广东省2019-2020届高考数学三轮复习冲刺模拟试题 (5) 含答案
- 格式:doc
- 大小:587.36 KB
- 文档页数:15
广东省惠州市2019-2020学年高考数学五模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某几何体的三视图如图所示,若侧视图和俯视图均是边长为2的等边三角形,则该几何体的体积为A.83B.43C.1D.2【答案】C【解析】【分析】【详解】由三视图可知,该几何体是三棱锥,底面是边长为23,所以该几何体的体积113223132V=⨯⨯⨯=,故选C.2.设变量,x y满足约束条件2239x yx yx+≤⎧⎪-≤⎨⎪≥⎩,则目标函数2z x y=+的最大值是()A.7 B.5 C.3 D.2【答案】B【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,表示的可行域,如图,由20 2390x y x y +-=⎧⎨--=⎩可得31x y =⎧⎨=-⎩, 将2z x y =+变形为2y x z =-+, 平移直线2y x z =-+,由图可知当直2y x z =-+经过点()3,1-时, 直线在y 轴上的截距最大, z 最大值为2315z =⨯-=,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.设m ∈R ,命题“存在0m >,使方程20x x m +-=有实根”的否定是( ) A .任意0m >,使方程20x x m +-=无实根 B .任意0m ≤,使方程20x x m +-=有实根 C .存在0m >,使方程20x x m +-=无实根 D .存在0m ≤,使方程20x x m +-=有实根 【答案】A 【解析】 【分析】只需将“存在”改成“任意”,有实根改成无实根即可.由特称命题的否定是全称命题,知“存在0m >,使方程20x x m +-=有实根”的否定是 “任意0m >,使方程20x x m +-=无实根”. 故选:A 【点睛】本题考查含有一个量词的命题的否定,此类问题要注意在两个方面作出变化:1.量词,2.结论,是一道基础题.4.已知n S 是等差数列{}n a 的前n 项和,若312S a S +=,46a =,则5S =( )A .5B .10C .15D .20【答案】C 【解析】 【分析】利用等差通项,设出1a 和d ,然后,直接求解5S 即可 【详解】令()11n a a n d +-=,则11113232da a a a d ⨯⨯++=++,136a d +=,∴13a =-,3d =,∴()55310315S =⨯-+⨯=.【点睛】本题考查等差数列的求和问题,属于基础题5.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 作双曲线C 的一条弦AB ,且0FA FB +=u u u v u u u v ,若以AB为直径的圆经过双曲线C 的左顶点,则双曲线C 的离心率为( )A BC .2D 【答案】C 【解析】 【分析】由0FA FB +=u u u r u u u r 得F 是弦AB 的中点.进而得AB 垂直于x 轴,得2b ac a=+,再结合,,a b c 关系求解即可【详解】因为0FA FB +=u u u r u u u r,所以F 是弦AB 的中点.且AB 垂直于x 轴.因为以AB 为直径的圆经过双曲线C 的左顶点,所以2b a c a =+,即22c a a c a-=+,则c a a -=,故2c e a ==.【点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题.6.在平面直角坐标系中,若不等式组44021005220x y x y x y -+≤⎧⎪+-≤⎨⎪-+≥⎩所表示的平面区域内存在点()00,x y ,使不等式0010x my ++≤成立,则实数m 的取值范围为( )A .5(,]2-∞- B .1(,]2-∞-C .[4,)+∞D .(,4]-∞-【答案】B 【解析】 【分析】依据线性约束条件画出可行域,目标函数0010x my ++≤恒过()1,0D -,再分别讨论m 的正负进一步确定目标函数与可行域的基本关系,即可求解 【详解】作出不等式对应的平面区域,如图所示:其中()2,6A ,直线10x my ++=过定点()1,0D -,当0m =时,不等式10x +≤表示直线10x +=及其左边的区域,不满足题意; 当0m >时,直线10x my ++=的斜率10m-<, 不等式10x my ++≤表示直线10x my ++=下方的区域,不满足题意; 当0m <时,直线10x my ++=的斜率10m->, 不等式10x my ++≤表示直线10x my ++=上方的区域, 要使不等式组所表示的平面区域内存在点()00,x y ,使不等式0010x my ++≤成立,只需直线10x my ++=的斜率12AD k m -≤=,解得12m ≤-. 综上可得实数m 的取值范围为1(,]2-∞-, 故选:B.本题考查由目标函数有解求解参数取值范围问题,分类讨论与数形结合思想,属于中档题7.已知全集U =R ,集合{|31}M x x =-<<,{|||1}N x x =„,则阴影部分表示的集合是( )A .[1,1]-B .(3,1]-C .(,3)(1,)-∞--+∞UD .(3,1)--【答案】D 【解析】 【分析】先求出集合N 的补集U N ð,再求出集合M 与U N ð的交集,即为所求阴影部分表示的集合. 【详解】由U =R ,{|||1}N x x =„,可得{1U N x x =<-ð或1}x >, 又{|31}M x x =-<<所以{31}U M N x x ⋂=-<<-ð. 故选:D. 【点睛】本题考查了韦恩图表示集合,集合的交集和补集的运算,属于基础题.8.如图,ABC V 中260A B ∠=∠=︒,点D 在BC 上,30BAD ∠=︒,将ABD △沿AD 旋转得到三棱锥B ADC '-,分别记B A ',BD '与平面ADC 所成角为α,β,则α,β的大小关系是( )A .2αβα<≤B .23αβα≤≤C .2βα≤,23αβα<≤两种情况都存在D .存在某一位置使得3a β> 【答案】A 【解析】根据题意作出垂线段,表示出所要求得α、β角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案. 【详解】由题可得过点B 作BE AD ⊥交AD 于点E ,过B ′作CD 的垂线,垂足为O ,则易得B AO α=∠',B DO β=∠'.设1CD =,则有2BD AD ==,1DE =,3BE =∴可得23AB AB '==,2B D BD '==.sin ,sin OB OB AB DB αβ''==''Q , sin 3sin βαα∴=>,βα∴>;Q 3]OB '∈,∴1sin [0,]2α∈; Q 2sin 22sin cos 2sin 1sin αααα==-,21[3,2]sin α-,∴sin 23sin ααβ=…,2αβ∴….综上可得,2αβα<„. 故选:A . 【点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平.9.若变量,x y ,满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22x y +的最大值为( )A .3B .2C .8113D .10【解析】 【分析】画出约束条件的可行域,利用目标函数的几何意义求解最大值即可. 【详解】解:画出满足条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩的平面区域,如图示:如图点坐标分别为()()()0,3,3,1,0,2A B C --, 目标函数22xy +的几何意义为,可行域内点(),x y 与坐标原点()0,0的距离的平方,由图可知()3,1B -到原点的距离最大,故()()x2222ma 0311x y ++-==.故选:D【点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题.10. “中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为( ) A .56383 B .57171C .59189D .61242【答案】C根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前n 项和公式,可得结果. 【详解】被5除余3且被7除余2的正整数构成首项为23, 公差为5735⨯=的等差数列,记数列{}n a 则()233513512n a n n =+-=- 令35122020n a n =-≤,解得25835n ≤. 故该数列各项之和为5857582335591892⨯⨯+⨯=. 故选:C. 【点睛】本题考查等差数列的应用,属基础题。
广东省广州市2019-2020学年高考数学五模试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,复数z a bi =+(a ,b R ∈)对应向量OZ uuu r(O 为坐标原点),设OZ r =u u u r,以射线Ox 为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nnr i rn i n θθθθ+=+⎡⎤⎣⎦,已知()43z i =+,则z =( )A .23B .4C .83D .16【答案】D 【解析】 【分析】根据复数乘方公式:()()cos sin cos sin nn r i r n i n θθθθ+=+⎡⎤⎣⎦,直接求解即可. 【详解】()444313216cos sin 266z ii i ππ⎡⎤⎛⎫⎛⎫=+=+=+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦16cos 4sin 488366i i ππ⎡⎤⎛⎫⎛⎫=⨯+⨯=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,()()2288316z =-+=.故选:D 【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.2.已知某几何体的三视图如右图所示,则该几何体的体积为( )A.3 B.10 3C.113D.83【答案】B【解析】由三视图知:几何体是直三棱柱消去一个三棱锥,如图:直三棱柱的体积为122242⨯⨯⨯=,消去的三棱锥的体积为112212323⨯⨯⨯⨯=,∴几何体的体积210433V=-=,故选B.点睛:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键;几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积.3.已知抛物线C:24x y=的焦点为F,过点F的直线l交抛物线C于A,B两点,其中点A在第一象限,若弦AB的长为254,则AFBF=()A.2或12B.3或13C.4或14D.5或15【答案】C【解析】【分析】先根据弦长求出直线的斜率,再利用抛物线定义可求出,AF BF.【详解】设直线的倾斜角为θ,则222425cos cos4pABθθ===,所以216cos25θ=,2219tan1cos16θθ=-=,即3tan4θ=±,所以直线l的方程为314y x=±+.当直线l的方程为314y x=+,联立24314x yy x⎧=⎪⎨=+⎪⎩,解得11x=-和24x=,所以()40401AFBF-==--;同理,当直线l的方程为314y x=-+.14AFBF=,综上,4AFBF=或14.选C.【点睛】本题主要考查直线和抛物线的位置关系,弦长问题一般是利用弦长公式来处理.出现了到焦点的距离时,一般考虑抛物线的定义.4.若函数()222y sin x ϕϕπ⎛⎫<⎪⎝+⎭=的图象经过点012π⎛⎫⎪⎝⎭,,则函数()()()22f x sin x cos x ϕϕ=-+-图象的一条对称轴的方程可以为( ) A .24x π=-B .3724x π=C .1724x π=D .1324x π=-【答案】B 【解析】 【分析】 由点012π⎛⎫⎪⎝⎭,求得ϕ的值,化简()f x 解析式,根据三角函数对称轴的求法,求得()f x 的对称轴,由此确定正确选项. 【详解】 由题可知220,122sin ππϕϕ⎛⎫⨯+=< ⎪⎝⎭.6πϕ=-所以()2cos 266f x sin x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭5226412x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭ 令52,122x k k Z πππ+=+∈, 得,242k x k Z ππ=+∈ 令3k =,得3724x π= 故选:B 【点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.5.