握的机会。
二、学生分析:1、学生从初中到高一年级接触到了一些函数和研究函数的一些方法。
2、学生在前面学习了指数函数,知道指数函数和对数函数的关系,可以类比指数函数的研究方法来研究对数函数的图像和性质。
3、学生可以选择描点作图的方法来研究对数函数的图像与性质,也可以通过研究指数函数反函数的方法来研究对数函数的图像和性质等。
三、教学目标:1、会画对数函数的图像,理解对数函数的性质。
2、对于函数的性质与函数图像的形态之间的关系有一个初步的整体的理解,体会研究函数性质的过程中数形结合、分类讨论归纳的数学思想方法在研究问题过程中的体现。
3、培养学生对问题进行质疑的意识,培养学生在学习的过程中交流的习惯。
四、教学重点:对数函数的图像和性质。
五、教学难点:对数函数的图像和性质的应用。
六、教学活动: <1>.复习导入新课复习对数函数的概念定义:一般的,我们把形如x y a log =(0>a ,且1≠a )的函数叫做对数函数,其中x 是自变量。
定义域为),0(+∞, 值域为R 。
分析对数函数和指数函数的关系,它们互为反函数,可以类似指数函数的研究方法来研究对数函数,复习指数函数的图像及性质。
引出课题——对数函数的图像和性质<2>.目标解读知识与技能:掌握对数函数的图像,并能通过图像研究对数函数的性质,并能解决求函数定义域、比较大小、解不等式等。
过程与方法:充分利用数形结合以及类比指数函数的性质,探究、总结对数函数的性质;由特殊的对数函数的图像和性质推广到一般的对数函数的图像和性质。
《对数函数的图像与性质》教案教学目标:1. 理解对数函数的定义和性质。
2. 能够绘制和分析对数函数的图像。
3. 掌握对数函数在实际问题中的应用。
教学内容:1. 对数函数的定义与性质2. 对数函数图像的特点3. 对数函数的单调性4. 对数函数的极值5. 对数函数的应用教学准备:1. 教学PPT或黑板2. 教学辅导书或教材3. 数学软件或图形计算器教学过程:一、导入(5分钟)1. 引入对数函数的概念,通过实际例子说明对数函数的应用背景。
2. 引导学生回顾指数函数的性质,为新课的学习打下基础。
二、对数函数的定义与性质(15分钟)1. 讲解对数函数的定义,解释对数函数与指数函数的关系。
2. 引导学生通过实例来探究对数函数的性质,如单调性、奇偶性等。
3. 引导学生理解对数函数的图像特点,如渐近线和对称性。
三、对数函数图像的特点(15分钟)1. 利用数学软件或图形计算器,展示对数函数的图像。
2. 引导学生观察图像,总结对数函数图像的特点,如渐近线和对称性。
3. 举例说明对数函数图像的应用,如解决实际问题。
四、对数函数的单调性(15分钟)1. 讲解对数函数的单调性,引导学生理解对数函数单调递增或递减的原理。
2. 引导学生通过实例来验证对数函数的单调性。
3. 利用数学软件或图形计算器,展示对数函数单调性的图像。
五、对数函数的极值(15分钟)1. 讲解对数函数的极值概念,引导学生理解对数函数的极大值和极小值。
2. 引导学生通过实例来求解对数函数的极值。
3. 利用数学软件或图形计算器,展示对数函数极值的图像。
教学评价:1. 课堂讲解的清晰度和连贯性。
2. 学生参与度和互动情况。
3. 学生对对数函数定义和性质的理解程度。
4. 学生对对数函数图像特点、单调性和极值的掌握情况。
教学反思:根据学生的反馈和教学效果,对教案进行调整和改进,以提高教学质量和学生的理解程度。
六、对数函数的应用(15分钟)1. 通过实际例子,讲解对数函数在各个领域的应用,如自然增长、人口增长、复利计算等。
对数函数的图像与性质教案一、教学目标1. 理解对数函数的定义和性质2. 能够绘制和分析对数函数的图像3. 掌握对数函数在实际问题中的应用二、教学重点1. 对数函数的定义和性质2. 对数函数图像的特点三、教学难点1. 对数函数的图像绘制2. 对数函数性质的理解和应用四、教学准备1. 教学PPT2. 数学软件或图形计算器3. 练习题和答案五、教学过程1. 引入:通过复习指数函数的图像和性质,引导学生思考对数函数的定义和性质。
2. 新课:讲解对数函数的定义和性质,通过示例和动画演示对数函数图像的特点。
3. 练习:让学生利用数学软件或图形计算器绘制对数函数的图像,并观察其特点。
4. 应用:通过实际问题引导学生应用对数函数的性质解决问题。
5. 总结:对本节课的内容进行总结,强调对数函数的定义、性质和图像的特点。
6. 布置作业:让学生课后练习绘制和分析对数函数的图像,巩固所学知识。
附:练习题1. 绘制对数函数y = log2(x) 的图像。
2. 分析对数函数y = log3(x) 的图像与y = log2(x) 的图像的异同。
3. 设对数函数的底数为4,求函数在x = 2 和x = 4 时的值。
4. 应用对数函数的性质,解决实际问题:一家企业今年的销售额是去年的2倍,问去年的销售额是多少?5. 判断下列函数是否为对数函数,并说明理由:a) y = log2(x) + 1b) y = 2^xc) y = log(x)六、教学拓展1. 引入对数函数的换底公式2. 探讨对数函数与指数函数的关系3. 介绍对数函数在自然界的应用,如声波、地震等七、课堂小结1. 回顾本节课所学内容,对数函数的定义、性质和图像特点2. 强调对数函数在实际问题中的应用价值八、作业布置1. 完成练习题2. 预习下一节课内容:对数函数的应用九、课后反思1. 学生对本节课内容的掌握情况2. 教学过程中存在的问题和改进措施3. 对下周教学内容的准备和安排十、教学评价1. 学生作业完成情况2. 课堂表现和参与度3. 知识点的掌握和应用能力附:练习题答案1. 