2018年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学二模试卷(文科)及答案
- 格式:doc
- 大小:347.00 KB
- 文档页数:22
哈尔滨师大附中 东北师大附中 辽宁省实验中学2023年高三第二次联合模拟考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求的)1.已知集合{}1,2,3A =,{}20B x x x m =-+=,若{}2AB =,则B =( )A.{}2,1B.{}2,4C.{}2,3D.{}2,1-2.已知复数z 满足24i z z +=+,则z =( ) A.34i +B.34i -C.34i -+D.34i --3.已知向量()1,0a =,1,22b ⎛=-⎝⎭,则a b -=( ) A.3C.14.有7名运动员(5男2女)参加A 、B 、C 三个集训营集训,其中A 集训营安排5人,B 集训营与C 集训营各安排1人,且两名女运动员不在同一个集训营,则不同的安排方案种数为( ) A.18B.22C.30D.365.两条直线()0y kx k =>和2y kx =-分别与抛物线24y x =交于异于原点的A 、B 两点,且直线AB 过点()1,0,则k =()A.12B.1D.26.如图,直角梯形ABCD 中,3AB CD =,30ABC ∠=︒,4BC =,梯形ABCD 绕AD 所在直线旋转一周,所得几何体的外接球的表面积为( )A.1123πB.48πC.128πD.208π7.定义在R 上的奇函数()f x 满足()()11f x f x +=-,且在[]0,1上单调递减,若方程()10f x +=在[)0,1有实数根,则方程()1f x =在区间[)1,11-上所有实数根之和是( ) A.6B.12C.30D.568.已知三个互异的正数a ,b ,c 满足2ln cc aa=+,()21ab =+,则关于a ,b ,c 下列判断正确的是( ) A.a b c <<B.a b c >>C.2a c b -<-D.2a c b ->-二、选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.函数()sin cos f x x x =+,则下列说法正确的是( ) A.()f x 为偶函数B.()f x 的最小正周期是πC.()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D.()f x 的最小值为1-10.金枪鱼因为肉质柔嫩鲜美、营养丰富深受现代人喜爱,常被制作成罐头食用.但当这种鱼罐头中的汞含量超过1.0mg/kg 时,食用它就会对人体产生危害.某工厂现有甲、乙两条金枪鱼罐头生产线,现从甲、乙两条生产线中各随机选出10盒罐头并检验其汞含量(单位为mg/kg ),其中甲生产线数据统计如下:0.07,0.24,0.39,0.54,0.61,0.66,0.73,0.82,0.95,0.99,其方差为210.08s =.乙生产线统计数据的均值为20.4x =,方差为220.11s =,下列说法正确的是( )A.甲生产线的金枪鱼罐头汞含量数值样本的上四分位数是0.82B.甲生产线的金枪鱼罐头汞含量数值样本的上四分位数是0.775C.由样本估计总体,甲生产线生产的金枪鱼罐头汞含量平均值高于两条生产线生产的金枪鱼罐头汞含量平均值D.由样本估计总体,甲生产线生产的金枪鱼罐头汞含量数值较两条生产线生产的金枪鱼罐头汞含量数值更稳定11.已知正方体1111ABCD A B C D -E ,F 是棱1DD ,1CC 的中点,点M 是侧面11CDD C 内运动(包含边界),且AM 与面11CDD C 所成角的正切值为2,下列说法正确的是( )A.1MC 2B.存在点M ,使得AM CE ⊥C.存在点M ,使得AM ∥平面BDFD.所有满足条件的动线段AM 形成的曲面面积为612.已知函数()()1,*mn f x x m n N x=+∈,下列结论正确的是( ) A.对任意m ,*n N ∈,函数()f x 有且只有两个极值点 B.存在m ,*n N ∈,曲线()y f x =有经过原点的切线 C.对于任意10x >,20x >且12x x ≠,均满足()()121222f x f x x x f ++⎛⎫<⎪⎝⎭D.当0x >时,()()f x f x -≤恒成立第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.大气压强p =压力受力面积,它的单位是“帕斯卡”(Pa ,21Pa 1N/m =),已知大气压强()Pa p 随高度()m h 的变化规律是0khp p e -=,其中0p 是海平面大气压强,10.000126m k -=.当地高山上一处大气压强是海平面处大气压强的13,则高山上该处的海拔为______米.(答案保留整数,参考数据ln3 1.1≈) 14.曲线22x y x y +=+围成的图形的面积是______.15.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为(),0F c ,过点F 且斜率为2的直线与双曲线C 的两条渐近线分别交于M 、N 两点,若P 是线段MN 的中点,且PF =,则双曲线的离心率为______. 16.A 、B 、C 、D 、E 五个队进行单循环赛(单循环赛制是指所有参赛队在竞赛中均能相遇一次),胜一场得3分,负一场得0分,平局各得1分.若A 队2胜2负,B 队得8分,C 队得9分,E 队胜了D 队,则D 队得分为______.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程和演算步骤)17.(本小题满分10分)记ABC △的内角A 、B 、C 的对边分别为a 、b 、c ,已知()21cos 4bc A a +=.(1)证明:3b c a +=; (2)若2a =,7cos 9A =,角B 的内角平分线与边AC 交于点D ,求BD 的长. 18.(本小题满分12分)调查问卷中常常涉及到个人隐私或本人不愿正面回答的问题,被访人可能拒绝回答,即使回答,也不能期望答案是真实的.某小区要调查业主对物业工作是否满意的真实情况,现利用“随机化选答抽样”方法制作了具体调查方案,其操作流程如下:在一个箱子里放3个红球和2个白球,被调查者在摸到球后记住颜色并立即将球放回,如果抽到的是红球,则回答“你的性别是否为男性?”如果抽到的是白球,则回答“你对物业工作现状是否满意?”两个问题均用“是”或“否”回答.