自动控制典型例题分析2
- 格式:doc
- 大小:261.00 KB
- 文档页数:6
精心整理----------2007--------------------一、(22分)求解下列问题: 1. (3分)简述采样定理。
解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(*t e 中 完满地恢复原信号)(t e 。
(要点:h s ωω2>)。
2.(3分)简述什么是最少拍系统。
解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻上无稳态误差的随动系统。
3.(34.(x()∞5.(5解:(G 6.(5试用Z 解:二、((i X s )z 图11.(5分)试求系统的闭环脉冲传递函数()()o i X z X z ; 2.(5分)试判断系统稳定的K 值范围。
解:1.101111111()(1)(1)11(1)1(1)()1e11e 1e G G z z Z s s z Z s s z z z z z z z e z -------⎡⎤=-⎢⎥+⎣⎦⎡⎤=--⎢⎥+⎣⎦=-----=---=-11010*******1e ()()e 1e ()1()1e (1e )(e )(1e )(1e )e e o i K X z KG G z z X z KG G z K z K z K K z K K ------------==-++--=-+--=-+- 2.(5三、(8已知(z)1Φ=1.(3分)简述离散系统与连续系统的主要区别。
解:连续系统中,所有信号均为时间的连续函数;离散系统含有时间离散信号。
2.(3分)简述线性定常离散系统的脉冲传递函数的定义。
解:在系统输入端具有采样开关,初始条件为零时,系统输出信号的Z 变换与输入信号的Z 变换之比。
3.(3分)简述判断线性定常离散系统稳定性的充要条件。
解:稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。
4.(5分)设开环离散系统如图所示,试求开环脉冲传递函数)(z G 。
解:22522510252510()[[25e e (e e )eT T T T Tz z z G z Z Z s s z z z z -----=⨯==++---++ 5.(5分)已知系统差分方程、初始状态如下:0)(2)1(3)2(=++++k c k c k c ,c(0)=0,c(1)=1。
实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。
二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。
为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。
本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。
用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。
由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。
1.用MATLAB 求控制系统的瞬态响应1)阶跃响应 求系统阶跃响应的指令有:step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10)[y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。
考虑下列系统:25425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s的降幂排列。
则MATLAB 的调用语句:num=[0 0 25]; %定义分子多项式 den=[1 4 25]; %定义分母多项式step(num,den) %调用阶跃响应函数求取单位阶跃响应曲线grid %画网格标度线 xlabel(‘t/s’),ylabel(‘c(t)’) %给坐标轴加上说明 title(‘Unit -step Respinse of G(s)=25/(s^2+4s+25)’) %给图形加上标题名 则该单位阶跃响应曲线如图2-1所示:为了在图形屏幕上书写文本,可以用text 命令在图上的任何位置加标注。
2007一、(22分)求解下列问题: 1. (3分)简述采样定理。
解:当采样频率 s 大于信号最高有效频率 h 的2倍时,能够从采样信号 e (t)中完满地恢复原信号 e(t)。
(要点:s 2 h )。
2. (3分)简述什么是最少拍系统。
解:在典型输入作用下, 能以有限拍结束瞬态响应过程, 拍数最少,且在采样时刻上无稳态误差的随动系统。
3. (3分)简述线性定常离散系统稳定性的定义及充要条件。
解:若系统在初始扰动的影响下,其输出动态分量随时间推移逐渐衰减并趋于零,则称 系统稳定。
稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。
4. (3分)已知X(z)如下,试用终值定理计算x(x )。
z2(z 1)( z z 0.5)试用Z 变换法计算输出序列c(k), k > 0解:2z C(z) 6C(z) 8C(z) R(z)C(z)zz z z(z 1)(z 2 6z 8)3(z 1)2(z 2) 6(z 4)c(k)?{2 k3 24k }, k 06(10分)已知计算机控制系统如图1所示,采用数字比例控制D(z) K , 其中K>0。
设采样周期T=1s, e 10.368。
注意,这里的数字控制器 D(z)就是上课时的G c (z)X(z)解: 经过验证 (z 1)X( z)满足终值定理使用的条件,因此,x( )I !叫 z1)X( z) 5. (5分)已知采样周期 G(s) lim 2—z--------- z 1z z 0.5T =1 秒,计算 G ⑵=Z[G h (s)G 0(s)]。
彳G h (s)G o (s)(s 1)(s 2)1解:G(z) (1 z 1)Z[-s](1 z 1)^^z 1(Z 1)(1 e z 2 (1 e 1)z e6. (5分)已知系统差分方程、 初始状态如下:c(k 2) 6c(k1) 8c(k)1(k), c(0)=c(1)=Q(5分)试求系统的闭环脉冲传递函数X i 1. X o (z); X i (z);2. (5分)试判断系统稳定的K 值范围。
自动控制原理课后习题1.简答题。
(1)什么是控制系统?控制系统是由控制器、被控对象、控制目标和反馈装置组成的一种系统,用来实现对被控对象的控制和调节。
(2)控制系统的分类有哪些?控制系统可以分为开环控制系统和闭环控制系统。
开环控制系统是指控制器的输出不受被控对象的影响,而闭环控制系统是指控制器的输出受到被控对象的影响并进行调节。
(3)什么是控制对象?控制对象是指控制系统中需要被控制或调节的对象,可以是机械、电气、液压等各种设备和系统。
2.计算题。
(1)某电动机的转速控制系统,控制电压为220V,电动机额定转速为1500rpm,控制器输出电压为180V时,电动机的实际转速为多少?解,根据电动机的转速控制系统原理,实际转速可以通过控制电压和额定转速的比例关系计算得出。
实际转速 = 控制器输出电压 / 控制电压× 额定转速 = 180V / 220V × 1500rpm = 1227.27rpm。
所以,电动机的实际转速为1227.27rpm。
(2)某水箱的液位控制系统,控制器输出信号为4-20mA,对应的液位范围为0-100cm,若控制器输出信号为12mA时,水箱的实际液位为多少?解,根据液位控制系统的标定原理,可以通过控制器输出信号和液位范围的比例关系计算得出实际液位。
实际液位 = (控制器输出信号4mA) / (20mA 4mA) × 液位范围= (12mA 4mA) / (20mA 4mA) × 100cm = 60cm。
所以,水箱的实际液位为60cm。
3.分析题。
(1)为什么在控制系统中需要引入反馈?在控制系统中引入反馈可以实现对被控对象的实时监测和调节,使控制系统能够更加准确地达到控制目标。
(2)闭环控制系统和开环控制系统各有什么优缺点?闭环控制系统能够实现对被控对象的实时监测和调节,具有较高的控制精度,但系统稳定性较差,容易产生振荡和不稳定现象;而开环控制系统系统稳定性较好,但控制精度较低,无法实时监测和调节被控对象。
红色为重点(2016年考题)第一章1-2 仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
解当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机反转带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如下图所示。
1-4 题1-4图为水温控制系统示意图。
冷水在热交换器中由通入的蒸汽加热,从而得到一定温度的热水。
冷水流量变化用流量计测量。
试绘制系统方块图,并说明为了保持热水温度为期望值,系统是如何工作的?系统的被控对象和控制装置各是什么?解工作原理:温度传感器不断测量交换器出口处的实际水温,并在温度控制器中与给定温度相比较,若低于给定温度,其偏差值使蒸汽阀门开大,进入热交换器的蒸汽量加大,热水温度升高,直至偏差为零。
如果由于某种原因,冷水流量加大,则流量值由流量计测得,通过温度控制器,开大阀门,使蒸汽量增加,提前进行控制,实现按冷水流量进行顺馈补偿,保证热交换器出口的水温不发生大的波动。
其中,热交换器是被控对象,实际热水温度为被控量,给定量(希望温度)在控制器中设定;冷水流量是干扰量。
系统方块图如下图所示。
这是一个按干扰补偿的复合控制系统。
1-5图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量及各部件的作用,画出系统方框图。
解加热炉采用电加热方式运行,加热器所产生的热量与调压器电压Uc的平方成正比,Uc增高,炉温就上升,Uc 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压Uf。
