大体积混凝土
- 格式:doc
- 大小:44.50 KB
- 文档页数:6
大体积混凝土在现代建筑工程中,大体积混凝土的应用越来越广泛。
从大型桥梁的桥墩到高层建筑的基础,从大型水坝到大型设备的基础,大体积混凝土都扮演着至关重要的角色。
那么,究竟什么是大体积混凝土呢?简单来说,大体积混凝土是指混凝土结构物实体最小几何尺寸不小于1m 的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土。
大体积混凝土的特点十分显著。
首先,由于其体积大,混凝土在浇筑后内部产生的水化热难以迅速散发出去,从而导致混凝土内部温度升高。
这种温度差会在混凝土内部产生较大的温度应力,如果处理不当,就容易产生裂缝,影响混凝土结构的耐久性和安全性。
其次,大体积混凝土的浇筑量通常很大,施工过程中需要连续作业,对施工组织和施工技术都提出了很高的要求。
此外,大体积混凝土一般需要使用大量的水泥,而水泥的水化反应会消耗大量的水,容易导致混凝土的干缩,进一步增加了裂缝产生的可能性。
为了保证大体积混凝土的质量,在施工前需要进行精心的设计和准备。
材料的选择至关重要。
水泥应优先选用水化热低的品种,如矿渣水泥、粉煤灰水泥等。
骨料要选用级配良好、粒径较大的石子和中粗砂,这样可以减少水泥用量,降低水化热。
同时,还需要添加适量的外加剂,如缓凝剂、减水剂等,以改善混凝土的性能。
在配合比设计方面,要根据工程的具体要求和原材料的性能,通过试验确定合理的配合比。
既要保证混凝土的强度和耐久性,又要尽量降低水泥用量,减少水化热。
水胶比一般不宜大于 055,坍落度应根据施工工艺和施工条件确定。
大体积混凝土的施工过程是一个复杂而关键的环节。
首先是浇筑,浇筑方法通常有分层浇筑、分段浇筑和斜面分层浇筑等。
分层浇筑是将混凝土分成若干层进行浇筑,每层的厚度不宜超过 500mm,相邻两层浇筑的时间间隔不宜超过混凝土的初凝时间。
分段浇筑是将混凝土分成若干段进行浇筑,每段的长度不宜超过 30m。
斜面分层浇筑则适用于结构长度超过厚度 3 倍的情况,从浇筑层下端开始,逐渐上移。
大体积混凝土混凝土是一种常见的建筑材料,其优点包括强度高、耐久性好以及施工方便等。
然而,在某些特殊情况下,需要使用更大体积的混凝土,以满足工程项目的需求。
本文将探讨大体积混凝土的相关内容。
一、大体积混凝土的定义与特点大体积混凝土通常指的是超过传统混凝土结构的尺寸和体积。
其特点主要体现在以下几个方面:1. 高强度:大体积混凝土通常通过使用高性能混凝土和控制水胶比来提高混凝土的强度。
这样可以减少结构中的钢筋用量,提高整体的抗震性能。
2. 全部浇筑:大体积混凝土要求一次性完成浇筑,以确保整体的一致性和完整性。
这需要合理的施工组织和专业的技术人员。
3. 温度控制:大体积混凝土内部的温度变化较大,容易发生温度裂缝。
因此,在施工过程中需要控制混凝土的温升速率,采取适当的降温措施,以防止产生不可修复的质量问题。
二、大体积混凝土的应用领域大体积混凝土广泛应用于以下几个领域:1. 水坝和堤防:水坝和堤防是大体积混凝土的典型应用。
大坝通常需要承受巨大的水压力,因此需要使用大体积混凝土以确保结构的稳定性和耐久性。
2. 航道和港口:航道和港口工程中经常需要使用大体积混凝土来建造海堤、防波堤、码头等。
这些结构需要承受来自海洋的冲击力和波浪侵蚀,因此对混凝土的强度和耐久性要求较高。
3. 隧道和地下结构:隧道和地下结构也是大体积混凝土的重要应用领域。
对于地铁、地下停车场等工程,使用大体积混凝土可以提高结构的稳定性和防水性能。