已知全集U =R ,集合{}1A x x =<,{}12B x x =-≤≤,则()U A B =I ð( ) A .{}12x x <≤ B .{}12x x ≤≤C .{}11x x -≤≤D .{}1x x ≥-【答案】B 【解析】 【分析】直接利用集合的基本运算求解即可. 【详解】解:全集U =R ,集合{}1A x x =<,{}12B x x =-≤≤,{}U |1A x x ∴=≥ð则(){}{}{}|1|12|12U A B x x x x x x =-=I I 厔剟?ð, 故选:B . 【点睛】本题考查集合的基本运算,属于基础题.6.已知平行于x 轴的直线分别交曲线2ln 21,21(0)y x y x y =+=-≥于,A B 两点,则4AB 的最小值为( ) A .5ln 2+ B .5ln 2- C .3ln 2+ D .3ln 2-【答案】A 【解析】 【分析】设直线为1122(0),(,)(,)y a a A x y B x y =>,用a 表示出1x ,2x ,求出4||AB ,令2()2ln f a a a =+-,利用导数求出单调区间和极小值、最小值,即可求出4||AB 的最小值. 【详解】解:设直线为1122(0),(,)(,)y a a A x y B x y =>,则1ln 21a x =+,11(ln 1)2x a ∴=-, 而2x 满足2221a x =-,2212a x +∴= 那么()()22211144()4ln 122ln 22a AB x x a a a ⎡⎤+=-=--=+-⎢⎥⎣⎦设2()2ln f a a a =+-,则221()a f a a -'=,函数()f a 在0,2⎛ ⎝⎭上单调递减,在2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以min min 42()25ln 2AB f a f ===+⎝⎭故选:A . 【点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.7.已知向量(,1)a m =r ,(1,2)b =-r ,若(2)a b b -⊥r r r ,则a r 与b r夹角的余弦值为( )A.21313-B.21313C.61365-D.613【答案】B【解析】【分析】直接利用向量的坐标运算得到向量2a b-r r的坐标,利用(2)=0a b b-⋅r r r求得参数m,再用cos,||||a ba ba b⋅〈〉=r rr rr r计算即可.【详解】依题意,2(2,3)a b m-=+-r r,而(2)=0a b b-⋅r r r,即260m---=,解得8m=-,则213cos,13||||565a ba ba b⋅〈〉===⋅r rr rr r.故选:B.【点睛】本题考查向量的坐标运算、向量数量积的应用,考查运算求解能力以及化归与转化思想.8.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数N除以正整数m所得的余数是n”记为“(mod)N n m≡”,例如71(mod2)≡.执行该程序框图,则输出的n等于()A.16 B.17 C.18 D.19【答案】B【解析】【分析】由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,代入四个选项进行验证即可.【详解】解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数. 若输出16n = ,则()161mod3≡不符合题意,排除; 若输出17n =,则()()172mod3,172mod5≡≡,符合题意. 故选:B. 【点睛】本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答. 9.已知复数1cos23sin 23z i =+oo和复数2cos37sin37z i =+oo,则12z z ⋅为A .122- B .122i + C .122i + D .122i - 【答案】C 【解析】 【分析】利用复数的三角形式的乘法运算法则即可得出. 【详解】z 1z 2=(cos23°+isin23°)•(cos37°+isin37°)=cos60°+isin60°=12+. 故答案为C . 【点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算. 10.已知,a b ∈R ,3(21)ai b a i +=--,则|3|a bi +=( )A B .C .3D .4【答案】A 【解析】 【分析】根据复数相等的特征,求出3a 和b ,再利用复数的模公式,即可得出结果. 【详解】因为3(21)ai b a i +=--,所以3,(21),b a a =⎧⎨--=⎩,解得3,31,b a =⎧⎨=⎩则|3|13a bi i +=+==故选:A. 【点睛】本题考查相等复数的特征和复数的模,属于基础题.11.对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3xf x =的两对“线性对称点”,则c 的最大值为( )A .3log 4B .3log 41+C .43D .3log 41-【答案】D 【解析】 【分析】根据已知有333b c a b c a ++++=,可得13131ca b+=+-,只需求出3a b +的最小值,根据333a b a b +=+,利用基本不等式,得到3a b +的最小值,即可得出结论.【详解】依题意知,a 与b 为函数()3xf x =的“线性对称点”,所以333a b a b +=+=≥, 故34a b +≥(当且仅当a b =时取等号). 又+a b 与c 为函数()3xf x =的“线性对称点,所以333b c a b c a ++++=,所以3143131313a b ca b a b +++==+≤--,从而c 的最大值为3log 41-. 故选:D. 【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出c 的表达式是解题的关键,属于中档题.12.函数()f x =)A .{2x x ≤或}3x ≥B .{3x x ≤-或}2x ≥- C .{}23x x ≤≤D .{}32x x -≤≤-【解析】 【分析】根据偶次根式被开方数非负可得出关于x 的不等式,即可解得函数()y f x =的定义域. 【详解】由题意可得2560x x -+≥,解得2x ≤或3x ≥. 因此,函数()y f x =的定义域为{2x x ≤或}3x ≥. 故选:A. 【点睛】本题考查具体函数定义域的求解,考查计算能力,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
广东省揭阳市2019-2020学年第三次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,复数2i i z -=(i 为虚数单位)对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】【分析】化简复数为a bi +(a 、)b R ∈的形式,可以确定z 对应的点位于的象限.【详解】 解:复数222(2)(2)12i i i z i i i i i --===--=-- 故复数z 对应的坐标为()1,2--位于第三象限故选:C .【点睛】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题.2.双曲线C :22221x y a b-=(0a >,0b >)的离心率是3,则双曲线C 的焦距为( )A .3B .C .6D .【答案】A【解析】【分析】根据焦点到渐近线的距离,可得b ,然后根据222,c b c a e a =-=,可得结果. 【详解】由题可知:双曲线的渐近线方程为0bx ay ±=取右焦点(),0F c ,一条渐近线:0l bx ay -=则点F 到l =222b a c +=所以b =222c a -= 又2222399c c c a a a =⇒=⇒=所以223292c c c -=⇒= 所以焦距为:23c =故选:A【点睛】本题考查双曲线渐近线方程,以及,,,a b c e 之间的关系,识记常用的结论:焦点到渐近线的距离为b ,属基础题.3.已知集合A ={x ∈N|x 2<8x},B ={2,3,6},C ={2,3,7},则()A B C ⋃ð=( )A .{2,3,4,5}B .{2,3,4,5,6}C .{1,2,3,4,5,6}D .{1,3,4,5,6,7} 【答案】C【解析】【分析】根据集合的并集、补集的概念,可得结果.【详解】集合A ={x ∈N|x 2<8x}={x ∈N|0<x <8},所以集合A ={1,2,3,4,5,6,7}B ={2,3,6},C ={2,3,7},故A C ð={1,4,5,6},所以()A B C ⋃ð={1,2,3,4,5,6}.故选:C.【点睛】本题考查的是集合并集,补集的概念,属基础题.4.在三棱锥D ABC -中,1AB BC CD DA ====,且,,,AB BC CD DA M N ⊥⊥分别是棱BC ,CD 的中点,下面四个结论:①AC BD ⊥;②//MN 平面ABD ;③三棱锥A CMN -; ④AD 与BC 一定不垂直.其中所有正确命题的序号是( )A .①②③B .②③④C .①④D .①②④【答案】D【解析】【分析】①通过证明AC ⊥平面OBD ,证得AC BD ⊥;②通过证明//MN BD ,证得//MN 平面ABD ;③求得三棱锥A CMN -体积的最大值,由此判断③的正确性;④利用反证法证得AD 与BC 一定不垂直.【详解】设AC 的中点为O ,连接,OB OD ,则AC OB ⊥,AC OD ⊥,又OB OD O =I ,所以AC ⊥平面OBD ,所以AC BD ⊥,故①正确;因为//MN BD ,所以//MN 平面ABD ,故②正确;当平面DAC 与平面ABC 垂直时,A CMN V -最大,最大值为112234A CMN N ACM V V --=⨯⨯==,故③错误;若AD 与BC 垂直,又因为AB BC ⊥,所以BC ⊥平面ABD ,所以BC BD ⊥,又BD AC ⊥,所以BD ⊥平面ABC ,所以BD OB ⊥,因为OB OD =,所以显然BD 与OB 不可能垂直,故④正确.故选:D【点睛】本小题主要考查空间线线垂直、线面平行、几何体体积有关命题真假性的判断,考查空间想象能力和逻辑推理能力,属于中档题.5.已知双曲线()222210,0x y a b a b-=>>的焦距是虚轴长的2倍,则双曲线的渐近线方程为( ) A .33y x =± B .3y x = C .12y x =± D .2y x =±【答案】A【解析】【分析】根据双曲线的焦距是虚轴长的2倍,可得出2c b =,结合22224c b a b ==+,得出223a b =,即可求出双曲线的渐近线方程.【详解】 解:由双曲线()222210,0x y a b a b-=>>可知,焦点在x 轴上, 则双曲线的渐近线方程为:b y x a=±, 由于焦距是虚轴长的2倍,可得:2c b =,∴22224c b a b ==+,即:223a b =,3b a =,所以双曲线的渐近线方程为:3y x =±. 故选:A.【点睛】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.6.若复数2(2)(32)m m m m i -+-+是纯虚数,则实数m 的值为( )A .0或2B .2C .0D .1或2【答案】C【解析】试题分析:因为复数2(2)(32)m m m m i -+-+是纯虚数,所以(2)0m m -=且2320m m -+≠,因此0.m =注意不要忽视虚部不为零这一隐含条件.考点:纯虚数7.已知点(m,8)在幂函数()(1)n f x m x =-的图象上,设,(ln ),()m a f b f c f n n π⎛⎫===⎪⎝⎭,则( ) A .b <a <cB .a <b <cC .b <c <aD .a <c <b【答案】B【解析】【分析】先利用幂函数的定义求出m 的值,得到幂函数解析式为f (x )=x 3,在R 上单调递增,再利用幂函数f (x )的单调性,即可得到a ,b ,c 的大小关系.【详解】由幂函数的定义可知,m ﹣1=1,∴m =2,∴点(2,8)在幂函数f (x )=x n 上,∴2n =8,∴n =3,∴幂函数解析式为f (x )=x 3,在R 上单调递增, ∵23m n =,1<lnπ<3,n =3, ∴m ln n n π<<, ∴a <b <c ,故选:B.