Uf作为系统的反馈电压与给定电压Ur进行比较,得出偏差电压Ue,经电压放大器、功率放大器放大成au后,作为控制电动机的电枢电压。
自动控制原理例题与习题第一章自动控制的一般概念【例1】试述开环控制系统的主要优缺点。
【答】开环控制系统的优点有:1. 1.构造简单,维护容易。
2. 2.成本比相应的死循环系统低。
3. 3.不存在稳定性问题。
4. 4.当输出量难以测量,或者要测量输出量在经济上不允许时,采用开环系统比较合适(例如在洗衣机系统中,要提供一个测量洗衣机输出品质,即衣服的清洁程度的装置,必须花费很大)。
开环控制系统的缺点有:1. 1.扰动和标定尺度的变化将引起误差,从而使系统的输出量偏离希望的数值。
2. 2.为了保持必要的输出品质,需要对标定尺度随时修正。
【例2】图1.1为液位自动控制系统示意图。
在任何情况下,希望液面高度c维持不变,试说明系统工作原理,并画出系统原理方框图。
图1.1 液位自动控制系统示意图【解】系统的控制任务是保持液面高度不变。
水箱是被控对象,水箱液位是被控量,电位器设定电压u r(表征液位的希望值c r)是给定量。
当电位器电刷位于中点位置(对应u r)时,电动机不动,控制阀门有一定的开度、使水箱中流入水量与流出水量相等。
从而液面保持在希望高度c r上。
一旦流入水量或流出水量发生变化,例如当液面升高时,浮子位置也相应升高,通过杠杆作用使电位器电刷从中点位置下移,从而给电动机提供一定的控制电压,驱动电动初通过减速器减小阀门开度,使进入水箱的液体流量减少。
这时,水箱液面下降,浮子位置相应下降,直到电位器电刷回到中点位置,系统重新处于平衡状态,液面恢复给定高度。
反之,若水箱液位下降,则系统会自动增大阀门开度,加大流入水量,使液位升到给定高度c r。
系统原理方框图如图1.2所示。
图1.2 系统原理方框图习题1.题图1-1是一晶体管稳压电源。
试将其画成方块图并说明在该电源里哪些起着测量、放大、执行的作用以及系统里的干扰量和给定量是什么?题图1-12.如题图1-2(a)、(b)所示两水位控制系统,要求(1)画出方块图(包括给定输入量和扰动输入量);(2)分析工作原理,讨论误差和扰动的关系。
自动控制原理习题一、(20分) 试用结构图等效化简求下图所示系统的传递函数)()(s R s C 。
解:所以:32132213211)()(G G G G G G G G G G s R s C +++= 二.(10分)已知系统特征方程为06363234=++++s s s s ,判断该系统的稳定性,若闭环系统不稳定,指出在s 平面右半部的极点个数。
(要有劳斯计算表)解:劳斯计算表首列系数变号2次,S 平面右半部有2个闭环极点,系统不稳定。
66.06503366101234s s s s s -三.(20分)如图所示的单位反馈随动系统,K=16s -1,T=0.25s,试求:(1)特征参数n ωξ,; (2)计算σ%和t s ; (3)若要求σ%=16%,当T 不变时K 应当取何值? 解:(1)求出系统的闭环传递函数为:TK s T s T K Ks Ts K s /1/)(22++=++=Φ因此有:25.0212/1),(825.0161======-KT T s T K n n ωζω(2) %44%100e %2-1-=⨯=ζζπσ%)2)((2825.044=∆=⨯=≈s t n s ζω(3)为了使σ%=16%,由式%16%100e %2-1-=⨯=ζζπσ可得5.0=ζ,当T 不变时,有:)(425.04)(425.05.021212/11221--=⨯===⨯⨯===s T K s T T n n ωζζω四.(15分)已知系统如下图所示, 1.画出系统根轨迹(关键点要标明)。
2.求使系统稳定的K 值围,及临界状态下的振荡频率。
解① 3n =,1,2,30P =,1,22,1m Z j ==-±,1n m -= ②渐进线1条π ③入射角1ϕ()18013513513590360135135=︒+︒+︒+︒-︒=︒+︒=︒同理 2ϕ2135sr α=-︒④与虚轴交点,特方 32220s Ks Ks +++=,ωj s =代入X rX cK S 3S 2+2S +2222K K-0=1K ⇒=,2s j =± 所以当1K >时系统稳定,临界状态下的震荡频率为2ω=。
自动控制试题及答案一、单项选择题(每题2分,共20分)1. 自动控制系统中,开环系统与闭环系统的主要区别在于()。
A. 是否存在反馈B. 控制器的类型C. 系统的稳定性D. 系统的响应速度答案:A2. 在控制系统中,稳态误差是指()。
A. 系统达到稳态时的输出值B. 系统达到稳态时的输入值C. 系统达到稳态时的输出与期望输出之间的差值D. 系统达到稳态时的输入与期望输入之间的差值答案:C3. PID控制器中的“P”代表()。
A. 比例B. 积分C. 微分D. 前馈答案:A4. 一个系统如果其传递函数为G(s)=1/(s+1),则该系统的类型是()。