三、大体积混凝土施工的注意事项在进行大体积混凝土施工时,需要注意以下几个方面:1. 材料的选择:选择符合规范要求的高性能混凝土材料,确保混凝土的抗压强度和耐久性。
2. 浇筑方式:采用连续浇筑的方式,避免出现冷接缝和裂缝。
可以使用泵车来提高浇筑效率和施工质量。
3. 温度控制:通过降温剂、冷却水等措施控制混凝土的温升速率,避免产生温度裂缝。
可以在施工中使用散热管或冷却剂进行降温。
4. 施工组织:合理组织施工人员和设备,确保施工进度和施工质量。
大体积混凝土的标准首先,大体积混凝土的标准主要包括以下几个方面:1. 抗压强度,大体积混凝土在施工中需要承受较大的荷载,因此其抗压强度是非常重要的指标。
一般来说,大体积混凝土的抗压强度应符合国家相关标准,以保证其在使用过程中不会出现强度不足的情况。
2. 抗渗性能,大体积混凝土在水下或潮湿环境中使用较为常见,因此其抗渗性能也是一个重要的考量因素。
合格的大体积混凝土应具有良好的抗渗性能,能够有效防止水分渗透,保证结构的耐久性。
3. 抗冻融性能,在寒冷地区或者在寒冷季节施工时,大体积混凝土需要具备良好的抗冻融性能,以确保在低温环境下不会出现冻胀等问题。
4. 施工工艺,大体积混凝土的浇筑和养护工艺对其性能也有着重要影响,因此在制定大体积混凝土标准时,需要考虑到施工工艺的要求,确保在施工过程中能够得到有效控制。
5. 质量检测,大体积混凝土的质量检测是保证其性能的重要手段,因此标准中也需要包括相应的质量检测方法和要求,以确保产品的质量可控。
总的来说,大体积混凝土的标准应该是全面的,包括抗压强度、抗渗性能、抗冻融性能、施工工艺和质量检测等方面的要求,以确保其在工程中能够得到有效的应用和保证。
同时,对于大体积混凝土的标准制定,还需要考虑到国家相关法律法规和行业标准的要求,确保其符合国家和行业的规定,能够得到广泛的应用和认可。
在实际工程中,制定和执行符合标准的大体积混凝土是非常重要的,只有这样才能保证工程的安全性、耐久性和稳定性。
因此,制定和执行严格的大体积混凝土标准是每一个建筑从业者的责任和义务,也是保障工程质量和安全的重要手段。
总之,大体积混凝土的标准是保证工程质量和安全的重要保障,其制定和执行需要全社会的关注和重视。
通过严格的标准要求和有效的质量控制,我们相信大体积混凝土在未来的建筑工程中将会得到更加广泛的应用和推广。
大体积混凝土的概念
嘿,咱来说说大体积混凝土是啥哈。
有一回啊,我路过一个建筑工地。
哇,那有一大块正在浇筑的混凝土,可壮观了。
我就好奇,这是在干啥呢?旁边的工人师傅跟我说,这就是大体积混凝土。
大体积混凝土呢,就是那种特别大、特别厚实的混凝土结构。
比如说建造大坝啊、大型基础啊这些地方就会用到。
它可不是一般的混凝土,得特别小心地施工。
我看着那一大块混凝土,想象着它得用多少水泥、沙子和石子啊。
工人师傅说,这大体积混凝土浇筑的时候可得注意温度,要是温度太高了,就容易出现裂缝。
所以他们还得想办法给混凝土降温呢。
就像夏天咱热了要吹风扇、吃冰棍儿一样,大体积混凝土也得“凉快凉快”。
他们会在混凝土里埋一些水管,通上冷水,给混凝土降温。
不然等混凝土干了,有裂缝了,那可就麻烦了。
大体积混凝土就是这么个厉害的家伙。
它得经过精心的施工和照顾,才能保证质量。
就像盖大楼得有坚实的基础一样,大体积混凝土就是那些大工程的重要基础。
所以啊,大体积混凝土虽然看起来就是一大块硬邦邦的东西,但里面可有不少学问呢。
嘿嘿。
大体积混凝土施工简述在现代建筑工程中,大体积混凝土的应用越来越广泛。