【点睛】本题主要考查了幂函数的性质,以及利用函数的单调性比较函数值大小,属于中档题.8.已知函数()log (|2|)(0a f x x a a =-->,且1a ≠),则“()f x 在(3,)+∞上是单调函数”是“01a <<”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】【分析】先求出复合函数()f x 在(3,)+∞上是单调函数的充要条件,再看其和01a <<的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案.【详解】 ()log (|2|)(0a f x x a a =-->,且1a ≠), 由20x a -->得2x a <-或2x a >+,即()f x 的定义域为{2x x a <-或2}x a >+,(0,a >且1a ≠) 令2t x a =--,其在(,2)a -∞-单调递减,(2,)a ++∞单调递增,()f x 在(3,)+∞上是单调函数,其充要条件为2301a a a +≤⎧⎪>⎨⎪≠⎩即01a <<.故选:C.【点睛】本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题.9.已知四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是边长为2的正方形,PA =E 为PC的中点,则异面直线BE 与PD 所成角的余弦值为( )A.1339-B.1339C.155-D.155【答案】B【解析】【分析】由题意建立空间直角坐标系,表示出各点坐标后,利用cos,BE PDBE PDBE PD⋅=⋅u u u r u u u ru u u r u u u ru u u r u u u r即可得解. 【详解】Q PA⊥平面ABCD,底面ABCD是边长为2的正方形,∴如图建立空间直角坐标系,由题意:()0,0,0A,()2,0,0B,()2,2,0C,()0,0,5P,()0,2,0D,Q E为PC的中点,∴51,1,2E⎛⎫⎪⎪⎝⎭.∴51,1,BE⎛⎫=-⎪⎪⎝⎭u u u r,()0,2,5PD=-u u u r,∴1132cos,133BE PDBE PDBE PD-⋅===-⋅⋅u u u r u u u ru u u r u u u ru u u r u u u r,∴异面直线BE与PD所成角的余弦值为cos,BE PDu u u r u u u r即为1339.故选:B.【点睛】本题考查了空间向量的应用,考查了空间想象能力,属于基础题.10.若复数211izi=++(i为虚数单位),则z的共轭复数的模为()A5B.4 C.2 D5【答案】D【解析】【分析】由复数的综合运算求出z ,再写出其共轭复数,然后由模的定义计算模.【详解】()()()212112111i i i z i i i i -=+=+=+++-Q ,2,z i z ∴=-∴= 故选:D .【点睛】本题考查复数的运算,考查共轭复数与模的定义,属于基础题.11.已知直线1l :x my =(0m ≠)与抛物线C :24y x =交于O (坐标原点),A 两点,直线2l :x my m=+与抛物线C 交于B ,D 两点.若||3||BD OA =,则实数m 的值为( )A .14B .15C .13D .18【答案】D【解析】【分析】设()11,B x y ,()22,D x y ,联立直线与抛物线方程,消去x 、列出韦达定理,再由直线x my =与抛物线的交点求出A 点坐标,最后根据||3||BD OA =,得到方程,即可求出参数的值;【详解】解:设()11,B x y ,()22,D x y ,由24x my m y x=+⎧⎨=⎩,得2440y my m --=, ∵216160m m ∆=+>,解得1m <-或0m >,∴124y y m +=,124y y m =-.又由24x my y x=⎧⎨=⎩,得240y my -=,∴0y =或4y m =,∴()24,4A m m , ∵||3||BD OA =,∴)()()224212(191616m y y m m +-=+, 又∵()()22212121241616y y y y y y m m -=+-=+, ∴代入解得18m =. 故选:D【点睛】本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.12.已知集合|03x A x Z x ⎧⎫=∈≤⎨⎬+⎩⎭,则集合A 真子集的个数为( ) A .3B .4C .7D .8 【答案】C【解析】【分析】 解出集合A ,再由含有n 个元素的集合,其真子集的个数为21n -个可得答案.【详解】 解:由|03x A x Z x ⎧⎫=∈≤⎨⎬+⎩⎭,得{}|30{2,1,0}A x Z x =∈-<≤=-- 所以集合A 的真子集个数为3217-=个.故选:C【点睛】此题考查利用集合子集个数判断集合元素个数的应用,含有n 个元素的集合,其真子集的个数为21n -个,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
广东省肇庆市2019-2020学年高考数学三模试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .8【答案】C 【解析】 【分析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点C 时,z 取得最大值. 【详解】解:作出约束条件表示的可行域是以(1,0),(1,0),(2,3)-为顶点的三角形及其内部,如下图表示: 当目标函数经过点()2,3C 时,z 取得最大值,最大值为7.故选:C. 【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题. 2.已知数列{}n a 为等比数列,若a a a 76826++=,且a a 5936⋅=,则a a a 768111++=( ) A .1318B .1318或1936C .139D .136【答案】A 【解析】 【分析】根据等比数列的性质可得25968736a a a a a ⋅=⋅==,通分化简即可.【详解】由题意,数列{}n a 为等比数列,则25968736a a a a a ⋅=⋅==,又a a a 76826++=,即68726a a a +=-, 所以,()()76877786867678777683636261113636a a a a a a a a a a a a a a a a a a a +⋅++⋅-⋅+⋅+⋅++===⋅⋅⋅⋅, ()277777777773626362636263626133636363618a a a a a a a a a a +⋅-+⋅-+⋅-⋅=====⋅⋅⋅⋅.故选:A. 【点睛】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.3.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布3531尺,则这位女子织布的天数是( ) A .2 B .3 C .4 D .1【答案】B 【解析】 【分析】将问题转化为等比数列问题,最终变为求解等比数列基本量的问题. 【详解】根据实际问题可以转化为等比数列问题,在等比数列{}n a 中,公比2q =,前n 项和为n S ,55S =,3531m S =,求m 的值. 因为()51512512a S -==-,解得1531a =,()51235311231m mS -==-,解得3m =.故选B . 【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助. 4.设O 为坐标原点,P 是以F 为焦点的抛物线()220y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )AB .23C.2D .1【答案】C 【解析】试题分析:设200,)2y P y p (,由题意(,0)2p F ,显然00y <时不符合题意,故00y >,则2001112()(,)3333633y y p OM OF FM OF FP OF OP OF OP OF p =+=+=+-=+=+u u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ,可得:2000232263OM y k y p y p p y p ==≤=++,当且仅当22002,y p y ==时取等号,故选C . 考点:1.抛物线的简单几何性质;2.均值不等式.【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件2PM MF =,利用向量的运算可知200(,)633y y p M p +,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.5.设(1)1i z i +⋅=-,则复数z 的模等于( ) AB .2C .1D【答案】C 【解析】 【分析】利用复数的除法运算法则进行化简,再由复数模的定义求解即可. 【详解】因为(1)1i z i +⋅=-,所以()()()211111i i z i i i i --===-++⋅-, 由复数模的定义知,1z ==.故选:C 【点睛】本题考查复数的除法运算法则和复数的模;考查运算求解能力;属于基础题.6.已知点(3,0),(0,3)A B -,若点P 在曲线y =PAB △面积的最小值为( ) A .6 B .3C.92D.92+【答案】B 【解析】 【分析】求得直线AB 的方程,画出曲线表示的下半圆,结合图象可得P 位于(1,0)-,结合点到直线的距离公式和两点的距离公式,以及三角形的面积公式,可得所求最小值. 【详解】解:曲线21y x =--表示以原点O 为圆心,1为半径的下半圆(包括两个端点),如图, 直线AB 的方程为30x y -+=,可得||32AB =,由圆与直线的位置关系知P 在(1,0)-时,P 到直线AB 距离最短,即为22=, 则PAB △的面积的最小值为132232⨯⨯=. 故选:B.【点睛】本题考查三角形面积最值,解题关键是掌握直线与圆的位置关系,确定半圆上的点到直线距离的最小值,这由数形结合思想易得.7.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( ) A .760B .16C .1360D .14【答案】C 【解析】 【分析】分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有66A 种,进而得到结果. 【详解】当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有33A 种情况,由间接法得到满足条件的情况有51235423A C A A -当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有33A 种,由间接法得到满足条件的情况有51235323A C A A -共有:5123512353235423A C A A A C A A -+-种情况,不考虑限制因素,总数有66A 种,故满足条件的事件的概率为:5123512353235423661360A C A A A C A A A -+-= 故答案为:C. 【点睛】解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置). 8.在区间[]3,3-上随机取一个数x ,使得301xx -≥-成立的概率为等差数列{}n a 的公差,且264a a +=-,若0n a >,则n 的最小值为( ) A .8 B .9C .10D .11【答案】D 【解析】 【分析】由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的x 的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件2642a a a +=,求得42a =-,从而求得1033n n a =-+,解不等式求得结果. 【详解】由题意,本题符合几何概型,区间[]3,3-长度为6,使得301xx -≥-成立的x 的范围为(]1,3,区间长度为2, 故使得301x x -≥-成立的概率为2163d ==, 又26442a a a +=-=,42a ∴=-,()11024333n na n ∴=-+-⨯=-+, 令0n a >,则有10n >,故n 的最小值为11, 故选:D. 【点睛】该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目.9.如图,在矩形OABC 中的曲线分别是sin y x =,cos y x =的一部分,,02A π⎛⎫⎪⎝⎭,()0,1C ,在矩形OABC 内随机取一点,若此点取自阴影部分的概率为1P ,取自非阴影部分的概率为2P ,则( )A .12P P <B .12P P >C .12P P =D .