(1)共收取调查问卷100份,其中答案为“是”的问卷为60份,求一个业主对物业工作表示满意的概率,已知该小区共有业主500人,估计该小区业主对物业工作满意的人数;(2)现为了提高对物业工作满意的业主比例,对小区业主进行随机访谈,请表示不满意的业主在访谈中提出两个有待改进的问题.(ⅰ)若物业对每一个待改进的问题均提出一个相应的解决方案,该方案需要由5名业主委员会代表投票决定是否可行.每位代表投赞同票的概率均为13,方案需至少3人投赞成票,方能予以通过,并最终解决该问题,求某个问题能够被解决的概率0p ;(ⅱ)假设业主所提问题各不相同,每一个问题能够被解决的概率都为0p ,并且都相互独立.物业每解决一个问题,业主满意的比例将提高一个百分点.为了让业主满意的比例提高到80%,试估计至少要访谈多少位业主? 19.(本小题满分12分)如图,已知斜四棱柱1111ABCD A B C D -,底面ABCD 为等腰梯形,AB CD ∥,点1A 在底面ABCD 的射影为O ,且11AD BC CD AA ====,2AB =,112AO =,1AA BC ⊥.(1)求证:平面ABCD ⊥平面11ACC A ;(2)若M 为线段11B D 上一点,且平面MBC 与平面ABCD 夹角的余弦值为7,求直线1A M 与平面MBC所成角的正弦值. 20.(本小题满分12分) 已知数列{}n a ,设()12*nn a a a m n N n+++=∈,若{}n a 满足性质Ω:存在常数c ,使得对于任意两两不等的正整数i 、j 、k ,都有()()()k i j i j m j k m k i m c -+-+-=,则称数列{}n a 为“梦想数列”. (1)若()2*nn b n N =∈,判断数列{}n b 是否为“梦想数列”,并说明理由; (2)若()21*n c n n N =-∈,判断数列{}n c 是否为“梦想数列”,并说明理由; (3)判断“梦想数列”{}n a 是否为等差数列,并说明理由. 21.(本小题满分12分)已知椭圆()22122:10x y C a b a b +=>>的离心率为3,x 轴被抛物线22:4x C y b =-截得的线段长与1C 长轴长的比为2:3.(1)求1C 、2C 的方程;(2)设2C 与y 轴的交点为M ,过坐标原点O 的直线l 与2C 相交于点A 、B ,直线MA 、MB 分别与1C 相交与D 、E .(ⅰ)设直线MD 、ME 的斜率分别为1k 、2k ,求12k k 的值; (ⅱ)记MAB △、MDE △的面积分别是1S 、2S ,求12S S 的最小值. 22.(本小题满分12分)已知函数()()ln 10f x x ax a =-->.(1)当1a =时,求过原点且与()f x 相切的直线方程;(2)若()()()0axg x x e f x a =+⋅>有两个不同的零点1x 、()2120x x x <<,不等式212mx x e ⋅>恒成立,求实数m 的取值范围.三省三校第二次模拟答案一、单选题二、多选题三、填空题:13、873014、2π+15 16、18.2ln 2ln c c a a -=-考虑:()()2ln 0f x x x x =->,则()221x f x x x-'=-= ()f x 在()0,2递减;()f x 在()2,+∞递增()()()min 221ln 20f x f ==->(1)当02a <<,2c >时,21a+=设()x xg x =+,是减函数,且()21g =()()2121aaag a g b a =+>=⇒=+>⇒> 2212152a b =+<+=⇒<所以,22c b a a c b >>>⇒->-(2)当02c <<,2a >时,同理可得:22a b c a c b >>>⇒->- 综上可得:2a c b ->-成立. 12.如图:(1)在第一象限+都是凹函数(二阶导数大于零) (2)图二、图三有过原点的切线 (3)极值点的个数是一个或两个(4)当m ,n 同奇数或同偶数时,()()f x f x =-;当m ,n 是一奇,一偶数时,()()f x f x >-; 15.设()11,M x y ,()22,N x y ,()00,P x y2211222222222200MN OP x y b a b k k a x y a b ⎧-=⎪⎪⇒⋅=⎨⎪-=⎪⎩,则OP 的方程为222b y x a =,MN 的方程为:()2y x c =- ()222224242P b y xa c x c OP e a ab y xc ⎧=⎪⇒==+⇒=⎨-⎪=-⎩16.A 队:2胜2负(无平局) C 队:3胜1负(无平局)B 队:2胜2平,则B 队和D 、E 是平局;B 队胜了A 、C这样找到了C 队负的一场,输给B 队 这样B 、C 结束;A 队赢D 、E 最后,E 胜D ,则D 的1分.四、解答题17.(本题满分10分)(1)证明:()222221cos 4142b c a bc A a bc a bc ⎛⎫+-+=⇒+= ⎪⎝⎭()229b c a +=,则3b c a +=……5'(2)由余弦定理得:2222cos a b c b A =+-,则9bc =,又3b c a +=,则3b c ==由角分线可得,95AD =所以,在ABD △中,由余弦定理得:2222cos BD AD c AD c A =+-⋅,BD =10'18.(本题满分12分)(1)记:事件A =“业主对物业工作表示满意”,则()()2316035521004P A P A ⋅+⋅=⇒= 所以,35003754⨯=(人)……4' 答:该小区业主对物业工作表示满意的人数约为375人.(2)(ⅰ)3245345055512121173333381P C C C ⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭……8' (ⅱ)设至少要访谈n 位业主31738101280%10047.6481417n n ⎛⎫⎛⎫⋅-⋅⋅≥-⨯⇒≥≈ ⎪ ⎪⎝⎭⎝⎭答:至少要访谈48位业主.……12' 19.(本题满分12分)(1)证明:等腰梯形ABCD 中,2AB =,1BC CD AD ===则,60ABC ∠=︒……2'1BC ACBC BC AA ⊥⎧⇒⊥⎨⊥⎩平面11A ACC ,BC ⊂平面ABCD ,则平面ABCD ⊥平面11A ACC ,……4' (2)建立如图所示空间直角坐标系C xyz -,则)A,()0,1,0B,2O ⎛⎫ ⎪ ⎪⎝⎭,1122A ⎛⎫ ⎪ ⎪⎝⎭,131,0222CD BA ⎛⎫==-⎪ ⎪⎝⎭ 1133,022B DBD ⎛⎫==- ⎪ ⎪⎝⎭,1112DD AA ⎛⎫== ⎪ ⎪⎝⎭,1110,,22D⎛⎫- ⎪⎝⎭ 设111,0D M D B λ⎛⎫== ⎪ ⎪⎝⎭,131,,222M λ⎛⎫-+ ⎪ ⎪⎝⎭ (6)'设平面MBC 的法向量为(),,n x y z =131022220n CM y z n CB y λλ⎧⎛⎫⎧⋅-++=⎪⎪ ⎪⇒⎨⎨⎝⎭⋅⎪⎪⎩=⎩,取1x =,则()1,0,n =-……8' 取平面ABCD 的法向量()0,0,1m =221cos ,417m n m n m nλ⋅==⇒=,则12λ= 即:11,04A M ⎛⎫= ⎪⎪⎝⎭,1,0,n ⎛= ⎝⎭……10' 设直线1A M 与平面MBC 所成的角为θ,则1113sin cos ,7A M n A M n A M nθ⋅===⋅所以,直线1A M 与平面MBC……12' 20.