大体积混凝土结构厚实、混凝土量大,工程条件复杂,施工技术要求高。
由于水泥水化热释放比较集中,内部升温快,混凝土内外温差较大时,会使混凝土产生温度裂缝,影响结构安全和正常使用。
因此,大体积混凝土施工是一项具有挑战性的任务,需要在施工过程中采取一系列有效的措施来控制混凝土的温度和裂缝。
一、大体积混凝土的定义及特点大体积混凝土是指混凝土结构物实体最小几何尺寸不小于 1m 的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土。
大体积混凝土具有以下特点:1、混凝土量大,结构厚实。
2、水泥水化热释放集中,内部温升快。
3、混凝土内外温差大,容易产生温度裂缝。
4、施工技术要求高,需要采取特殊的施工措施。
二、大体积混凝土施工前的准备工作1、原材料的选择(1)水泥:应选用水化热低、凝结时间长的水泥,如低热矿渣硅酸盐水泥、中热硅酸盐水泥等。
(2)骨料:粗骨料宜选用粒径较大、级配良好的石子;细骨料宜选用中砂,其细度模数宜大于 23。
(3)掺合料:可适量掺入粉煤灰、矿渣粉等掺合料,以降低水泥用量,减少水化热。
(4)外加剂:应选用缓凝型减水剂,以延长混凝土的凝结时间,降低水化热峰值。
2、配合比设计大体积混凝土的配合比设计应遵循低水泥用量、低水胶比、高掺合料用量的原则,以降低混凝土的绝热温升,提高混凝土的抗裂性能。
同时,应根据混凝土的强度等级、耐久性要求和施工条件等因素,通过试验确定合理的配合比。
3、施工方案的制定施工前应制定详细的施工方案,包括混凝土的浇筑顺序、浇筑方法、振捣方式、养护措施、温度监测方案等。
施工方案应经过专家论证,并根据论证意见进行修改完善。
4、现场准备(1)清理施工现场,确保场地平整、坚实,排水畅通。
(2)设置混凝土输送泵、布料杆等施工设备,并进行调试和试运行。
(3)准备好足够的模板、支架、钢筋等材料,并进行检验和验收。
大体积混凝土,指最小断面尺寸大于1米以上的混凝土结构构件(一般规定厚度超过1米、面积也超过1平方米),其尺寸已经大到必须采取相应的技术措施妥善处理温度差值,合理解决温度应力并控制裂缝开展的混凝土结构。
大体积混凝土有如下特点:⑴混凝土强度高,水泥用量大,因而收缩变形大;⑵几何尺寸大,内部热量积聚迅速,升温快,而外部却散热快,易形成高温差;⑶工程量大,施工连续性强,不易控制。
1、大体积混凝土裂缝产生原因分析混凝土结构裂缝产生原因一般有三种:一是由外荷载引起,即按照常规计算的主要应力引起;二是结构次应力引起,即由实际工作状态与假设模型不符所致;三是由变形应力引起,这是由于温度、收缩、膨胀、不均匀沉降等因素引起的结构变形。
大体积混凝土裂缝主要产生原因属于第三种。
1.1温差的形成及其影响在混凝土结构中,引起温度变化的热量主要源于水泥的水化热。
大体积混凝土强度级别较高,水泥用量大,因此混凝土在初凝过程中会有大量水化热产生。
混凝土是热的不良导体,又由于几何尺寸巨大,这些热量不易及时排出而积聚,导致了其内部温度迅速升高(最高时可达70~80℃)。
相反,在构件表面,则由于散热条件良好,温度保持较低水平,这样就出现了内外温差。
这种相对的“内胀外缩”对混凝土表面产生拉应力,当它超过混凝土拉伸极限,裂缝就产生了。
1.2混凝土收缩变形及其影响1.2.1化学收缩:混凝土硬化过程中,水泥要发生一系列化学变化,称之为水化,但水化生成物体积比反应前物质总体积要小,这种收缩,我们称之为化学收缩;1.2.2混凝土的干收缩:干收缩是由于混凝土内部吸附水蒸发,引起凝胶体失水产生紧缩,混凝土的干收缩取决于周围环境的湿度变化。