大小关系不能确定【答案】B 【解析】 【分析】先用定积分求得阴影部分一半的面积,再根据几何概型概率公式可求得. 【详解】根据题意,阴影部分的面积的一半为:()4cos sin 21x x dx π-=⎰,于是此点取自阴影部分的概率为)()12142141.41122 3.22P ππ--=⨯=>=. 又21112P P =-<,故12P P >. 故选B . 【点睛】本题考查了几何概型,定积分的计算以及几何意义,属于中档题.10.已知抛物线2:4(0)C y px p =>的焦点为F ,过焦点的直线与抛物线分别交于A 、B 两点,与y 轴的正半轴交于点S ,与准线l 交于点T ,且||2||FA AS =,则||||FB TS =( ) A .25B .2C .72D .3【答案】B 【解析】 【分析】过点A 作准线的垂线,垂足为M ,与y 轴交于点N ,由2FA AS =和抛物线的定义可求得TS ,利用抛物线的性质1122AF BF p+=可构造方程求得BF ,进而求得结果. 【详解】过点A 作准线的垂线,垂足为M ,AM 与y 轴交于点N ,由抛物线解析式知:(),0F p ,准线方程为x p =-.2FA AS =Q ,13SASF ∴=,133p AN OF ∴==,43AM p ∴=, 由抛物线定义知:43AF AM p ==,1223AS AF p ∴==,2SF p ∴=, 2TS SF p ∴==.由抛物线性质11212AF BF p p +==得:3114p BF p+=,解得:4BF p =, 422FB pTS p∴==. 故选:B . 【点睛】本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式. 11.已知函数()()sin f x A x =+ωϕ(其中0A >,0>ω,0ϕπ<<)的图象关于点5,012M π⎛⎫⎪⎝⎭成中心对称,且与点M 相邻的一个最低点为2,33N π⎛⎫- ⎪⎝⎭,则对于下列判断: ①直线2x π=是函数()f x 图象的一条对称轴;②点,012π⎛⎫-⎪⎝⎭是函数()f x 的一个对称中心; ③函数1y =与()351212y f x x ππ⎛⎫=-≤≤⎪⎝⎭的图象的所有交点的横坐标之和为7π. 其中正确的判断是( ) A .①② B .①③C .②③D .①②③【答案】C 【解析】分析:根据最低点,判断A=3,根据对称中心与最低点的横坐标求得周期T ,再代入最低点可求得解析式为()3sin 26f x x π⎛⎫=+⎪⎝⎭,依次判断各选项的正确与否. 详解:因为5,012M π⎛⎫⎪⎝⎭为对称中心,且最低点为2,33N π⎛⎫- ⎪⎝⎭, 所以A=3,且254312T πππ⎛⎫=⨯-=⎪⎝⎭由222T ππωπ=== 所以()()3sin 2f x x ϕ=+,将2,33N π⎛⎫-⎪⎝⎭带入得 6π=ϕ ,所以()3sin 26f x x π⎛⎫=+⎪⎝⎭由此可得①错误,②正确,③当351212x ππ-≤≤时,0266x ππ≤+≤,所以与1y = 有6个交点,设各个交点坐标依次为123456,,,,,x x x x x x ,则1234567x x x x x x π+++++=,所以③正确 所以选C点睛:本题考查了根据条件求三角函数的解析式,通过求得的解析式进一步研究函数的性质,属于中档题. 12.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计π的值:先用计算机产生2000个数对(),x y ,其中x ,y 都是区间()0,1上的均匀随机数,再统计x ,y 能与1构成锐角三角形三边长的数对(),x y 的个数m ﹔最后根据统计数m 来估计π的值.若435m =,则π的估计值为( ) A .3.12 B .3.13C .3.14D .3.15【答案】B 【解析】 【分析】先利用几何概型的概率计算公式算出x ,y 能与1构成锐角三角形三边长的概率,然后再利用随机模拟方法得到x ,y 能与1构成锐角三角形三边长的概率,二者概率相等即可估计出π. 【详解】因为x ,y 都是区间()0,1上的均匀随机数,所以有01x <<,01y <<,若x ,y 能与1构成锐角三角形三边长,则2211x y x y +>⎧⎨+>⎩,由几何概型的概率计算公式知11435411142000m P n ππ⨯-==-==⨯, 所以4354(1)2000π=⨯-=3.13. 故选:B. 【点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.二、填空题:本题共4小题,每小题5分,共20分。
广东省广州市2019-2020学年高考数学三模试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数为纯虚数(为虚数单位),则实数( ) A .-1 B .1C .0D .2【答案】B 【解析】 【分析】 化简得到,根据纯虚数概念计算得到答案.【详解】为纯虚数,故且,即.故选:. 【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.2.已知实数,x y 满足,10,1,x y x y y ≥⎧⎪+-≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .2 B.32C .1D .0【答案】B 【解析】 【分析】作出可行域,平移目标直线即可求解. 【详解】 解:作出可行域:由2z x y =+得,1122y x z =-+ 由图形知,1122y x z =-+经过点时,其截距最大,此z 时最大10y x x y =⎧⎨+-=⎩得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,11,22C ⎛⎫ ⎪⎝⎭ 当1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,max 1232222z =+⨯=故选:B 【点睛】考查线性规划,是基础题.3.设曲线(1)ln y a x x =--在点()1,0处的切线方程为33y x =-,则a =( ) A .1 B .2 C .3 D .4【答案】D 【解析】 【分析】利用导数的几何意义得直线的斜率,列出a 的方程即可求解 【详解】 因为1y a x'=-,且在点()1,0处的切线的斜率为3,所以13a -=,即4a =. 故选:D 【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题4.已知数列{}n a 是公比为2的正项等比数列,若m a 、n a 满足21024n m n a a a <<,则()21m n -+的最小值为( ) A .3 B .5C .6D .10【答案】B 【解析】 【分析】利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得110m n <-<再根据此范围求()21m n -+的最小值.【详解】Q 数列{}n a 是公比为2的正项等比数列,m a 、n a 满足21024n m n a a a <<,由等比数列的通项公式得11111122210242n m n a a a ---⋅<⋅<⋅,即19222n m n -+<<,10222m n -∴<<,可得110m n <-<,且m 、n 都是正整数,求()21m n -+的最小值即求在110m n <-<,且m 、n 都是正整数范围下求1m -最小值和n 的最小值,讨论m 、n 取值.∴当3m =且1n =时,()21m n -+的最小值为()23115-+=.故选:B . 【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题.5.在ABC ∆中,,A B C ∠∠∠所对的边分别是,,a b c ,若3,4,120a b C ︒==∠=,则c =( )A .37B .13C D【答案】D 【解析】 【分析】直接根据余弦定理求解即可. 【详解】解:∵3,4,120a b C ︒==∠=,∴2222cos 9161237c a b ab C =+-=++=,∴c = 故选:D . 【点睛】本题主要考查余弦定理解三角形,属于基础题. 6.已知集合A {}0,1,2=,B={}(2)0x x x -<,则A∩B= A .{}1 B .{}0,1C .{}1,2D .{}0,1,2【答案】A 【解析】 【分析】先解A 、B 集合,再取交集。
2019年广东数学高考模拟试卷(五)(后附满分答案)参考公式: 锥体的体积公式Sh V 31=, 其中S 是锥体的底面积, h 是锥体的高.如果事件A 、B 互斥,那么()()()P A B P A P B +=+.如果事件A 、B 相互独立,那么()()()B P A P AB P ⋅=.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数()x x f 2sin =的最小正周期为A .π B.π2 C. π3 D. π42.已知z =i (1+i )(i 为虚数单位),则复数z 在复平面上所对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.某商场在国庆黄金周的促销活动中,对10月2号9时至14时的销售额进行统计,其频率分布直方图如图1所示.已知9时至10时的销售额为2.5万元,则11时至12时的销售额为A. 6万元B. 8万元C. 10万元D.12万元4.已知过()a A ,1-、()8,a B 两点的直线与直线012=+-y x 平行,则a 的值为A. 10-B. 17C. 5D. 25.阅读图2的程序框图(框图中的赋值符号“=”也可以写成“←”或“:=”), 若输出的S 的值等于16,那么在程序框图中的判断框内应填写的条件是A .5>i ? B. 6>i ? C. 7>i ? D. 8>i ?6.已知p :关于x 的不等式022>-+a ax x 的解集是R ,q :01<<-a ,则p 是q 的A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件7.在()n n n x a x a x a x a a x +⋅⋅⋅++++=-3322101中,若0252=+-n a a ,则自然数n 的值是A .7B .8C .9D .108.在区间[]1,0上任意取两个实数b a ,,则函数()b ax x x f -+=321在区间[]1,1-上有且仅一个零点的概率为A .81B .41C .43D .87二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~12题)9. 若()22log 2=+a ,则=a 3 .10.若⎰a x 0d x =1, 则实数a 的值是 .11.一个几何体的三视图及其尺寸(单位:cm )如图3所示,则该几何体的侧面积为 cm 2.12.已知数列{}n a 的前n 项和为n S ,对任意∈n N *都有3132-=n n a S ,且91<<k S (∈k N *),则1a 的值为 ,k 的值为 .(二)选做题(13~15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)在极坐标系中,直线24sin =⎪⎭⎫ ⎝⎛+πθρ被圆4=ρ截得的弦长为__ .14.(几何证明选讲选做题)已知PA 是圆O (O 为圆心)的切线,切点为A ,PO交圆O 于C B , 两点,︒=∠=30,3PAB AC ,则线段PB 的长为 .15.(不等式选讲选做题)已知∈c b a ,,R ,且432,2222=++=++c b a c b a ,则实数a 的取值范围为_____________.。