(本题满分12分)(1)()()()k i j i j m j k m k i m c -+-+-=()()()k j i j i m i k m k j m c -+-+-=所以,0c =当2nn b =时,12m =,23m =,3143m =()()()142612232313033-+-⋅+-⋅=≠所以,{}n b 不是“梦想数列”……4' (2)21i a i =-,21j a j =-,21k a k =-()()()2220k i j i j j k k i k i j-+-+-=所以,{}n c 不是“梦想数列”……6'(3)①令1i =,2j =,3k = ()()()1231121223310312a a a a a a +++-+-+-= 所以,1322a a a +=,即:1a 、2a 、3a 成等差数列……8' ②令1i =,2j =,()3k n n =≥ ()()()21122102n S S n a n n -+-+-= ()()2122310n S n n a n n a +---= ()()21122210n S n n a n n a ++---+= 所以,11121122220n n a na a na a a nd +++--=⇒=+ 所以,()()114n a a n d n =+-≥,当1,2,3n =时也成立. 综上可得,“梦想数列”{}n a 是等差数列. ……12' 21.(本题满分12分)(1)椭圆方程:()222210x y a b a b+=>>13323c b a a ⎧=⎪=⎧⎪⇒⎨=⎩=,所以,221:19x C y +=,221:14C y x =-……4' (2)设直线l 的方程为y kx =,()11,A x y ,()22,B x y22440114y kxx kx y x =⎧⎪⇒--=⎨=-⎪⎩,则121244x x k x x +=⎧⎨⋅=-⎩……6' 又111114y x k x +==,12121164x x k k ==- 联立122114014y k x x k x x y =-⎧⎪⇒-=⎨=-⎪⎩,则114x k =,同理:224x k = 联立()1221122191180990y k x k x k x x y =-⎧⇒+-=⎨+-=⎩ 13211891k x k =+,同理:24221891k x k =+……8' ()()2211221sin 429191181sin 2MA MB AMBS k k S MD ME DME ∠==++∠……10' 2121481916919811616324k k ⎛⎫=+++≥ ⎪⎝⎭,当且仅当112k =±时,取等号 所以,12S S 的最小值为169324. ……12' 22.(本题满分12分)(1)()f x 的定义域为()0,+∞ ()111f x a x x'=-=- 设切点坐标()000,ln 1x x x -+,则切线方程为:()()00001ln 11y x x x x x ⎛⎫--+=--⎪⎝⎭把点()0,0带入切线得:20x e =所以,()f x 的切线方程为:221e y x e-=……4' (2)()()ln 1axg x x ex ax =+--有两个不同零点,则()()()ln ln 10ln 1ln 10ax x ax ax xx e x ax x ax e x ax e-+--=⇒+--=+--=……6' 构造函数()1xu x e x =+-,()1xu x e '=+()u x 为(),-∞+∞增函数,且()00u =即:ln 0x ax -=有两个不等实根1122ln ln ax x ax x =⎧⎨=⎩令1122ln ln x x t x x ==,()01t <<,则12ln ln x t x =,12ln ln ln x x t =+ 122ln 2ln ln 1t x x t t ++=-……8' 设()()2ln 011x v x x x x +=<<-,()()22123ln 1x x v x x x x ⎡⎤+-'=-+⎢⎥-⎣⎦ 设()23ln 1x x x xφ=-+-+,()()()212x x x x φ--'= ()x φ在()0,1递增,()10φ=,则()v x 在()0,1递减,且()10v =所以,()v x 的最小值()1v ,……10' ()()()112ln lim 2ln 31x x x x x x x =→+'=+=-所以,()v x 的最小值为3,即:m 的取值范围为(],3-∞. ……12'。
二、选择题:共8小题,每小题6分,在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求,全部选对得6分,选对但不全的得3分,有选错的得0分14.伽利略在研究力和运动的关系时设计了如图所示的理想斜面实验,关于此实验下列说法正确的是A.伽利略在该实验中得出的结论均为实验事实B.伽利略在该实验发现了力是维持物体运动的原因C.如果没有摩擦力,小球将沿斜面上升到原理的高度D.通过该实验伽利略得出惯性定律15.当物体从高空下落时,空气阻力会随速度的增大而增大,因此经过一段距离后物体将匀速下落,这个速度称为物体下落的稳态速度。
已知球形物体速度不大时所受的空气阻力正比于速率与球的半径之积,现有两个大小不同的小钢球A和B,其半径之比为2:1,它们在空气中下落时,最后的稳态速度之比:A Bv v为A.4:1 B.9:1 C.1:4 D.1:916.在磁感应强度为B的匀强磁场中,一个精致的放射性原子核发生了一次α衰变,生成了一个质量为M的新核,同时放出质量为m、电量为q的α粒子,α粒子在与磁场垂直的平面内做圆周运动,其轨道半径为R,反应中释放的核能全部转化为生成的新核和α粒子的动能,下列说法不正确的是A.生成的新核和α粒子的动能之比为m:MB.生成的新核的比结合能大于衰变前原子核的比结合能C.生成的α粒子的动能为222 2q B RmD .衰变过程中的质量亏损为()222222q B R M m m c+ 17.如图所示,质量为3kg 的物块放在小车上,小车上表面水平,物块与小车之间夹有一个水平弹簧,弹簧处于压缩的状态,且弹簧的弹力为3N ,整个装置处于静止状态,现给小车施加一水平向左的恒力F ,使其以2m/s 2的加速度向左做匀加速直线运动,则A .物块一定会相对小车向右运动B .物块受到的摩擦力一定减小C .物块受到的摩擦力大小一定不变D .物块受到的弹簧弹力一定增大18.如图所示,光滑水平面与光滑半球面相连,O 点为球心,一轻绳跨过光滑小滑轮连接物块A 、B ,A 、B 质量相等可视为质点,开始时A 、B 静止,轻绳水平伸直,B 与O 点等高,释放后,当B 和球心O 连线与竖直方向夹角为30°时,B 下滑速度为v ,此时A 仍在水平面上,重力加速度为g ,则球面半径为A .274v g B 2 C D 2 19.引力波探测在2018年获得诺贝尔物理学奖,包含中国在内的多国科学家于2018年10月宣布,成功探测到第一例双中子星合并的引力波事件。