在大体积混凝土中,当这种收缩由于内外环境不一致而使混凝土构件表面拉应力超过其拉伸极限时,导致了裂缝的产生。
1.3地基的不均匀沉降及其影响基础设计的主要依据是工程地质勘察报告。
任何一个地质勘察,其结果都是近似的。
当设计假设模型与地质实际不符等情况出现时,都很可能出现不均匀沉降。
一、简述大体积混凝土概念摘要:1.大体积混凝土的概念2.大体积混凝土的特点3.大体积混凝土的应用领域4.大体积混凝土的施工注意事项5.总结正文:一、大体积混凝土的概念大体积混凝土是指在施工过程中,混凝土的体积大于或等于100立方米,或者无论体积大小,由于混凝土浇筑部位的结构特点和施工工艺,使混凝土在浇筑过程中自然形成一个大体积的混凝土结构。
大体积混凝土结构在我国的建筑工程中得到了广泛的应用,如大坝、水池、基础等。
二、大体积混凝土的特点1.体积大:大体积混凝土的最显著特点就是体积大,这使得其在施工过程中需要特别注意温度控制和裂缝防治等问题。
2.质量要求高:由于大体积混凝土结构的重要性,对其质量要求非常高,需要在施工过程中严格控制混凝土的配合比、浇筑方法和养护措施等。
3.施工工艺复杂:大体积混凝土施工过程中,需要面对混凝土的浇筑、振捣、养护等多个环节,因此施工工艺相对复杂。
4.温度控制重要:大体积混凝土在浇筑过程中,由于体积大、热量散发慢,容易产生温度裂缝。
因此,施工过程中需要进行严格的温度控制。
三、大体积混凝土的应用领域大体积混凝土在我国的应用领域非常广泛,包括水利工程、建筑工程、交通工程等。
如大坝、水池、基础、桥墩等大型混凝土结构均采用大体积混凝土施工。
四、大体积混凝土的施工注意事项1.严格控制混凝土的配合比,确保混凝土的强度和耐久性。
2.选择合适的浇筑方法和顺序,避免混凝土浇筑过程中的裂缝产生。
3.做好混凝土的振捣工作,确保混凝土的密实度。
4.严格控制混凝土的温度变化,防止温度裂缝的产生。
5.合理选择养护措施,保证混凝土的质量和美观度。
五、总结大体积混凝土作为一种重要的建筑材料,在我国的建筑工程中具有广泛的应用。
掌握大体积混凝土的特点和施工注意事项,对于提高混凝土结构的质量和美观度具有重要意义。
目前,较新的观点指出:所谓大体积混凝土,是指其结构尺寸已经大到必须采用相应技术措施、妥善处理内外温度差值、合理解决温度应力、并按裂缝开展控制的混凝土。
水利工程的混凝土大坝、高层建筑的深基础底板、反应堆体、其他重力底座结构物等,这些都是大体积混凝土。
二.大体积混凝土的特点⏹大体积混凝土的最主要特点是以大区段为单位进行浇筑施工,每个施工区段的体积比较厚大,由此而带来的问题是,水泥水化热引起结构物内部温度升高,冷却时如果不采取一定技术措施控制,则容易出现裂缝。
⏹有些工程,其中主要部分为大体积混凝土的墩体,内力计算下来的配筋很小,大体积混凝土是需要考虑水化热等情况产生的裂缝问题,这个表面的裂缝问题需要的配筋是和最小配筋率有关系的。
三.大体积混凝土的裂缝⏹大体积混凝土施工阶段产生的温度裂缝,是其内部矛盾发展的结果。
一方面是混凝土由于内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点的约束阻止了这种应变,一旦温度应力超过混凝土能承受的极限抗拉强度,就产生不同程度的裂缝。
总结大体积混凝土产生裂缝的工程实例,产生裂缝的主要原因有以下几方面。
1.水泥水化热的影响水泥在水化反应过程中产生大量的热量,这是大体积混凝土内部温升的主要热量来源,由于大体积混凝土截面厚度大,而且砼的导热性能较差,水化热聚集在结构内部不易散发,所以会引起混凝土内部急骤升温。