广东省中山市2019-2020学年高考第三次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数,记()0.5log 3a f =,()2log 5b f =,(2)c f m =+则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B 【解析】 【分析】根据f (x )为偶函数便可求出m =0,从而f (x )=2x ﹣1,根据此函数的奇偶性与单调性即可作出判断. 【详解】解:∵f (x )为偶函数; ∴f (﹣x )=f (x ); ∴2x m --﹣1=2x m -﹣1; ∴|﹣x ﹣m|=|x ﹣m|; (﹣x ﹣m )2=(x ﹣m )2; ∴mx =0; ∴m =0;∴f (x )=2x ﹣1;∴f (x )在[0,+∞)上单调递增,并且a =f (|0.5log 3|)=f (2log 3), b =f (2log 5),c =f (2); ∵0<2log 3<2<2log 5; ∴a<c<b . 故选B . 【点睛】本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.2.复数z 满足()12(i i z +=为虚数单位),则z 的虚部为( ) A .i B .i -C .1-D .1【答案】C 【解析】【分析】21iz =+,分子分母同乘以分母的共轭复数即可. 【详解】 由已知,22(1i)1i 1i (1i)(1i)z -===-++-,故z 的虚部为1-. 故选:C. 【点睛】本题考查复数的除法运算,考查学生的基本运算能力,是一道基础题. 3.函数f(x)=sin(wx +φ)(w >0,φ<2π)的最小正周期是π,若将该函数的图象向右平移6π个单位后得到的函数图象关于直线x =2π对称,则函数f(x)的解析式为( ) A .f(x)=sin(2x +3π) B .f(x)=sin(2x -3π) C .f(x)=sin(2x +6π) D .f(x)=sin(2x -6π) 【答案】D 【解析】 【分析】由函数的周期求得2w =,再由平移后的函数图像关于直线2x π=对称,得到223ππϕ⨯+-2k ππ=+,由此求得满足条件的ϕ的值,即可求得答案. 【详解】分析:由函数的周期求得ω2=,再由平移后的函数图像关于直线πx 2=对称,得到πππ2φk π232⨯+-=+,由此求得满足条件的φ的值,即可求得答案. 详解:因为函数()()f x sin ωx φ=+的最小正周期是π,所以2ππω=,解得ω2=,所以()()f x sin 2x φ=+, 将该函数的图像向右平移π6个单位后,得到图像所对应的函数解析式为ππy sin 2x φsin 2x φ63⎡⎤⎛⎫⎛⎫=-+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由此函数图像关于直线πx 2=对称,得: πππ2φk π232⨯+-=+,即πφk π,k Z 6=-∈,取k 0=,得πφ6=-,满足πφ2<,所以函数()f x 的解析式为()πf x sin 2x 6⎛⎫=- ⎪⎝⎭,故选D. 【点睛】本题主要考查了三角函数的图象变换,以及函数的解析式的求解,其中解答中根据三角函数的图象变换得到sin(2)3y x πϕ=+-,再根据三角函数的性质求解是解答的关键,着重考查了推理与运算能力.4.若()f x 是定义域为R 的奇函数,且()()2f x f x +=-,则 A .()f x 的值域为RB .()f x 为周期函数,且6为其一个周期C .()f x 的图像关于2x =对称D .函数()f x 的零点有无穷多个【答案】D 【解析】 【分析】运用函数的奇偶性定义,周期性定义,根据表达式判断即可. 【详解】()f x 是定义域为R 的奇函数,则()()f x f x -=-,(0)0f =,又(2)()f x f x +=-,(4)(2)()f x f x f x +=-+=, 即()f x 是以4为周期的函数,(4)(0)0()f k f k Z ==∈, 所以函数()f x 的零点有无穷多个;因为(2)()f x f x +=-,[(1)1]()f x f x ++=-,令1t x =+,则(1)(1)f t f t +=-, 即(1)(1)f x f x +=-,所以()f x 的图象关于1x =对称, 由题意无法求出()f x 的值域, 所以本题答案为D. 【点睛】本题综合考查了函数的性质,主要是抽象函数的性质,运用数学式子判断得出结论是关键.5.已知双曲线的中心在原点且一个焦点为F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是 A .22134x y -= B .22143x y -= C .22152x y -=D .22125x y -=【答案】D【解析】 【分析】 根据点差法得2225a b=,再根据焦点坐标得227a b +=,解方程组得22a =,25b =,即得结果. 【详解】设双曲线的方程为22221(0,0)x y a b a b-=>>,由题意可得227a b +=,设()11,M x y ,()22,N x y ,则MN的中点为25,33⎛⎫-- ⎪⎝⎭,由2211221x y a b -=且2222221x y a b-=,得()()12122x x x x a +-= ()()12122y y y y b +-,2223a ⨯-=() 2523b ⨯-(),即2225a b=,联立227a b +=,解得22a =,25b =,故所求双曲线的方程为22125x y -=.故选D . 【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.6.若双曲线()22210x y a a-=>的一条渐近线与圆()2222x y +-=至多有一个交点,则双曲线的离心率的取值范围是( ) A.)+∞ B .[)2,+∞C.(D .(]1,2【答案】C 【解析】 【分析】求得双曲线的渐近线方程,可得圆心()0,2到渐近线的距离d ≥,由点到直线的距离公式可得a 的范围,再由离心率公式计算即可得到所求范围. 【详解】双曲线()22210x y a a-=>的一条渐近线为1y x a =,即0x ay -=,由题意知,直线0x ay -=与圆()2222x y +-=相切或相离,则d =≥,解得1a ≥,因此,双曲线的离心率(c e a ==.故选:C. 【点睛】本题考查双曲线的离心率的范围,注意运用圆心到渐近线的距离不小于半径,考查化简整理的运算能力,属于中档题.7.已知双曲线221x y a+=的一条渐近线倾斜角为56π,则a =( )A .3B .3-C .3-D .3-【答案】D 【解析】 【分析】由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果. 【详解】由双曲线方程可知:0a <,渐近线方程为:y x a=±-, Q 一条渐近线的倾斜角为56π,53tan 6aπ∴-==--,解得:3a =-. 故选:D . 【点睛】本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于a 的范围的要求. 8.抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为( )A .B .C .D .【答案】A 【解析】 【分析】先由题和抛物线的性质求得点P 的坐标和双曲线的半焦距c 的值,再利用双曲线的定义可求得a 的值,即可求得离心率. 【详解】由题意知,抛物线焦点,准线与x 轴交点,双曲线半焦距,设点是以点为直角顶点的等腰直角三角形,即,结合点在抛物线上, 所以抛物线的准线,从而轴,所以,即故双曲线的离心率为故选A 【点睛】本题考查了圆锥曲线综合,分析题目,画出图像,熟悉抛物线性质以及双曲线的定义是解题的关键,属于中档题.9.设复数z 满足21z i z -=+,z 在复平面内对应的点为(,)x y ,则( ) A .2430x y --= B .2430x y +-= C .4230x y +-= D .2430x y -+=【答案】B 【解析】 【分析】设z x yi =+,根据复数的几何意义得到x 、y 的关系式,即可得解; 【详解】 解:设z x yi =+∵|2||1|z i z -=+,∴2222(2)(1)x y x y +-=++,解得2430x y +-=. 故选:B 【点睛】本题考查复数的几何意义的应用,属于基础题.10.已知集合{2,0,1,3}A =-,{53}B x x =<<,则集合A B I 子集的个数为( ) A .4 B .8C .16D .32【答案】B 【解析】 【分析】首先求出A B I ,再根据含有n 个元素的集合有2n 个子集,计算可得. 【详解】解:{2,0,1,3}A =-Q ,{53}B x x =<<,{2,0,1}A B ∴=-I ,A B ∴I 子集的个数为328=.考查列举法、描述法的定义,以及交集的运算,集合子集个数的计算公式,属于基础题.11.过抛物线C 的焦点且与C 的对称轴垂直的直线l 与C 交于A ,B 两点,||4AB =,P 为C 的准线上的一点,则ABP ∆的面积为( ) A .1 B .2 C .4 D .8【答案】C 【解析】 【分析】设抛物线的解析式22(0)y px p =>,得焦点为,02p F ⎛⎫⎪⎝⎭,对称轴为x 轴,准线为2p x =-,这样可设A点坐标为,22p ⎛⎫⎪⎝⎭,代入抛物线方程可求得p ,而P 到直线AB 的距离为p ,从而可求得三角形面积. 【详解】设抛物线的解析式22(0)y px p =>, 则焦点为,02p F ⎛⎫⎪⎝⎭,对称轴为x 轴,准线为2p x =-,∵ 直线l 经过抛物线的焦点,A ,B 是l 与C 的交点, 又AB x ⊥轴,∴可设A 点坐标为,22p ⎛⎫⎪⎝⎭, 代入22y px =,解得2p =,又∵点P 在准线上,设过点P 的AB 的垂线与AB 交于点D ,||222p pDP p =+-==, ∴11||||24422ABP S DP AB ∆=⋅=⨯⨯=. 故应选C. 【点睛】本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出A 点坐标,从而求得参数p 的值.本题难度一般.12.在ABC V 中,点P 为BC 中点,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM AB λ=u u u u r u u u r ,(0,0)AN AC μλμ=>>u u ur u u u r ,则λμ+的最小值为( )A .54B .2C .3D .72【分析】由M ,P ,N 三点共线,可得11122λμ+=,转化11()22λμλμλμ⎛⎫+=++ ⎪⎝⎭,利用均值不等式,即得解. 【详解】因为点P 为BC 中点,所以1122AP AB AC =+u u u r u u u r u u u r,又因为AM AB λ=u u u u r u u u r ,AN AC μ=u u ur u u u r ,所以1122AP AM AN λμ=+u u u r u u u ur u u u r . 因为M ,P ,N 三点共线,所以11122λμ+=,所以111111()12222222λμλμλμλμμλ⎛⎫⎛⎫+=++=++++⨯=⎪ ⎪⎝⎭⎝⎭…, 当且仅当,11122λμμλλμ⎧=⎪⎪⎨⎪+=⎪⎩即1λμ==时等号成立,所以λμ+的最小值为1. 故选:B 【点睛】本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
广东省广州市2019-2020学年高考数学五模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( )A .B .C .D .【答案】B【解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为,即命题是错误,则是正确的;在边长为4的正方形内任取一点,若的概率为,即命题是正确的,故由符合命题的真假的判定规则可得答案是正确的,应选答案B 。
点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题 解决问题的能力。