一、单选题二、多选题1. 已知双曲线的左、右焦点分别为,,点,则的平分线的方程为( )A.B.C.D.2. 已知圆C的圆心在直线上,且与直线相切于点,则圆C 被直线截得的弦长为( )A.B.C.D.3. 已知,则( )A.B.C.D.4.若双曲线的离心率为4,则( )A .3B.C .4D.5. 已知数列是无穷项等比数列,公比为,则“”是“数列单调递增”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件6.已知函数A.B.C.D.7. 已知向量,,,则实数m 的值为( ).A.B.C.D .18.设,则( )A.B.C.D.9.若函数的定义域为,且,,则( )A.B.为偶函数C.的图象关于点对称D.10. 物流业景气指数LPI 反映物流业经济发展的总体变化情况,以50%作为经济强弱的分界点,高于50%时,反映物流业经济扩张;低于50%时,则反映物流业经济收缩.如图为中国物流与采购联合会发布的2020年1~7月的中国物流业景气指数,则下列说法正确的是( )东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)2023届高三二模数学试题东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)2023届高三二模数学试题三、填空题A .2月份物流业景气指数最低,6月份物流业景气指数最高B .1,2月份物流业经济收缩,3~7月份物流业经济扩张C .2月份到7月份的物流业景气指数一直呈上升趋势D .4月份的物流业景气指数与2月份相比增加了一倍以上11. 过抛物线的焦点作直线交抛物线于,两点,为线段的中点,过点作抛物线的切线,则下列说法正确的是( )A.的最小值为B.当时,C.以线段为直径的圆与直线相切D .当最小时,切线与准线的交点坐标为12. 小张上班从家到公司开车有两条线路,所需时间(分钟)随交通堵塞状况有所变化,其概率分布如下表所示:所需时间(分钟)30405060线路一0.50.20.20.1线路二0.30.50.10.1则下列说法正确的是( )A .任选一条线路,“所需时间小于50分钟”与“所需时间为60分钟”是对立事件B .从所需的平均时间看,线路一比线路二更节省时间C .如果要求在45分钟以内从家赶到公司,小张应该走线路一D .若小张上、下班走不同线路,则所需时间之和大于100分钟的概率为0.0413. 建党百年之际,影片《》《长津湖》《革命者》都已陆续上映,截止年月底,《长津湖》票房收入已超亿元,某市文化调查机构,在至少观看了这三部影片中的其中一部影片的市民中随机抽取了若干人进行调查,得知其中观看了《》的有人,观看了《长津湖》的有人,观看了《革命者》的有人,数据如图,则图中___________;___________;___________.14. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是_______cm 2,体积是_______cm 3.四、解答题15.记为等比数列的前n 项和,且,,则公比________,________.16.如图,五边形中,四边形为长方形,三角形为边长为2的正三角形,将三角形沿折起,使得点在平面上的射影恰好在上.(1)当时,证明:平面平面;(2)当时,求四棱锥的侧面积.17.设,而.(1)若最大,求能取到的最小正数值.(2)对(1)中的,若且,求.18. 为深入学习党的二十大精神,我校团委组织学生开展了“喜迎二十大,奋进新征程”知识竞赛活动,现从参加该活动的学生中随机抽取了100名,统计出他们竞赛成绩分布如下:成绩(分)人数242240284(1)求抽取的100名学生竞赛成绩的方差(同一组中数据用该组区间的中点值为代表);(2)以频率估计概率,发现我校参赛学生竞赛成绩X 近似地服从正态分布,其中近似为样本平均分,近似为样本方差,若,参赛学生可获得“参赛纪念证书?”;若,参赛学生可获得“参赛先锋证书”.①若我校有3000名学生参加本次竞赛活动,试估计获得“参赛纪念证书”的学生人数(结果保留整数);②试判断竞赛成绩为96分的学生能否获得“参赛先锋证书”.附:若,则,,;抽取的这100名学生竞赛成绩的平均分.19. 已知函数,其中,若实数满足时,的最小值为.(1)求的值及的对称中心;(2)在中,a ,b ,c 分别是角A ,B ,C 的对边,若,求周长的取值范围.20. 已知椭圆:的左焦点与抛物线的焦点重合,椭圆的离心率为,过点()作斜率存在且不为0的直线,交椭圆于,两点,点,且为定值.(1)求椭圆的方程;(2)过点且垂直于的直线与椭圆交于,两点,求四边形面积的最小值.21. 已知是公差为1的等差数列,是正项等比数列,,________,(1)在①,②,③这三个条件中任选一个,补充在上面横线处,判断是否是递增数列,并说明理由.(2)若,求数列的前项和.。