随着砼龄期的的增长,砼的弹性模量和强度都不断提高,对混凝土降温收缩变形的约束越来越强,即产生很大的温度应力,当砼的抗拉强度不足以抵抗此温度应力时,便产生温度裂缝。
2.内外约束条件的影响砼结构产生温度应力时,变形会受到其他结构的外约束和砼自身不同部分间的自约束。
大体积混凝土产生的自约束应力比较大,一般混凝土结构主要考虑外约束应力。
与地基浇筑在一起的砼结构,在温度变化时受到下部地基的约束,产生外部约束应力,温度从最高值开始下降,混凝土产生较大的拉应力,若拉应力超过抗拉强度,混凝土就会出现裂缝。
一、定义:混凝土结构物实体最小尺寸等于或大于1m,或预计会因水泥水化热引起混凝土内外温差过大而导致裂缝的混凝土二、特点大体积混凝土一般在水工建筑物里常见,类似混凝土重力坝等。
大体积混凝土特点是:结构厚实,混凝土量大,工程条件复杂(一般都是地下现浇钢筋混凝土结构),施工技术要求高,水泥水化热较大(预计超过25度),易使结构物产生温度变形。
大体混凝土除了最小断面和内外温度有一定的规定外,对平面尺寸也有一定限制。
因为平面尺寸过大,约束作用所产生的温度力也愈大,如采取控制温度措施不当,温度应力超过混凝土所能承受的拉力极限值时,则易产生裂缝。
三、大体积混凝土施工温度裂缝控制技术措施摘要大体积混凝土施工时, 由于水泥水化过程中释放大量的水化热, 使混凝土结构的温度梯度过大, 从而导致混凝土结构出现温度裂缝。
因此, 计算并控制混凝土硬化过程中的温度, 进而采取相应的技术措施, 是保证大体积混凝土结构质量的重要措施。
关键词混凝土温度裂缝控制措施1 概述大体积混凝土是指最小断面尺寸大于1m 以上的混凝土结构。
与普通钢筋混凝土相比, 具有结构厚, 体形大、混凝土数量多、工程条件复杂和施工技术要求高的特点。
大体积混凝土在硬化期间, 一方面由于水泥水化过程中将释放出大量的水化热, 使结构件具有“热涨”的特性; 另一方面混凝土硬化时又具有“收缩”的特性, 两者相互作用的结果将直接破坏混凝土结构, 导致结构出现裂缝。
因而在混凝土硬化过程中,必须采用相应的技术措施, 以控制混凝土硬化时的温度, 保持混凝土内部与外部的合理温差, 使温度应力可控, 避免混凝土出现结构性裂缝。
2 大体积混凝土裂缝产生的原因大体积混凝土墩台身或基础等结构裂缝的发生是由多种因素引起的。
各类裂缝产生的主要影响因素如下:( 1) 收缩裂缝。
混凝土的收缩引起收缩裂缝。
收缩的主要影响因素是混凝土中的用水量和水泥用量, 用水量和水泥用量越高, 混凝土的收缩就越大。
选用的水泥品种不同, 其干缩、收缩的量也不同。
( 2) 温差裂缝。
混凝土内外部温差过大会产生裂缝。
主要影响因素是水泥水化热引起的混凝土内部和混凝土表面的温差过大。
特别是大体积混凝土更易发生此类裂缝。
大体积混凝土结构一般要求一次性整体浇筑。
浇筑后, 水泥因水化引起水化热,由于混凝土体积大, 聚集在内部的水泥水化热不易散发, 混凝土内部温度将显著升高, 而其表面则散热较快, 形成了较大的温度差, 使混凝土内部产生压应力, 表面产生拉应力。
此时, 混凝龄期短, 抗拉强度很低。
当温差产生的表面抗拉应力超过混凝土极限抗拉强度, 则会在混凝土表面产生裂缝。
( 3) 材料裂缝。
材料裂缝表现为龟裂,主要是因水泥安定性不合格或骨料中含泥量过多而引起的。