2.已知平面向量()4,2a →=,(),3b x →=,//a b →→,则实数x 的值等于( )A .6B .1C .32D .32- 【答案】A【解析】【分析】根据向量平行的坐标表示即可求解.【详解】 ()4,2a →=Q ,(),3b x →=,//a b →→, 432x ∴⨯=,即6x =,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.3.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,a ,b ,且()520,02a b a b +=>>,则此三棱锥外接球表面积的最小值为( )A .174πB .214πC .4πD .5π【答案】B【解析】【分析】根据三视图得到几何体为一三棱锥,并以该三棱锥构造长方体,于是得到三棱锥的外接球即为长方体的外接球,进而得到外接球的半径,求得外接球的面积后可求出最小值.【详解】由已知条件及三视图得,此三棱锥的四个顶点位于长方体1111ABCD A B C D -的四个顶点,即为三棱锥11A CB D -,且长方体1111ABCD A B C D -的长、宽、高分别为2,,a b ,∴此三棱锥的外接球即为长方体1111ABCD A B C D -的外接球,且球半径为2222224a b a b R ++++==, ∴三棱锥外接球表面积为()()22222242144514a b a b a ππππ++=++=-+⎝⎭, ∴当且仅当1a =,12b =时,三棱锥外接球的表面积取得最小值为214π. 故选B .【点睛】(1)解决关于外接球的问题的关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用.(2)长方体的外接球的直径即为长方体的体对角线,对于一些比较特殊的三棱锥,在研究其外接球的问题时可考虑通过构造长方体,通过长方体的外球球来研究三棱锥的外接球的问题.4.已知x,y满足不等式224xyx y tx y≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩,且目标函数z=9x+6y最大值的变化范围[20,22],则t的取值范围()A.[2,4] B.[4,6] C.[5,8] D.[6,7] 【答案】B【解析】【分析】作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解.【详解】画出不等式组24xyx y≥⎧⎪≥⎨⎪+=⎩所表示的可行域如图△AOB当t≤2时,可行域即为如图中的△OAM,此时目标函数z=9x+6y 在A(2,0)取得最大值Z=18不符合题意t>2时可知目标函数Z=9x+6y在224x y tx y+=⎧⎨+=⎩的交点(82433t t--,)处取得最大值,此时Z=t+16由题意可得,20≤t+16≤22解可得4≤t≤6故选:B.【点睛】此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.5.已知全集,,则()A .B .C .D .【答案】C【解析】【分析】先求出集合U ,再根据补集的定义求出结果即可.【详解】 由题意得, ∵, ∴. 故选C .【点睛】 本题考查集合补集的运算,求解的关键是正确求出集合和熟悉补集的定义,属于简单题.6.已知复数z 满足:((1)11)i z i +-=-,则z 的共轭复数为( )A .12i -B .1i +C .1i -+D .12i + 【答案】B【解析】【分析】转化()(1)11i z i +-=-,为111i z i--=+,利用复数的除法化简,即得解 【详解】复数z 满足:()(1)11i z i +-=- 所以()211112i i z i i ---===-+ 1z i ⇒=-1z i ∴=+故选:B【点睛】本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题. 7.已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′3,那么原△ABC 的面积是( )A 3B .2C 3D 3【答案】A【解析】【分析】先根据已知求出原△ABC 的高为AO 3△ABC 的面积.【详解】由题图可知原△ABC 的高为AO 3∴S △ABC =12×BC×OA =12×2×33 A 【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.8.若直线20x y m ++=与圆222230x x y y ++--=相交所得弦长为5m =( ) A .1B .2C 5D .3【答案】A【解析】【分析】将圆的方程化简成标准方程,再根据垂径定理求解即可.【详解】圆222230x x y y ++--=的标准方程22(1)(1)5x y ++-=,圆心坐标为(1,1)-,5因为直线20x y m ++=与圆222230x x y y ++--=相交所得弦长为25所以直线20x y m ++=过圆心,得2(1)10m ⨯-++=,即1m =.故选:A【点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题.9.已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为( )A .22B .23C .4D .26【答案】B【解析】【分析】 由三视图可知,该三棱锥如图, 其中底面ABC 是等腰直角三角形,PC ⊥平面ABC ,结合三视图求出每个面的面积即可.【详解】 由三视图可知,该三棱锥如图所示:其中底面ABC 是等腰直角三角形,PC ⊥平面ABC , 由三视图知,2,22,PC AB ==因为,PC BC PC AC ⊥⊥,,AC BC AC CB =⊥, 所以2,2AC BC PA PB AB =====所以12222PAC PCB ACB S S S ∆∆∆===⨯⨯=, 因为PAB ∆为等边三角形,所以(22332223PAB S AB ∆===所以该三棱锥的四个面中,最大面积为23故选:B【点睛】本题考查三视图还原几何体并求其面积; 考查空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.10.设正项等差数列{}n a 的前n 项和为n S ,且满足6322S S -=,则2823a a 的最小值为 A .8 B .16 C .24 D .36 【答案】B【解析】【分析】【详解】 方法一:由题意得636332()2S S S S S -=--=,根据等差数列的性质,得96633,,S S S S S --成等差数列,设3(0)S x x =>,则632S S x -=+,964S S x -=+,则222288789962212333(3)()()=3a a a a a S S a a a a a S ++-==++2(4)x x+=161682816x x x x =++≥⋅+=,当且仅当4x =时等号成立,从而2823a a 的最小值为16,故选B . 方法二:设正项等差数列{}n a 的公差为d ,由等差数列的前n 项和公式及6322S S -=,化简可得11653262(3)222a d a d ⨯⨯+-+=,即29d =,则222282222222243()33(6)16163382333a a a d a a a a a a a ++===++≥⋅+816=,当且仅当221633a a =,即243a =时等号成立,从而2823a a 的最小值为16,故选B . 11.函数1()ln 1f x x x =--的图象大致是( ) A . B .C .D .【答案】B【解析】【分析】根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应函数图像得到答案.【详解】设()ln 1g x x x =--,(1)0g =,则1()ln 1f x x x =--的定义域为(0,1)(1,)x ∈+∞U .1()1g x x '=-,当(1,)x ∈+∞,()0g x '>,()g x 单增,当(0,1)x ∈,()0g x '<,()g x 单减,则()(1)0g x g ≥=.则()f x 在(0,1)x ∈上单增,(1,)x ∈+∞上单减,()0f x >.选B.【点睛】本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断. 12.已知集合A ={x ∈N|x 2<8x},B ={2,3,6},C ={2,3,7},则()A B C ⋃ð=( )A .{2,3,4,5}B .{2,3,4,5,6}C .{1,2,3,4,5,6}D .{1,3,4,5,6,7} 【答案】C【解析】【分析】根据集合的并集、补集的概念,可得结果.【详解】集合A ={x ∈N|x 2<8x}={x ∈N|0<x <8},所以集合A ={1,2,3,4,5,6,7}B ={2,3,6},C ={2,3,7},故A C ð={1,4,5,6},所以()A B C ⋃ð={1,2,3,4,5,6}.故选:C.【点睛】本题考查的是集合并集,补集的概念,属基础题.二、填空题:本题共4小题,每小题5分,共20分。
广东省揭阳市2019-2020学年高考数学第三次押题试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知点2F 为双曲线222:1(0)4x y C a a -=>的右焦点,直线y kx =与双曲线交于A ,B 两点,若223AF B π∠=,则2AF B V 的面积为( )A .B .C .D .【答案】D【解析】【分析】设双曲线C 的左焦点为1F ,连接11,AF BF ,由对称性可知四边形12AF BF 是平行四边形, 设1122,AF r AF r ==,得222121242cos 3c r r r r π=+-,求出12r r 的值,即得解.【详解】设双曲线C 的左焦点为1F ,连接11,AF BF ,由对称性可知四边形12AF BF 是平行四边形,所以122AF F AF B S S =V V ,123F AF π∠=. 设1122,AF r AF r ==,则222221212121242cos3c r r r r r r r r π=+-=+-, 又122r r a -=.故212416r r b ==,所以12121sin 23AF F S r r π==V 故选:D【点睛】 本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.2.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=L ) A .1624B .1024C .1198D .1560【答案】B【解析】【分析】根据高阶等差数列的定义,求得等差数列{}n c 的通项公式和前n 项和,利用累加法求得数列{}n a 的通项公式,进而求得19a .【详解】依题意n a :1,4,8,14,23,36,54,……两两作差得n b :3,4,6,9,13,18,……两两作差得n c :1,2,3,4,5,……设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,设{}n c 的前n 项和为n C .易n c n =,22n n n C +=,进而得21332n n n n b C ++=+=+,所以2(1)133222n n n n b n -=+=-+,则(1)(1)36n n n n B n +-=+,所以11n n a B +=+,所以191024a =. 故选:B【点睛】本小题主要考查新定义数列的理解和运用,考查累加法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.3.在等差数列{}n a 中,若n S 为前n 项和,911212a a =+,则13S 的值是( )A .156B .124C .136D .180【答案】A【解析】【分析】因为711911212a a a a +==+,可得712a =,根据等差数列前n 项和,即可求得答案.【详解】 Q 711911212a a a a +==+,∴712a =,∴()113137131313121562a a S a +===⨯=. 故选:A.【点睛】本题主要考查了求等差数列前n 项和,解题关键是掌握等差中项定义和等差数列前n 项和公式,考查了分析能力和计算能力,属于基础题.4.已知z 的共轭复数是z ,且12z z i =+-(i 为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】【分析】 设(),z x yi x y R =+∈,整理12z z i =+-得到方程组120x y =++=⎪⎩,解方程组即可解决问题. 【详解】设(),z x yi x y R =+∈, 因为12z z i =+-()()1212x yi i x y i =-+-=+-+,所以120x y =++=⎪⎩,解得:322x y ⎧=⎪⎨⎪=-⎩, 所以复数z 在复平面内对应的点为3,22⎛⎫- ⎪⎝⎭,此点位于第四象限.故选D【点睛】本题主要考查了复数相等、复数表示的点知识,考查了方程思想,属于基础题.5.下列命题中,真命题的个数为( )①命题“若1122a b <++,则a b >”的否命题; ②命题“若21x y +>,则0x >或0y >”;③命题“若2m =,则直线0x my -=与直线2410x y -+=平行”的逆命题.A .0B .1C .2D .3【答案】C【解析】【分析】否命题与逆命题是等价命题,写出①的逆命题,举反例排除;原命题与逆否命题是等价命题,写出②的逆否命题后,利用指数函数单调性验证正确;写出③的逆命题判,利用两直线平行的条件容易判断③正确.【详解】①的逆命题为“若a b >,则1122a b <++”, 令1a =-,3b =-可知该命题为假命题,故否命题也为假命题;②的逆否命题为“若0x ≤且0y ≤,则21x y +≤”,该命题为真命题,故②为真命题;③的逆命题为“若直线0x my -=与直线2410x y -+=平行,则2m =”,该命题为真命题.故选:C.【点睛】本题考查判断命题真假. 判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断.