2018年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学三模试卷(文科)一、选择题(本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1.(5分)集合A={1,2,4},B={x∈R|x2>2},那么A∩B=()A.{1}B.{4}C.{2,4}D.{1,2,4}2.(5分)已知i为虚数单位,(|2i|+3i)i=()A.﹣3+2i B.3+2i C.3﹣2i D.﹣3﹣2i3.(5分)已知等差数列{a n},a2=2,a3+a5+a7=15,那么数列{a n}的公差d=()A.0B.1C.﹣1D.24.(5分)与椭圆C:共核心且渐近线方程为y=的双曲线的标准方程为()A.x2B.C.y2D.5.(5分)已知互不相等的直线l,m,n和平面α,β,γ,那么以下命题正确的选项是()A.假设l与m为异面直线,l⊂α,m⊂β,那么α∥β;B.假设α∥β,l⊂α,m⊂β,那么l∥m;C.假设α∩β=l,β∩γ=m,α∩γ=n,l∥γ,那么m∥n;D.假设α⊥β,β⊥γ,那么α∥β.6.(5分)执行如下图的程序框图,假设p=0.9,那么输出的n为()A.6B.5C.4D.37.(5分)已知某几何体是一个平面将一正方体截去一部份后所得,该几何体三视图如下图,那么该几何体的表面积为()A.20B.18C.18D.20+8.(5分)设点(x,y)知足约束条件,且x∈Z,y∈Z,那么如此的点共有()个A.12B.11C.10D.99.(5分)动直线l:x+my+2m﹣2=0(m∈R)与圆C:x2+y2﹣2x+4y﹣4=0交于点A,B,那么弦AB的最短为()A.2B.2C.6D.410.(5分)分形理论是现今世界十分盛行和活跃的新理论、新学科.其中,把部份与整体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象、图象或物理进程,标准的自相似分形是数学上的抽象,迭代生成无穷精细的结构,也确实是说,在分形中,每一组成部份都在特点上和整体相似,只仅仅是变小了一些罢了.谢尔宾斯基三角形确实是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,依照如下规律依次在一个黑色三角形内去掉小三角形,那么当n=6时,该黑色三角形内共去掉()个小三角形.A.81B.121C.364D.109311.(5分)在正三角形ABC中,D是AC上的动点,且AB=3,那么的最小值为()A.9B.C.D.12.(5分)假设函数f(x)=2x+sinx•cosx+acosx在(﹣∞,+∞)单调递增,那么a的取值范围是()A.[﹣1,1]B.[﹣1,3]C.[﹣3,3]D.[﹣3,﹣1]二、填空题(此题共4小题,每题5分,共20分)13.(5分)函数f(x)=a x﹣2021+2017(a>0且a≠1)所过的定点坐标为.14.(5分)在区间[2,a]上随机取一个数x,假设x≥4的概率是,那么实数a的值为.15.(5分)当前的运算机系统多数利用的是二进制系统,数据在运算机中要紧以补码的形式存储,运算机中的二进制那么是一个超级微小的开关,用“开”来表示1,“关”来表示0.那么将十进制下的数168转成二进制的数是.(2)16.(5分)已知函数f(x)为概念域为R的偶函数,且知足f(+x)=f(﹣x),当x∈[﹣1,0]时f(x)=﹣x.假设函数F(x)=f(x)+在区间[﹣9,10]上的所有零点之和为.三、解答题(共70分.解许诺写出文字说明、证明进程或演算步骤.第17-21题为必考题,第2二、23题为选考题)17.(12分)已知函数f(x)=4sinxcosx+sin2x﹣3cos2x+1.(Ⅰ)求函数f(x)的对称中心及最小正周期;(Ⅱ)△ABC的外接圆直径为3,角A,B,C所对的边别离为a,b,c,假设f()=,且acosB+bsinB=c,求sinB的值.18.(12分)哈师大附中高三学年统计学生的最近20次数学周测成绩(总分值150分),现有甲乙两位同窗的20次成绩如茎叶图所示;(Ⅰ)依照茎叶图求甲乙两位同窗成绩的中位数,并将同窗乙的成绩的频率散布直方图填充完整;(Ⅱ)依照茎叶图比较甲乙两位同窗数学成绩的平均值及稳固程度(不要求计算出具体值,给出结论即可);(Ⅲ)现从甲乙两位同窗的不低于140分的成绩中任意选出2个成绩,记事件A为“其中2个成绩别离属于不同的同窗”,求事件A发生的概率.19.(12分)已知△ABC中,AB⊥BC,BC=2,AB=4,别离取边AB,AC的中点D,E,将△ADE 沿DE折起到△AD1E的位置,使A1D⊥BD,设点M为棱A1D的中点,点P为A1B的中点,棱BC上的点N知足BN=3NC.(Ⅰ)求证:MN∥平面A1EC;(Ⅱ)求三棱锥N﹣PCE的体积.20.(12分)已知抛物线C:x2=8y与直线l:y=kx+1交于A,B不同两点,别离过点A、点B作抛物线C的切线,所得的两条切线相交于点P.(Ⅰ)求证为定值;(Ⅱ)求△ABP的面积的最小值及现在的直线l的方程.21.(12分)已知函数f(x)=axe x(a∈R),g(x)=lnx+kx+1(k∈R).(Ⅰ)假设k=﹣1,求函数g(x)的单调区间;(Ⅱ)假设k=1时有f(x)≥g(x)恒成立,求a的取值范围.请考生在2二、23两题中任选一题作答,若是多做,那么按所做的第一题记分.作答时请写清题号.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系中,以原点为极点,以x轴的非负半轴为极轴且取相同的单位长度成立极坐标系,曲线C 的极坐标方程为:ρ=2cosθ.(I)假设曲线C2,参数方程为:(α为参数),求曲线C1的直角坐标方程和曲线C2的一般方程(Ⅱ)假设曲线C2,参数方程为(t为参数),A(0,1),且曲线C1,与曲线C2交点别离为P,Q,求的取值范围,[选修4-5:不等式选讲]23.已知函数f(x)=|2x+b|+|2x﹣b|.(I)假设b=1.解不等式f(x)>4.(Ⅱ)假设不等式f(a)>|b+1|对任意的实数a恒成立,求b的取值范围.2018年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学三模试卷(文科)参考答案与试题解析一、选择题(本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1.(5分)集合A={1,2,4},B={x∈R|x2>2},那么A∩B=()A.{1}B.{4}C.{2,4}D.{1,2,4}【解答】解:∵集合A={1,2,4},B={x∈R|x2>2}={x|x<﹣或x>},∴A∩B={2,4}.应选:C.2.(5分)已知i为虚数单位,(|2i|+3i)i=()A.﹣3+2i B.3+2i C.3﹣2i D.﹣3﹣2i【解答】解:(|2i|+3i)i=(2+3i)i=﹣3+2i.应选:A.3.(5分)已知等差数列{a n},a2=2,a3+a5+a7=15,那么数列{a n}的公差d=()A.0B.1C.﹣1D.2【解答】解:在等差数列{a n}中,由a3+a5+a7=15,即3a5=15,得a5=5.又a2=2,∴.应选:B.4.(5分)与椭圆C:共核心且渐近线方程为y=的双曲线的标准方程为()A.x2B.C.y2D.【解答】解:依照题意,椭圆C:的核心为(0,±2),那么要求双曲线的核心在y轴上,且c=2,设其方程为﹣=1,那么有a2+b2=4,又由双曲线的渐近线为y=,那么有=,解可得a2=3,b2=1,那么双曲线的标准方程为:﹣x2=1;应选:D.5.(5分)已知互不相等的直线l,m,n和平面α,β,γ,那么以下命题正确的选项是()A.