3 大体积混凝土裂缝控制的理论计算工程实例: 武汉市中环线南段××标段××号桥墩直径为1.2m, 混凝土及其原材料各种原始数据及参数为:一是C30 混凝土采用P.S32.5 矿渣硅酸盐水泥, 其配合比为: 水: 水泥: 砂: 石子:粉煤灰( 单位kg) =158: 298: 707: 1204: 68( 每立方米混凝土质量比) , 砂、石含水率分别为3%、0%, 混凝土容重为2 440kg/m3。
二是各种材料的温度及环境气温: 水18℃, 砂、石子23℃, 水泥25℃, 粉煤灰25℃, 环境气温20℃。
3.1 混凝土温度计算( 1) 混凝土拌和温度计算: 公式T0=∑TimiCi/∑miCi 可转换为:T0=[0.9(mcTc+msTs+mgTg+mfTf) +4.2Tw(mw - Psms - Pgmg) +C1 ( PsmsTs +PgmgTg) -C2( Psms+Pgmg) ]÷[4.2mw+0.9(mc+ms+mg+mf) ]式中: T0 为混凝土拌和温度; mw、mc、ms、mg、mf—水、水泥、砂、石子、粉煤灰单位用量( kg) ; Tw、Tc、Ts、Tg、Tf—水、水泥、砂、石子、煤灰的温度( ℃) ; Ps、Pg—砂、石含水率(%) ; C1、C2—水的比热容(KJ/Kg•K) 及溶解热(KJ/Kg) 。
当骨料温度>0℃时, C1=4.2, C2=0; 反之C1=2.1, C2=335。
本实例中的混凝土拌和温度为:T0=[0.9 ( 298×25+707 ×23+1204 ×23+68×25) +4.2×18 ( 158- 707×3%) +4.2×3%×707×23]÷[4.2×158+0.9( 298+707+1204+68) ]=21.02℃。
( 2) 混凝土出机温度计算: 按公式T1=T0- 0.16( T0- Ti)式中: T1—混凝土出机温度( ℃) ; T0—混凝土拌和温度( ℃) ; Ti—混凝土搅拌棚内温度( ℃) 。
本例中, T1=21.02- 0.16×( 21.02- 25) =21.7℃。
( 3) 混凝土浇筑温度计算: 按公式TJ=T1- ( α•τn+0.032n)•( T1- TQ)式中: TJ—混凝土浇筑温度( ℃) ; T1—混凝土出机温度( ℃) ; TQ—混凝土运送、浇筑时环境气温( ℃) ;τn—混凝土自开始运输至浇筑完成时间( h) ; n—混凝土运转次数。
α—温度损失系数( /h)本例中, 若τn取1/3, n 取1, α取0.25,则:TJ=21.7- ( 0.25×1/3+0.032×1) ×( 21.7-25) =22.1℃( 低于30℃)3.2 混凝土的绝热温升计算Th=W0•Q0/(C•ρ)式中:W0—每立方米混凝土中的水泥用量( kg/m3) ; Q0—每公斤水泥的累积最终热量(KJ/kg) ; C—混凝土的比热容取0.97(KJ/kg•k) ; ρ—混凝土的质量密度( kg/m3)Th=( 298×334) /( 0.97×2440) =42.1℃3.3 混凝土内部实际温度计算Tm=TJ+ξ•Th式中: Tj—混凝土浇筑温度; Th—混凝土最终绝热温升; ξ—温降系数查建筑施工手册, 若混凝土浇筑厚度3.4m。
则:ξ3取0.704,ξ7取0.685,ξ14 取0.527,ξ21 取0.328。
本例中: Tm(3)=22.1+0.704×42.1=51.7℃;Tm (7)=22.1+0.685×42.1=50.9℃; Tm (14)=22.1+0.527×42.1=44.3℃; Tm(21)=22.1+0.328×42.1=35.9℃。