A. 零型B. 一型C. 二型D. 三型答案:B5. 在控制系统中,超调量是指()。
A. 系统响应超过稳态值的最大值B. 系统响应超过稳态值的最小值C. 系统响应达到稳态值的时间D. 系统响应达到稳态值的速率答案:A6. 一个系统如果其开环传递函数为G(s)H(s)=K/(s^2+2s+1),则该系统的开环截止频率为()。
A. 1B. 2C. √2D. √3答案:A7. 根据奈奎斯特判据,如果一个系统的奈奎斯特曲线围绕(-1,j0)点顺时针旋转()圈,则系统是稳定的。
A. 0B. 1C. 2D. 3答案:A8. 在控制系统中,如果一个系统对一个阶跃输入的响应是指数衰减的,则该系统是()。
A. 稳定的B. 不稳定的C. 临界稳定的D. 临界不稳定的答案:A9. 一个系统如果其传递函数为G(s)=1/(s(s+2)),则该系统的零点为()。
A. 0B. -2C. 0, -2D. 0, 2答案:C10. 在控制系统中,如果系统对一个单位阶跃输入的响应是单调的,则该系统()。
A. 一定是稳定的B. 一定是不稳定的C. 可能是稳定的,也可能是不稳定的D. 无法判断答案:A二、多项选择题(每题3分,共15分)1. 下列哪些因素会影响系统的稳定性()。
A. 控制器的增益B. 系统的结构C. 反馈的类型D. 系统的初始条件答案:ABC2. 在控制系统中,下列哪些方法可以用来减少系统的超调量()。
自动控制原理习题一、(20分) 试用结构图等效化简求下图所示系统的传递函数)()(s R s C 。
解:所以: 32132213211)()(G G G G G G G G G G s R s C +++= 二.(10分)已知系统特征方程为06363234=++++s s s s ,判断该系统的稳定性,若闭环系统不稳定,指出在s 平面右半部的极点个数。
(要有劳斯计算表)解:劳斯计算表首列系数变号2次,S 平面右半部有2个闭环极点,系统不稳定。
三.(20分)如图所示的单位反馈随动系统,K=16s -1,T=0.25s,试求:(1)特征参数n ωξ,; (2)计算σ%和t s ;(3)若要求σ%=16%,当T 不变时K 应当取何值解:(1)求出系统的闭环传递函数为:因此有:(2) %44%100e %2-1-=⨯=ζζπσ(3)为了使σ%=16%,由式可得5.0=ζ,当T 不变时,有:四.(15分)已知系统如下图所示,1.画出系统根轨迹(关键点要标明)。
2.求使系统稳定的K 值范围,及临界状态下的振荡频率。
解① 3n =,1,2,30P =,1,22,1m Z j ==-±,1n m -=②渐进线1条π ③入射角同理 2ϕ2135sr α=-︒④与虚轴交点,特方 32220s Ks Ks +++=,ωj s =代入222K K-0=1K ⇒=,s = 所以当1K >时系统稳定,临界状态下的震荡频率为ω五.(20分)某最小相角系统的开环对数幅频特性如下图所示。
要求(1) 写出系统开环传递函数;(2) 利用相角裕度判断系统的稳定性;(3) 将其对数幅频特性向右平移十倍频程,试讨论对系统性能的影响。
解(1)由题图可以写出系统开环传递函数如下:(2)系统的开环相频特性为截止频率 1101.0=⨯=c ω相角裕度:︒=+︒=85.2)(180c ωϕγ故系统稳定。
(3)将其对数幅频特性向右平移十倍频程后,可得系统新的开环传递函数其截止频率 10101==c c ωω而相角裕度 ︒=+︒=85.2)(18011c ωϕγγ=故系统稳定性不变。
例2.1 图为机械位移系统。
试列写质量m 在外力F 作用下位移y(t)的运动方程。
解: 阻尼器的阻尼力: 弹簧弹性力:
整理得:
例2.2 如图RLC 电路,试列写以u r (t)为输入量,u c (t)为输出量的网络微分方程。
解:
例2.3 已知R 1=1,C 1=1F,u c (0)=0.1v, u r (t)=1(t),求 u c (t) 解:
零初始条件下取拉氏变换:
例2.4 如图RLC 电路,试列写网络传递函数 U c (s)/U r (s). 参见
)()(
)()
(2
2t u t u dt t du RC dt t u d LC r c c c =++
解:1) 零初始条件下取拉氏变换:
)()()()(2s U s U s RCsU s U LCs r c c c =++ 传递函数:
11)()()(2++=
=RCs LCs s U s U s G r c
)()()(11s U s U s sU C R r c c =+1
1
)()(11+=
s C R s U s U r c dt
t dy f
t F )
()(1=)
()(2t ky t F =)()()()(212
2t F t F t F dt
t y d m --=)
()()()(2
2t F t ky dt t dy f dt t y d m =++2)
)
)()()()(t u t Ri t u dt
t di L r c =++⎰
=
dt t i c t u c )(1
)()
()()