假设l与m为异面直线,l⊂α,m⊂β,那么α∥β;B.假设α∥β,l⊂α,m⊂β,那么l∥m;C.假设α∩β=l,β∩γ=m,α∩γ=n,l∥γ,那么m∥n;D.假设α⊥β,β⊥γ,那么α∥β.【解答】解:在A中,假设l与m为异面直线,l⊂α,m⊂β,那么α与β相交或平行,故A错误;在B中,假设α∥β,l⊂α,m⊂β,那么l与m平行或异面,故B错误;在C中,假设α∩β=l,β∩γ=m,α∩γ=n,l∥γ,那么由线面平行的性质定理得m∥n,故C正确;在D中,假设α⊥β,β⊥γ,那么α与β相交或平行,故D错误.应选:C.6.(5分)执行如下图的程序框图,假设p=0.9,那么输出的n为()A.6B.5C.4D.3【解答】解:执行如下图的程序框图,有P=0.9,n=1,S=0,知足条件S<P,有S=,n=2;知足条件S<P,有S=+,n=3;知足条件S<P,有S=++,n=4;知足条件S<P,有S=+++=,n=5;不知足条件S<P,退出循环,输出n的值为5.应选:B.7.(5分)已知某几何体是一个平面将一正方体截去一部份后所得,该几何体三视图如下图,那么该几何体的表面积为()A.20B.18C.18D.20+【解答】解:由三视图还原原几何体如图,该几何体为边长是2的正方体截去三棱锥F﹣BGE,那么该几何体的表面积为=18+.应选:B.8.(5分)设点(x,y)知足约束条件,且x∈Z,y∈Z,那么如此的点共有()个A.12B.11C.10D.9【解答】解:点(x,y)知足约束条件的可行域如图:的三角形ABC区域,可知x∈Z,y∈Z,那么如此的点共有12个.应选:A.9.(5分)动直线l:x+my+2m﹣2=0(m∈R)与圆C:x2+y2﹣2x+4y﹣4=0交于点A,B,那么弦AB的最短为()A.2B.2C.6D.4【解答】解:∵动直线l:x+my+2m﹣2=0(m∈R),∴(x﹣2)+(y+2)m=0,∴动直线l:x+my+2m﹣2=0(m∈R)过定点M(2,﹣2),∵圆C:x2+y2﹣2x+4y﹣4=0的圆心C(1,﹣2),半径r==3,d=|MC|==1,∵圆C:x2+y2﹣2x+4y﹣4=0交于点A,B,∴弦AB的最短距离为:2=2=4.应选:D.10.(5分)分形理论是现今世界十分盛行和活跃的新理论、新学科.其中,把部份与整体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象、图象或物理进程,标准的自相似分形是数学上的抽象,迭代生成无穷精细的结构,也确实是说,在分形中,每一组成部份都在特点上和整体相似,只仅仅是变小了一些罢了.谢尔宾斯基三角形确实是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,依照如下规律依次在一个黑色三角形内去掉小三角形,那么当n=6时,该黑色三角形内共去掉()个小三角形.A.81B.121C.364D.1093【解答】解:当n=1时,去掉1个白三角形,a1=1,当n=2时,去掉4个白三角形,a2=4,那么a2﹣a1=3=31=32﹣1,当n=3时,去掉13个白三角形,a3=13,那么a3﹣a2=9=32=33﹣1,当n=4时,去掉40个白三角形,a4=40,那么a4﹣a3=27=33=34﹣1,当n=5时,去掉121个白三角形,a5=121,那么a5﹣a4=81=34=35﹣1,由归纳法得当n=6时,去掉364个白三角形,a6=364=35=36﹣1.应选:C.11.(5分)在正三角形ABC中,D是AC上的动点,且AB=3,那么的最小值为()A.9B.C.D.【解答】解:依照题意,正三角形ABC中,AB=3,那么AB=BC=3,D是AC上的动点,设=m+n,同时有m+n=1,且m>0,n>0,=(m+n)•=m2+n•=9m+,又由m+n=1,且m>0,n>0,则=9m+=9(1﹣n)+=9﹣,分析可得:当n=1时,取得最小值;应选:D.12.(5分)假设函数f(x)=2x+sinx•cosx+acosx在(﹣∞,+∞)单调递增,那么a的取值范围是()A.[﹣1,1]B.[﹣1,3]C.[﹣3,3]D.[﹣3,﹣1]【解答】解:函数f(x)=2x+sinx•cosx+acosx,f′(x)=3﹣2sin2x﹣asinx,由题意可得f′(x)≥0恒成立,即为3﹣2sin2x﹣asinx≥0,设t=sinx(﹣1≤t≤1),即有2t2+at﹣3≤0,当t=0时,不等式显然成立;当0<t≤1时,a≤﹣2t,由y=﹣2t在(0,1]递减,可得t=1时,取得最小值1,可得a≤1;当﹣1≤t<0时,a≥﹣2t,由y=﹣2t在[﹣1,0)递减,可得t=﹣1时,取得最大值﹣1,可得a≥﹣1综上可得a的范围是[﹣1,1],应选:A.二、填空题(此题共4小题,每题5分,共20分)13.(5分)函数f(x)=a x﹣2021+2017(a>0且a≠1)所过的定点坐标为(2021,2018).【解答】解:由题意,依照指数函数的性质,令x﹣2021=0,可得x=2021,带入求解y=2018,∴函数f(x)过的定点坐标为(2021,2018)故答案为:(2021,2018).14.(5分)在区间[2,a]上随机取一个数x,假设x≥4的概率是,那么实数a的值为8.【解答】解:由题意得:=,解得:a=8,故答案为:8.15.(5分)当前的运算机系统多数利用的是二进制系统,数据在运算机中要紧以补码的形式存储,运算机中的二进制那么是一个超级微小的开关,用“开”来表示1,“关”来表示0.那么将十.进制下的数168转成二进制的数是(2)【解答】解:168÷2=84 084÷2=42 042÷2=21 021÷2=10 (1)10÷2=5 05÷2=2 (1)2÷2=1 01÷2=0…1;∴168(10)=(2).故答案为:(2).16.(5分)已知函数f(x)为概念域为R的偶函数,且知足f(+x)=f(﹣x),当x∈[﹣1,0]时f(x)=﹣x.假设函数F(x)=f(x)+在区间[﹣9,10]上的所有零点之和为5.【解答】解:∵f(x)是偶函数,∴f()=f(﹣x)=f(x﹣),∴f(x)的周期为T=2,作出f(x)的函数图象如下图:由图象可知f(x)的图象关于点(,)对称.令F(x)=0可得f(x)==+,令g(x)=,显然g(x)的函数图象关于点(,)对称.作出g(x)在(,10]上的函数图象如下图:由图象可知f(x)与g(x)在(,10]上有5个交点,依照对称性可知在[﹣9,]上也有5个交点,∴F(x)在[﹣9,10]上的所有零点之和为5×1=5.故答案为:5.三、解答题(共70分.解许诺写出文字说明、证明进程或演算步骤.第17-21题为必考题,第2二、23题为选考题)17.(12分)已知函数f(x)=4sinxcosx+sin2x﹣3cos2x+1.