3.4 混凝土表面温度计算Tb(τ)=Tq+4h’(H- h’) ΔT(τ)/H2式中: Tb(τ)—龄期τ时混凝土表面温度( ℃) ; Tq—龄期τ时的大气温度( ℃) ; H—混凝土结构的计算厚度(m) 。
按公式H=h+2h’计算, h—混凝土结构的实际厚度(m); h’—混凝土结构的虚厚度(m):h’=K•λ/βK—计算折减系统取0.666,λ—混凝土导热系数取2.33W/m•K。
β—模板及保温层传热系数(W/m2•K):β值按公式β=1/( ∑δi/λi+1/βg) 计算,δi—模板及各种保温材料厚度(m) ;λi—模板及各种保温材料的导热系数(W/m•K) ;βg—空气层传热系数可取23W/m2•K。
ΔT(τ)—龄期τ时,混凝土中心温度与外界气温之差(℃):ΔT(τ)=Tm(τ)- Tq,若保护层厚度取0.04m, 混凝土灌注高度为7m, 则:β=1/(0.003/58+0.04/0.06+1/23)=1.41h’=K•λ/β=0.666×2.33/1.41=1.1H=h+2h’=7.0+2×1.1= 9.2(m)若Tq 取20℃, 则:ΔT(3)=51.7- 20=31.7℃ΔT(7)=50.9- 20=30.9℃ΔT(14)=44.3- 20=24.3℃ΔT(21)=35.9- 20=15.9℃则: Tb(3)=20+4×1.1(9.2- 1.1)×31.7/9.22=33.3℃Tb (7)=20+4×1.1 ( 9.2- 1.1) ×30.9/9.22=33.0℃Tb (14)=20+4×1.1 ( 9.2- 1.1) ×24.3/9.22=30.2℃Tb (21)=20+4×1.1 ( 9.2- 1.1) ×15.9/9.22=26.7℃3.5 混凝土内部与混凝土表面温差计算ΔT(τ)s=Tm(τ)- Tb(τ)本工程实例中:ΔT(3)s=51.7- 33.3=18.4( ℃)ΔT(7)s=50.9- 33.0=17.9( ℃)ΔT(14)s=44.3- 30.2=14.1( ℃)ΔT(21)s=35.9- 26.7=9.3( ℃)若不掺加粉煤灰, 其它条件不变, 为保证混凝土强度相同, 则该配合比设计为:水: 水泥: 砂: 石子( 单位kg) =158: 351:707: 1204, 按上述步骤计算, 各龄期混凝土内表温差为:ΔT(3), s=22.1℃, ΔT(7), s=21.5℃,ΔT(14), s=16.0℃, ΔT(21), s=11.2℃。
4 大体积混凝土施工技术措施由于温差的作用, 裂缝的产生是不可避免的。
根据计算可以看出, 可以采用掺加粉煤灰等有效方法, 以降低混凝土硬化过程中混凝土内表的温差。
因而, 在施工中采取适宜的措施, 能够避免有害裂缝的出现。
( 1) 降低水泥水化热。
包括: 混凝土的热量主要来自水泥水化热, 因而选用低水化热的矿渣硅酸盐水泥配制混凝土较好;精心设计混凝土配合比, 采用掺加粉煤灰和减水剂的“双掺”技术, 减少每立方米混凝土中的水泥用量, 以达到降低水化热的目的; 选用适宜的骨料, 施工中根据现场条件尽量选用粒径较大, 级配良好的粗骨料;选用中粗砂, 改善混凝土的和易性, 并充分利用混凝土的后期强度, 减少用水量; 严格控制混凝土的塌落度。
在现场设专人进行塌落度的测量, 将混凝土的塌落度始终控制在设计范围内, 一般以7~9cm 为最佳;夏季施工时, 在混凝土内部预埋冷却水管,通循环冷却水, 强制降低混凝土水化热温度。
冬季施工时, 采用保温措施进行养护;如技术条件允许, 可在混凝土结构中掺加10%~15%的大石块, 减少混凝土的用量,以达到节省水泥和降低水化热的目的。
( 2) 降低混凝土入模温度。