对数函数y = log2(x) 的图像如下:2. 对数函数y = log3(x) 的图像与y = log2(x) 的图像的异同如下:相同点:都是单调递增的曲线,过原点(0,0)不同点:对数函数y = log3(x) 的图像在x 轴上的截距更大,斜率更小3. 对数函数的底数为4 时,函数在x = 2 和x = 4 时的值分别为:y = log4(2) = 0.5y = log4(4) = 14. 设去年的销售额为x,今年的销售额为2x,根据题意可得:2x = 4x = 2去年的销售额为25. 判断下列函数是否为对数函数,并说明理由:a) y = log2(x) + 1:不是对数函数,因为对数函数的定义中不包括常数项b) y = 2^x:不是对数函数,而是指数函数c) y = log(x):是对数函数,但未指明底数,需要明确底数才能确定是否为对数函数重点和难点解析一、教学重点补充和说明:对数函数的定义要强调底数、真数和系数的概念,通过具体例子让学生理解对数函数的表达意义。
对数与对数函数一、知识梳理:(阅读教材必修1第62页—第76页)1、对数与对数的运算性质(1)、一般地,如果 (a>0,且) 那么数x叫做以a为底的对数,记做x= ,其中a叫做对数的底,叫做对数的真数。
(2)、以10为底的对数叫做常用对数,并把记为lgN, 以e为底的对数称为自然对数,并把记为lnN. (3)、根据对数的定义,可以得到对数与指数和关系:(4)、零和负数没有对数; =1; =0;=N(5)、对数的运算性质:如果,M>0,N>0 ,那么=+==n(n)换底公式:=对数恒等式:=N2、对数函数与对数函数的性质(1)、一般地,我们把函数f(x)=)叫做对函数,其中x是自变量,函数的定义域是(0,+。
(2)、对数函数的图象及性质图象的性质:①定义域②值域③单调性④奇偶性⑤周期性⑥特殊点⑦特殊线图象分a1 与a<1两种情况。
3、反函数:对数函数f(x)=)与指数函数f(x)=)互为反函数。
原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。
互为反函数的图象在同一坐标系关于直线y=x对称。
【关于反函数注意大纲的要求】二、题型探究探究一:对数的运算例1:(15年安徽文科)=-+-1)21(2lg225lg。
【答案】-1【解析】试题分析:原式=12122lg5lg2lg22lg5lg-=-=-+=-+-考点:对数运算.例2:【2014辽宁高考】已知132a-=,21211log,log33b c==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>例3:【2015高考浙江】若4log3a=,则22a a-+=.【答案】334.【考点定位】对数的计算探究二:对数函数及其性质例4:【2014江西高考】函数)ln()(2xxxf-=的定义域为()A.)1,0(B. ]1,0[C. ),1()0,(+∞-∞ D. ),1[]0,(+∞-∞例5:下列关系 中,成立的是(A )、lo>> (B) >> lo (C) lo> > (D) lo>探究三、应用对数函数的单调性解方程、不等式问题 例7:【15年天津文科】已知定义在R 上的函数||()21()xm f x m 为实数为偶函数,记0.5(log 3),af 2b(log 5),c(2)f f m ,则,,a b c ,的大小关系为( )(A) b c a(B) b c a (C) b a c (D) b c a【答案】B 【解析】试题分析:由()f x 为偶函数得0m =,所以2,4,0a b c ===,故选B. 考点:1.函数奇偶性;2.对数运算.例8:【2014陕西高考】已知,lg ,24a x a==则x =________.三、方法提升:1、 处理对数函数问题时要特别注意函数的定义域问题,尤其在大题中【最后的导数题】,一定要首先考虑函数的定义域,然后在定义域中研究问题,以避免忘记定义域出现错误;2、 在2015年高考小题中,考察主要是针对对数的大小比较、指数与对数的关系,中档难度。
§14对数函数的图象和性质(2)
【典型例题讲练】
例1 已知函数]1)1()1lg[()(22+-+-=x a x a x f .
)1(若)(x f 的定义域为R ,求实数a 的取值范围;(2)若)(x f 的值域为R ,求实数a 的取值范围.
练习 设,10<<a 函数),
22(log )(2--=x x a a a x f 求使0)(<x f 的x 的取值范围.
例 2 已知函数)(log )(log 22ax x a y a a ⋅=,当]4,2[∈x 时,y 的取值范围是]0,81[-,求实数a 的值.
练习 已知函数])9,1[(2log )(3∈+=x x x f ,求函数2)]([x f y =的最大值.
【课堂小结】
【课堂检测】
1.已知函数x
x x f x x +-++-=11lg 101101)(. (1)求函数)(x f 的定义域;(2)判断函数)(x f 的奇偶性,并证明你的结论.
2.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点)0,1(-和)1,0(,则a =_____,b =_____.
3.求函数)2)(log 4(log )(22x x x f =的最小值.
【课后作业】
1.已知
lg(728)2x x ⋅+≥,求4
log log )(2121x x x f ⋅=的最小值及相应x 的值.
2.若关于自变量x 的函数)2(log ax y a -=]1,0[上是减函数,求a 的取值范围.。