(Ⅰ)求函数f(x)的对称中心及最小正周期;(Ⅱ)△ABC的外接圆直径为3,角A,B,C所对的边别离为a,b,c,假设f()=,且acosB+bsinB=c,求sinB的值.【解答】(本小题总分值12分)解:(I)函数f(x)=4sinxcosx+sin2x﹣3cos2x+1=sin2x+cos2x﹣3(cos2x)+1 =2sin2x﹣2cos2x=4sin(2x﹣)令2x﹣=kπ,k∈Z.可得:x=∴对称中心(,0)(k∈Z),最小正周期T=.(Ⅱ)由f()=,即4sin(﹣)=可得:a=3.由正弦定理:,∴sinA=由:acosB+bsinB=c,可得sinAcosB+sinBsinB=sinC.∵A+B+C=π∴sinAcosB+sinBsinB=sin(A+B)=sinAcosB+cosAsinB.即sinBsinB=cosAsinB.∵0<B<π,sinB≠0.那么:sinB=cosA>0.∴sinB=cosA==.18.(12分)哈师大附中高三学年统计学生的最近20次数学周测成绩(总分值150分),现有甲乙两位同窗的20次成绩如茎叶图所示;(Ⅰ)依照茎叶图求甲乙两位同窗成绩的中位数,并将同窗乙的成绩的频率散布直方图填充完整;(Ⅱ)依照茎叶图比较甲乙两位同窗数学成绩的平均值及稳固程度(不要求计算出具体值,给出结论即可);(Ⅲ)现从甲乙两位同窗的不低于140分的成绩中任意选出2个成绩,记事件A为“其中2个成绩别离属于不同的同窗”,求事件A发生的概率.【解答】解:(I)甲的成绩的中位数是119,乙的成绩的中位数是128.……(4分)(II)从茎叶图能够看出,乙的成绩的平均分比甲的成绩的平均分高,乙同窗的成绩比甲同窗的成绩更稳固集中.……(8分)(III)甲同窗的不低于140分的成绩有2个设为a,b,乙同窗的不低于140分的成绩有3个,设为c,d,e现从甲乙两位同窗的不低于14(0分)的成绩中任意选出2个成绩有:(a,b),(a,c)(a,d)(a,e)(b,c)(b,d)(b,e)(c,d)(c,e)(d,e)共10种,其中2个成绩分属不同同窗的情形有:(a,c)(a,d)(a,e)(b,c)(b,d)(b,e)共6种因此事件A发生的概率P(A)=.……(12分)19.(12分)已知△ABC中,AB⊥BC,BC=2,AB=4,别离取边AB,AC的中点D,E,将△ADE 沿DE折起到△AD1E的位置,使A1D⊥BD,设点M为棱A1D的中点,点P为A1B的中点,棱BC上的点N知足BN=3NC.(Ⅰ)求证:MN∥平面A1EC;(Ⅱ)求三棱锥N﹣PCE的体积.【解答】(Ⅰ)证明:取A1E中点F,连接MF,CF,∵M为棱A1D的中点,∴MF∥DE且MF=,而△ABC中,D,E为边AB,AC的中点,那么DE∥BC,且DE=,∴MF∥BC,MF∥NC且MF=,∴四边形MFCN为平行四边形……(4分)∴MN∥FC,……(5分)∵MN⊄平面A1EC,FC⊂平面A1EC,∴MN∥平面A1EC.……(6分)(Ⅱ)取BD中点H,连PH.∵AB⊥BC,DE∥BC,∴DE⊥DA1,DE⊥BD,∵DB⊥DA1,DE∩BD=D,∴DA1⊥面BCDE,∵PH∥A1D,∴PH⊥面BCDE,∴PH为三棱锥P﹣NCE的高.……(9分)∴PH=,S.∴V N=V P﹣NCE==……(12分)﹣PEC20.(12分)已知抛物线C:x2=8y与直线l:y=kx+1交于A,B不同两点,别离过点A、点B作抛物线C的切线,所得的两条切线相交于点P.(Ⅰ)求证为定值;(Ⅱ)求△ABP的面积的最小值及现在的直线l的方程.【解答】证明:(Ⅰ)设A,B的坐标别离为A(x1,y1),B(x2,y2),由消y得x2﹣8kx﹣8=0,方程的两个根为x1,x2,∴△=4p2k2+4p2>0恒成立,x1+x2=8k,x1x2=﹣8,∵A,B在抛物线C上,∴y1=,y2=,∴y1y2==1,∴=x1x2+y1y2=﹣8+1=﹣7为定值.解(Ⅱ)由x2=8y即y=x2,∴y′=x,∴k AP=x1,k BP=x2,∴直线AP的方程为:y﹣=x1(x﹣x1)即y=x1x﹣x12,①同理直线BP的方程为y=x2x﹣x22,②由①②得2x(x1﹣x2)=(x1﹣x2)(x1+x2),而x1≠x2,故有x==4k,y==﹣1,即点P(4k,﹣1),∴|AB|=•=•=4•,点P(4k,﹣1)到直线l:y=kx+1的距离d=,∴S=|AB|•d=4(2k2+1),△ABP∵k2>1,∴当k2=0时,即k=0时S△ABP有最小值为4,现在直线方程l为y=1.21.(12分)已知函数f(x)=axe x(a∈R),g(x)=lnx+kx+1(k∈R).(Ⅰ)假设k=﹣1,求函数g(x)的单调区间;(Ⅱ)假设k=1时有f(x)≥g(x)恒成立,求a的取值范围.【解答】(本小题总分值12分)解:(Ⅰ)k=1时,g(x)=lnx﹣x的概念域为(0,+∞),.……(1分)令>0,得0<x<1,令,得x>1,因此g(x)在(0,1)上是增函数,(1,+∞)上是减函数.……(4分)(Ⅱ)当k=1时,f(x)≥g(x)恒成立,即axe x≥lnx+x+1恒成立.因为x>0,因此a≥.……(5分)令h(x)=,那么.……(6分)令p(x)=﹣lnx﹣x,,故p(x)在(0,+∞)上单调递减,且p()=1﹣,p(1)=﹣1<0,故存在x0∈(,1),使得p(x0)=﹣lnx0﹣x0=0,故lnx0+x0=0,即.当x∈(0,x0)时,p(x)>0,h′(x)>0;当x∈(x0,+∞)时,p(x)<0,h′(x)<0;∴h(x)在(0,x0)单调递增,在(x0,+∞)单调递减,……(9分)∴h(x)max=h(x0)==1,……(11分)故a的取值范围是[1,+∞).……(12分)请考生在2二、23两题中任选一题作答,若是多做,那么按所做的第一题记分.作答时请写清题号.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系中,以原点为极点,以x轴的非负半轴为极轴且取相同的单位长度成立极坐标系,曲线C 的极坐标方程为:ρ=2cosθ.(I)假设曲线C2,参数方程为:(α为参数),求曲线C1的直角坐标方程和曲线C2的一般方程(Ⅱ)假设曲线C2,参数方程为(t为参数),A(0,1),且曲线C1,与曲线C2交点别离为P,Q,求的取值范围,【解答】解:(I)∵曲线C 的极坐标方程为:ρ=2cosθ.∴ρ2=2ρcosθ,x2+y2=2x.曲线C2,参数方程为:(α为参数),∴曲线C2的一般方程:x2+(y﹣1)2=t2.(II)将C2的参数方程:(α为参数),代入C1的方程得:t2+(2sinα﹣2cosα)t+1=0,∵△=(2sinα﹣2cosα)2﹣4=8﹣4>0,∴||∈,∴∈∪,∴t1+t2=﹣(2sinα﹣2cosα),t1t2=1,∴t1与t2同号,∴|t1|+|t2|=|t1+t2|,由的几何意义可得:=+===2||∈(2,2],∴∈(2,2].[选修4-5:不等式选讲]23.已知函数f(x)=|2x+b|+|2x﹣b|.(I)假设b=1.解不等式f(x)>4.(Ⅱ)假设不等式f(a)>|b+1|对任意的实数a恒成立,求b的取值范围.【解答】解:(Ⅰ)函数f(x)=|2x+b|+|2x﹣b|,b=1时,不等式f(x)>4为|2x+b|+|2x﹣b|>4,它等价于或或,解得x>1或x<﹣1或x∈∅;∴不等式f(x)>4的解集为(﹣∞,﹣1)∪(1,+∞).(Ⅱ)f(a)=|2a+b|+|2a﹣b|=|2a+b|+|b﹣2a|≥|(2a+b)+(b﹣2a)|=|2b|,当且仅当(2a+b)(b﹣2a)≥0时f(a)取得最小值为|2b|;令|2b|>|b+1|,得(2b)2>(b+1)2,解得b<﹣或b>1,∴b的取值范围是(﹣∞,﹣)∪(1,+∞).。