(2)当一个命题改写成“若p ,则q ”的形式之后,判断这个命题真假的方法:①若由“p ”经过逻辑推理,得出“q ”,则可判定“若p ,则q ”是真命题;②判定“若p ,则q ”是假命题,只需举一反例即可.6.已知集合{}|0A x x =<,{}2|120B x x mx =+-=,若{}2A B =-I ,则m =( ) A .4B .-4C .8D .-8【答案】B【解析】【分析】 根据交集的定义,{}2A B =-I ,可知2B -∈,代入计算即可求出m .【详解】由{}2A B =-I ,可知2B -∈,又因为{}2|120B x x mx =+-=,所以2x =-时,2(2)2120m ---=,解得4m =-.故选:B.【点睛】本题考查交集的概念,属于基础题.7.定义在R 上的函数()f x 满足()()2log 10()50x x f x f x x ⎧-≤⎪=⎨->⎪⎩,则()2019f =() A .-1B .0C .1D .2【答案】C【解析】【分析】 推导出()()()()220194035441log 2f f f f =⨯+==-=,由此能求出()2019f 的值.【详解】∵定义在R 上的函数()f x 满足()()2log 10()50x x f x f x x ⎧-≤⎪=⎨->⎪⎩, ∴()()()()22019403544211log f f f f =⨯+=-===,故选C .【点睛】本题主要考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题.8.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC V 的面积为1),则b c +=( )A .5B .C .4D .16 【答案】C【解析】【分析】根据正弦定理边化角以及三角函数公式可得4A π=,再根据面积公式可求得6(2bc =,再代入余弦定理求解即可.【详解】 ABC V 中,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=,又sin sin()sin cos cos sin C A B A B A B =+=+,∴sin sin cos sin B A A B =,又sin 0B ≠,∴sin A cos A =,∴tan 1A =,又(0,)A π∈,∴4A π=.∵1sin 1)24ABC S bc A ===-V ,∴bc =6(2,∵2a =,∴由余弦定理可得22()22cos a b c bc bc A =+--,∴2()4(2b c bc +=++4(26(216=++⨯-=,可得4b c +=.故选:C【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.9.已知复数z 满足121i z i i +⋅=--(其中z 为z 的共轭复数),则z 的值为( ) A .1B .2C .3D .5【答案】D【解析】【分析】按照复数的运算法则先求出z ,再写出z ,进而求出z .【详解】 21(1)21(1)(1)2i i i i i i i ++===--+Q , 1222(2)121i i z i i z i z i i i i i+-∴⋅=-⇒⋅=-⇒==--=---, 2212||(1)25z i z ∴=-+⇒=-+=.故选:D【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.10.在正方体1AC 中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,如图所示,下列说法不正确...的是( )A .点F 的轨迹是一条线段B .1A F 与BE 是异面直线C .1A F 与1DE 不可能平行D .三棱锥1F ABD -的体积为定值【答案】C【解析】【分析】 分别根据线面平行的性质定理以及异面直线的定义,体积公式分别进行判断.【详解】对于A ,设平面1AD E 与直线BC 交于点G ,连接AG 、EG ,则G 为BC 的中点分别取1B B 、11B C 的中点M 、N ,连接AM 、MN 、AN ,11//A M D E Q ,1A M ⊂/平面1D AE ,1D E ⊂平面1D AE ,1//A M ∴平面1D AE .同理可得//MN 平面1D AE ,1A M Q 、MN 是平面1A MN 内的相交直线∴平面1//A MN 平面1D AE ,由此结合1//A F 平面1D AE ,可得直线1A F ⊂平面1A MN ,即点F 是线段MN 上上的动点.A ∴正确.对于B ,Q 平面1//A MN 平面1D AE ,BE 和平面1D AE 相交,1A F ∴与BE 是异面直线,B ∴正确.对于C ,由A 知,平面1//A MN 平面1D AE ,1A F ∴与1D E 不可能平行,C ∴错误.对于D ,因为//MN EG ,则F 到平面1AD E 的距离是定值,三棱锥1F AD E -的体积为定值,所以D 正确;故选:C .【点睛】本题考查了正方形的性质、空间位置关系、空间角、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.11.若复数z 满足i 2i z -=,则z =( )A 2B 3C .2D 5【答案】D【解析】【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,i 2i z =+,()22212121i i i i z i i i ++-+∴====--, ∴()2212i 125z =-=+-=,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.12.在区间[]1,1-上随机取一个实数k ,使直线()3y k x =+与圆221x y +=相交的概率为( ) A .12 B .14 C .22 D .24【答案】D【解析】【分析】利用直线()3y k x =+与圆221x y +=相交求出实数k 的取值范围,然后利用几何概型的概率公式可求得所求事件的概率.【详解】由于直线()3y k x =+与圆221x y +=相交,则2311kk <+,解得22k -<<. 因此,所求概率为22242P ⨯==.故选:D.【点睛】本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
2019-2020年高三三轮模拟练习(五)数学(理)试题 含答案说明:一、本试卷分为第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题;第Ⅱ卷为非选择题,分为必考和选考两部分. 二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.三、做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将原选涂答案擦干净后,再选涂其他答案.四、考试结束后,将本试卷与原答题卡一并交回.第Ⅰ卷一、选择题:(本大题共12题,每小题5分共60分,每题给出的四个选项中只有一个是正确的)1.已知全集}10,9,8,7,6,5,4,3,2,1{=U ,集合2A {log ,(1,32)}y Z y x x =∈=∈, {1,2,3}B =,则=B U C A A. }3,2,1{ B.}4,3,2,1{ C. }4{ D. }5,4{2.若复数z为纯虚数,z z +=z =A. iB.i -C. i ±D. 2i ±3. 双曲线22221x y a b λλ+=--(22b a >>λ)的焦点坐标为 A.)0,(22b a +± B.)0,(22b a -± C.)0,2(22λ-+±b a D.),0(22b a +± 4.已知函数()f x 的导函数为/()f x ,且满足/()2(1)ln f x xf x =+,则(1)f =A. 1-B.2-C. 1D. 2 5.已知一个几何体的三视图如图所示,则该几何体的体积为 A. 8 B.38 C. 316 D. 4 6.已知函数()sin cos 1f x x x =+,将()f x 的图像向左平移6π个单位得到函数()g x 的图像,则函数()g x 的单调减区间为 A.7[2,2],1212k k k Z ππππ++∈ B.7[,],1212k k k Z ππππ++∈ C.2[,],63k k k Z ππππ++∈D. 2[2,2],63k k k Z ππππ++∈ 7. 阅读右边的程序框图,运行相应的程序,若输出20132014S =,则判断框内应填入A. 2014i ≥B. 2015i ≥C. 2014i >D. 2015i >8. (2n x 的展开式的各个二项式系数之和为64,则在(2n x -的展开式中,常数项为A. 120-B.120C. 60-D. 609.在ABC ∆中,=60A A ∠∠,的平分线交BC 于1,4,()4D AB AD AC AB R λλ==+∈,则AD 的长为 A. 13D. 10.已知正四棱锥P ABCD -的底面边长为3,球O 是正四棱锥P ABCD -的内切球,则球O 的表面积为 A.16π B.32π C. 4π D.43π 11.已知椭圆2215x y +=,椭圆的中心为坐标原点O ,点F 是椭圆的右焦点,点A 是椭圆短轴的一个端点,过点F 的直线l 与椭圆交于M N 、两点,与OA 所在直线交于E 点,若12,,EM MF EN NF λλ==,则12λλ+= A.10- B.10 C. 5- D. 512.将数字1,2,3,4填入右侧表格内,要求每行、每列的数字互不相同,右图所示.则不同的填表方式共有 A.432种 B. 576种 C. 720种 D. 864种第Ⅱ卷二、填空题:(每小题5分,共20分,在每小题给出横线上填上正确结果)13. 设z x y =+,若,x y 满足2024020x y x y x y a ì+-?ïïï-+?íïï--?ïïî,若z 的最大值为8,则a = .14. 若正数,a b 满足1a b +=,则113232a b +++的最小值为 . 15. 函数2(sin cos 1)sin cos ,()62y x x x x x ππ=+++-≤≤的最小值为 . 16.已知定义在R 上的函数()y f x =存在零点,且对任意,m n R ∈都满足[()()]f mf m f n +2()f m n =+.若关于x 的方程[()]31l o g (0,1)a f f x x a a -=->≠恰有三个不同的根,则实数a 的取值范围是 .三、解答题:(本小题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)设公比大于零的等比数列{}n a 的前n 项和为n S ,且11=a , 245S S =,数列{}n b 的前n 项和为n T ,满足11=b ,n n b n T 2=,*∈N n .(1)求数列{}n a 、{}n b 的通项公式;(2)设))(1(λ-+=n n n nb S C ,若数列{}n C 是单调递减数列,求实数λ的取值范围.18. (本小题满分12分)某公司计划在迎春节联欢会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球。
高考数学三轮复习冲刺模拟试题05三角函数02三、解答题 1. 已知函数.(1)求函数图象的对称轴方程; (2)求的单调增区间.(3)当时,求函数的最大值,最小值.2. 如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别与单位圆交于两点.已知的横坐标分别为.(1)求的值;(2)求的值.3.设函数22()(sin cos )2cos(0)f x x x x ωωωω=++>的最小正周期为23π. (Ⅰ)求ω的值; (Ⅱ)求()f x 在区间-63ππ⎡⎤⎢⎥⎣⎦,上的值域; (Ⅲ)若函数()y g x =的图像是由()y f x =的图像向右平移2π个单位长度得到,求()y g x =的单调增区间.4.在△ABC中,a,b,c 分别为角A,B,C 的对边,A 为锐角,已知向量→p =(1,3cos 2A ),→q =(2sin 2A,1-cos2A),且→p ∥→q .(1)若a 2-c 2=b 2-mbc,求实数m 的值;(2)若a=3,求△ABC 面积的最大值,以及面积最大是边b,c 的大小.5.设函数22()cos()2cos ,32xf x x x R π=++∈.(Ⅰ) 求()f x 的值域;(Ⅱ) 记△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c,若()1f B =,1b =,3c =, 求a 的值.6.已知向量⎪⎭⎫⎝⎛-=-=21,cos 3),1,(sin x b x a ,函数()b a x f +=)(·2-a (1)求函数)(x f 的最小正周期T 及单调减区间(2)已知c b a ,,分别是△ABC 内角A,B,C 的对边,其中A 为锐角,4,32==c a 且1)(=A f ,求A,b 和△ABC 的面积S7.已知函数1sin cos )2sin sin 32()(2+⋅-=xx x x x f .(Ⅰ)求()f x 的定义域及最小正周期; (Ⅱ)求()f x 在区间[,]42ππ上的最值.8. (本小题满分13分)在△ABC 中,A ,C 为锐角,角A ,B ,C 所对应的边分别为a ,b ,c ,且3102=,=510cos A sinC 。