()(22t u t u dt t du RC dt t u d LC r c c c =++r
c c u u dt du C R =+11)()()0()(1111s U s U u C R s sU C R r c c c =+-)()(1.0)(s U s U s sU r c c =+-11.0)1(1)(++
+=s s s s U c t
t c e e t u --+-=1.01)
()t L
)
t
2)变换到复频域来求。
例2.5 已知R 1=1,C 1=1F ,1)求零状态条件下阶跃响应u c (t);2) u c (0)=0.1v, u r (t)=1(t), 求 u c (t);3)求脉冲响应g(t)。
解: 1)
2)
3) 例2.6 具有相同极点不同零点的两个系统 ,它们零初始条件下的单位阶跃响应分别为
例2.7 绘出RC 电路的结构图。
例
)1(1
1)()(+=
+=s s s s U s U r c (前例已得)
=+)()()(11s U s U s sU C R r c c r
c c u u dt du C R =+11)
()()0()(1111s U s U
u C R
s sU C R r c c c =+-)
()(1.0)(s U s U s sU r c c =+-t t c e e t u --+-=1
.01)(t
e s L s G L t g ---=+==]1
1[)]([)(11,)2)(1(24)(1
+++=s s s s G )
2)(1(25.1)(2+++=
s s s s G t
t e e s s s s L t c 211321])2)(1(24[)(----+=+++=t t e e s s s s L t c 2125.05.01])
2)(1(25.1[)(-----=+++=)t
c e t u --=1)(1111)()()(11+=
+==s s C R s U s U s G r c 11
.0)1(1)(+++=s s s s U c 1
)t )
()()(11s I R s U s U c r =-s
C s I s U c 11)()(=
)
t )]()([1
)(1
1s U s U R s I i -⋅=
)
()()(21s I s I s I c -=s C s I s U c 1)()(=
)]()([1
)(2
2s U s U R s I o -=
s
C s I s U o 22)()(=
1
R
2
例2.9
例2.10 结构图化简
(1)结构图化简方案Ⅰ
63
2236)(G G G G +=1
54
236236
1G G G G G +=
4
554G G G -=I )
(b )
)
(c )
(d )
(e )
s )
(f
(2) 结构图化简方案Ⅱ 原电路
(3) 结构图化简方案Ⅲ
例2.11 双RC 网络的结构图简化。
`
)
(c )
(a )
(b )
(a )
(b )
s )
d (U (e)
)
(a
例2.12
•上式拉氏变换:
•信号传递流程:
例2.13
例2.14 绘制结构图对应的信号流图(2) 。
)
()()(11t u t u R t i i o =+dt i i C R t i )(1
)(111⎰
-=
2
)()(R t i t u o =)
()()(11s U s U R s I i o =+2
)()(R s I s U o =s u
s s s C R s c
)0()]()([1
)(1111+I -I =I )0()()1
()
()0()()(11
1
1
11111c
c u C s s C R s u C s C R s s -I += I +-I =I 2
e U )()()()()()(1s U s I s I s U s U s U o o i i →→→-→U i
例2.15 已知系统信号流图,求传递函数。
解:三个回路:
•回路相互均接触,则:
2211322211H G G H G G H G L a -++=-=∆∑
•前向通路有两条: ,没有与之不接触的回路: ,与所有回路不接触:
4
2
2113222321111)(G H G G H G G H G G G G P s G n
k k k +-++=∆∆=∑=
例2.16 已知系统信号流图,求传递函数 X 4/X 1及 X 2/X 1。
解:三个回路
bcg eg d L
a
---=∑
有两个互不接触回路
2
21H G L -=2
212H G G L =1323H G G L -=3
211G G G P =42G P =11=∆∆=∆2
∑
=deg
c b L L 1
,1,,.1212141=∆+=∆ ==→ d abcf p aef p X X deg 1)1()(1221114++++++=∆+∆∆=bcg eg d abcf
d aef p p X X d
a p X X +=∆=→ 1,,.21121deg
1)1(11112+++++=∆∆=bcg eg d d a p X X deg
1++++=∆ bcg eg d 则f。