(1)求(+)cos A C 的值;(2)若-=2-1a c ,求a ,b ,c 的值; (3)已知(++)=2tan A C α,求212+sin cos cos ααα的值。
9.(本小题满分13分,已知函数2()=3(2-)+2(-)(R)612f x sin x sin x x ππ∈(1)求函数()f x 的最小正周期; (2)求使函数()f x 取得最大值的x 集合; (3)若(0,)2πθ∈,且5()=3f θ,求4cos θ的值。
10.已知函数f(x)=2cosxsin(x+π/3)-3sin 2x+snxcosx(1)求函数f(x)的单调递减区间;(2)将函数f(x)的图象沿水平方向平移m 个单位后的图象关于直线x=π/2对称,求m 的最小正值.11.已知A(cos α,sin α),B(cos β,sin β),且5|AB|=2,(1)求cos(α-β)的值;(2)设α∈(0,π/2),β∈(-π/2,0),且cos(5π/2-β)=-5/13,求sin α的值.12.已知函数f (x )=sin ⎪⎭⎫ ⎝⎛+47πx +cos ⎪⎭⎫⎝⎛-43πx ,x ∈R(共12分) (1)求f (x )的最小正周期和最小值;(6分) (2) 已知cos (β-α )=54,cos (β+α )= -54,0<α<β≤2π,求证:[f (β)] 2-2=0.(6分)13.在△ABC 中,A ,B 为锐角,角A ,B ,C 所对应的边分别为a ,b ,c ,且cos2a=53,sinB=1010(共12分)(1)求A+B 的值;(7分)(2)若a-b=2-1,求a ,b ,c 的值。
(5分)14.已知函数22()sin 23sin cos 3cos f x x x x x =++,x R ∈.求:(I) 求函数()f x 的最小正周期和单调递增区间; (II) 求函数()f x 在区间[,]63ππ-上的值域.15.在△ABC 中,2AB AC AB AC ⋅=-=;(1)求:AB 2+AC 2的值;(2)当△ABC 的面积最大时,求A的大小.16.已知函数2()sin 3sin sin()2f x x x x π=+⋅+,R x ∈(1)求函数)(x f 的最小正周期; (2)若⎥⎦⎤⎢⎣⎡-∈2,12ππx ,求函数)(x f 的值域17.已知函数f (x )=-1+23sin x cos x +2cos 2x .(1)求f (x )的单调递减区间;(2)求f (x )图象上与原点最近的对称中心的坐标;(3)若角α,β的终边不共线,且f (α)=f (β),求tan(α+β)的值.18.(本小题满分13分)已知函数)(1cos 2)62sin()(2R x x x x f ∈-+-=π(1)求)(x f 的单调递增区间;(2)在△ABC 中,三内角A,B,C 的对边分别为a,b,c ,已知21)(=A f ,b,a,c 成等差数列,且9=⋅AC AB ,求a 的值.参考答案三、解答题1.解:(I).…3分令.∴函数图象的对称轴方程是……5分(II)故的单调增区间为…8分(III) ,……10分.……11分当时,函数的最大值为1,最小值为.…13分2.解:(Ⅰ)由已知得:.∵为锐角∴.∴.∴.--------------------6分(Ⅱ)∵∴.为锐角,∴,∴. -----------13分3.解: (Ⅰ)()()22=sin +cos +2cos f x x x x ωωω22=sin +cos +sin 2+1+cos 2x x x x ωωωωsin 2cos 222sin(2)24x x x πωωω=++=++依题意得2223ππω=,故ω的值为32. (Ⅱ)因为-,63x ππ≤≤所以5-3+444x πππ≤≤,-12sin 3+24x π⎛⎫≤≤ ⎪⎝⎭()12+2f x ≤≤,即()f x 的值域为1,2+2⎡⎤⎣⎦ 9分(Ⅲ)依题意得: 5()2sin 3()22sin(3)2244g x x x πππ⎡⎤=-++=-+⎢⎥⎣⎦由5232()242k x k k Z πππππ--+∈≤≤解得227()34312k x k k Z ππππ++∈≤≤ 故()y g x =的单调增区间为: 227[,]()34312k k k Z ππππ++∈ 4. 【解析】解:(Ⅰ) 由p ∥q 得1cos 23sin A A -=,所以22sin 3sin A A =又A 为锐角∴3sin 2A =,1cos 2A =而222a c b mbc -=-可以变形为22222b c a m bc +-=即1cos 22m A ==,所以1m =(Ⅱ)由(Ⅰ)知 1cos 2A =,3sin 2A = 又222122b c a bc +-=所以22222bc b c a bc a =+-≥-即2bc a ≤故211333sin 2224ABC S bc A a ∆=≤= 当且仅当3b c ==时,ABC ∆面积的最大值是3345.解:(I)1cos 32sin sin 32cos cos )(++-=x x x x f ππ1)65sin(1sin 23cos 211cos sin 23cos 21++=+-=++--=πx x x x x x 因此)(x f 的值域为]2,0[ (II)由1)(=B f 得11)65sin(=++πB ,即0)65sin(=+πB , 又因π<<B 0,故6π=B .解法一:由余弦定理023,cos 2222=+--+=a B ac c a b 2a 得,解得1=a 或2.解法二:由正弦定理CcB b sin sin =得32ππ或3,23sin ==C C 当3π=C 时,2π=A ,从而222=+=c b a ;当π32=C 时,6B ππ==又,6A ,从而1==b a .故a 的值为1或2.6.解:(1)()⎪⎭⎫ ⎝⎛-=-=-⋅+=62sin 2cos 212sin 232)(πx x x a b a x f 所以,最小正周期为ππ==22T 226222πππππ+≤-≤-k x k所以,单调减区间为)(],32,62[Z k k k ∈+-ππππ(2)⎪⎭⎫ ⎝⎛-∈-⎪⎭⎫⎝⎛∈=⎪⎭⎫⎝⎛-=65,662,2,0,162sin )(πππππA A A A f , 3,262πππ==-∴A A ,由A bc c b a cos 2222-+=得0442=+-b b ,解得2=b 故32sin 21==A bc S 7.解:(Ⅰ)由sin 0x ≠得πx k ≠(k ∈Z),故()f x 的定义域为{x ∈R |π,x k ≠k ∈Z}.…………………2分因为1sin cos )2sin sin 32()(2+⋅-=xxx x x f(23sin 2cos )cos 1x x x =-⋅+ 3sin 2cos 2x x =-π2sin(2)6x =-,………………………………6分所以()f x 的最小正周期2ππ2T ==.…………………7分 (II )由 5[,],2[,],2[,],422636x x x πππππππ挝-?…………..9分 当52,,()1662x x f x πππ-==即时取得最小值,…………….11分 当2,,()2623x x f x πππ-==即时取得最大值.……………….13分8.9.10.xxxcxxxf cossinsin3)cos23sin21(cos2)(2+-+=)32sin(22cos 32sin cos sin sin 3cos 3cos sin 22π+=+=+-+=x x x x x x x x.],127,12[)(,12712,2323222Z k k k x f Zk k x k Zk k x k ∈++∈+≤≤+∈+≤+≤+πππππππππππππ的单调递减区间为故函数得由(2))232sin(2)32sin(2)0,(m x y x y m a -+=−−−→−+==ππ.125,0)(12)1(21)(22322.2)232sin(2πππππππππ的最小正值为时当对称的图象关于直线m k Z k k m Z k k m x m x y =∈---=∴∈+=-+⋅∴=-+=11.解:(1)由题知552)sin (sin )cos (cos 22=β-α+β-α54)cos(22=β-α-∴,所以53)cos(=β-α(2) 02,20<β<π-π<α< π<β-α<∴0,又53)cos(=β-α54)sin(=β-α∴.而135)25cos(-=-βπ则135sin -=β1312cos =β∴6533])sin[(sin =+-=∴ββαα12. (1)f(x)=sinxcos47π+cosxsin 47π+cosxcos 43π+sinxsin 43π1分=22sinx-22cosx-22cosx+22sinx1分=2sinx-2cosx1分=2sin(x-4π) 1分∴T=2π1分 f m in (x )=-21分(2)[f (β)] 2-2=4sin 2(β-4π)-2=4·2)22cos(1πβ---2=-2sin β 2分 Sin2β=sin[(β+α)+(β-α)]1分cos2β=-54×54-259=-1∵0<α+β<π ∴sin(α+β)=531分0<β-α<2π∴sin(β-α)=531分 ∴sin2β=53×54+(-54)×53=01分13. (1)cos2A=2cos 2A-1=53∴cos 2A=54∵A 锐角,∴cosA=552 1分sinA=551分sinB=1010 B 锐角 cosB=10103 1分cos (A+B )=552·10103-55·1010=50505=22∴A+B=4π2分(2)∵b a =B Asin sin =101055=2∴⎪⎩⎪⎨⎧-=-=122b a b a 1分 ==>b=1 1分a=21分 C=43π1分c 2=a 2+b 2-2abcosC=5 ∴c=514. 【解】(I): 1cos 23(1cos 2)()3sin 222x x f x x -+=++23sin 2cos 2x x =++2sin(2)26x π=++∴最小正周期22T ππ==,∵222,262k x k k Z πππππ-+≤+≤+∈时()f x 为单调递增函数∴()f x 的单调递增区间为[,],36k k k Z ππππ-+∈ (II)解: ∵()22sin(2)6f x x π=++,由题意得: 63x ππ-≤≤∴52[,]666x πππ+∈-,∴1sin(2)[,1]62x π+∈-,∴()[1,4]f x ∈∴()f x 值域为[1,4]15.解:(1)||2AB AC AB AC ⋅=-=||2AB AC BC a ⋅===2222cos cos 2b c a bc Abc A ⎧+=+⎨=⎩ 2222||||8AB AC b c ∴+=+=(2)1sin 2ABC S bc A ∆==211cos 2bc A -=2121()2bc bc-=21()42bc - 2221()422b c +≤- =3当且仅当 b=c=2时A=3π16. (1)21)62sin()(+-=πx x f ,π=T (2)⎥⎦⎤⎢⎣⎡-23,231 17. [解析] f (x )=3sin2x +cos2x =2sin(2x +π6),(1)由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z)得k π+π6≤x ≤k π+2π3(k ∈Z),∴f (x )的单调递减区间为[k π+π6,k π+2π3](k ∈Z)(2)由sin(2x +π6)=0得2x +π6=k π(k ∈Z),即x =k π2-π12(k ∈Z),∴f (x )图象上与原点最近的对称中心的坐标是(-π12,0).18.解:(1)x x x x x x f 2cos 2cos 212sin 231cos 2)62sin()(2+-=-+-=π)62sin(2cos 212sin 23π+=+=x x x 令)(226222Z k k x k ∈+≤+≤-πππππ)(x f 的单调递增区间为)](6,3[Z k k k ∈+-ππππ(2)由21)(=A f ,得21)62sin(=+πA ∵62626ππππ+<+<A ,∴6562ππ=+A ,∴3π=A 由b,a,c 成等差数列得2a=b+c∵9=⋅AC AB ,∴9cos =A bc ,∴18=bc由余弦定理,得bc c b A bc c b a 3)(cos 22222-+=-+= ∴183422⨯-=a a ,∴23=a。