2018年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(文科)一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(5分)集合A={x||x|≤2,x∈N*},B={y|y=x2,x∈R},那么A∩B=()A.{x|x≥0}B.{x|x≥1}C.{1,2}D.{0,1,2}2.(5分)已知复数z知足(1+i)z=|2i|,i为虚数单位,那么z等于()A.1﹣i B.1+i C.﹣i3.(5分)在以下向量中,能够把向量表示出来的是()A.,B.,C.,D.,4.(5分)在区间(0,3)上任取一个实数x,那么2x<2的概率是()A.B.C.D.5.(5分)抛物线y=4x2的核心到准线的距离为()A.2B.1C.D.6.(5分)已知a,b都是实数,p:直线x+y=0与圆(x﹣a)2+(y﹣b)2=2相切;q:a+b=2,那么p是q的()A.充分没必要要条件B.必要不充分条件C.充要条件D.既不充分也没必要要条件7.(5分)如下图的程序框图的算法思路来源于我国古代数学名著《九章算术》,执行该程序框图假设输出的a=4,那么输入的a,b不可能为()A.4,8B.4,4C.12,16D.15,188.(5分)已知函数,那么以下说法不正确的选项是()A.f(x)的一个周期为2πB.f(x)向左平移个单位长度后图象关于原点对称C.f(x)在上单调递减D.f(x)的图象关于对称9.(5分)函数f(x)=|x|+(其中a∈R)的图象不可能是()A.B.C.D.10.(5分)如下图是一个三棱锥的三视图,那么此三棱锥的外接球的体积为()A.B.C.D.11.(5分)设双曲线的两条渐近线与直线别离交于A,B两点,F 为该双曲线的右核心,假设60°<∠AFB<90°,那么该双曲线离心率e的取值范围是()A.B.C.D.12.(5分)已知函数,g(x)=|a﹣1|cosx(x∈R),假设对任意的x1,x2∈R,都有f(x1)≤g(x2),那么实数a的取值范围为()A.[0,2]B.RC.[﹣2,0]D.(﹣∞,﹣2]∪[0,+∞)二、填空题(每题5分,总分值20分,将答案填在答题纸上)13.(5分)假设直线l⊥平面β,平面α⊥平面β,那么直线l与平面α的位置关系为.14.(5分)假设实数x,y知足不等式组,那么的取值范围是.15.(5分)甲、乙、丙三人中只有一人做了好事,他们各自都说了一句话,而且其中只有一句实话.甲说:是乙做的.乙说:不是我做的.丙说:不是我做的.那么做好事的是.(填甲、乙、丙中的一个)16.(5分)△ABC中,BC=2,,那么△ABC面积的最大值为.三、解答题(本大题共5小题,共70分.解许诺写出文字说明、证明进程或演算步骤.)17.(12分)已知数列{a n}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=log2a n,求.18.(12分)中国政府实施“互联网+”战略以来,电话作为客户端愈来愈为人们所青睐,通过电话实现衣食住行消费已经成为一种要紧的消费方式,“一机在手,走遍天下”的时期已经到来.在某闻名的夜市,随机调查了100名顾客购物时利用电话支付的情形,取得如下的2×2列联表,已知其中从利用电话支付的人群中随机抽取1人,抽到青年的概率为.(1)依照已知条件完成2×2列联表,并依照此资料判定是不是有99.5%的把握以为“市场购物用电话支付与年龄有关”?(2)现采纳分层抽样从这100名顾客中依照“利用电话支付”和“不利用电话支付”中抽取取得一个容量为5的样本,设事件A为“从那个样本中任选2人,这2人中至少有1人是不利用电话支付的”,求事件A发生的概率?P(K2≥k0)0.050.0250.0100.005k0 3.841 5.024 6.6357.8792×2列联表青年中老年合计使用手机支付60不使用手机支付24合计100附:19.(12分)已知圆锥SO,SO=2,AB为底面圆的直径,AB=2,点C在底面圆周上,且OC⊥AB,E在母线SC上,且SE=4CE,F为SB中点,M为弦AC中点.(1)求证:AC⊥平面SOM;(2)求四棱锥O﹣EFBC的体积.20.(12分)已知椭圆的离心率为,F1(﹣c,0),F2(c,0)为椭圆C的左、右核心,M为椭圆C上的任意一点,△MF1F2的面积的最大值为1,A、B为椭圆C上任意两个关于x轴对称的点,直线与x轴的交点为P,直线PB交椭圆C于另一点E.(1)求椭圆C的标准方程;(2)求证:直线AE过定点.21.(12分)已知函数f(x)=﹣4x3+ax,x∈R.(1)讨论函数f(x)的单调性;(2)假设函数f(x)在[﹣1,1]上的最大值为1,求实数a的取值集合.[选修4-4:坐标系与参数方程选讲]22.(10分)已知在极坐标系中曲线C1的极坐标方程为:ρ=4cosθ,以极点为坐标原点,以极轴为x轴的正半轴成立直角坐标系,曲线C2的参数方程为:(t为参数),点A(3,0).(1)求出曲线C1的直角坐标方程和曲线C2的一般方程;(2)设曲线C1与曲线C2相交于P,Q两点,求|AP|•|AQ|的值.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣5|+|2x+1|.(1)求不等式f(x)>x﹣1的解集;(2)假设f(x)>|a﹣1|关于x∈R恒成立,求实数a的范围.2018年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(5分)集合A={x||x|≤2,x∈N*},B={y|y=x2,x∈R},那么A∩B=()A.{x|x≥0}B.{x|x≥1}C.{1,2}D.{0,1,2}【解答】解:集合A={x||x|≤2,x∈N*}={x|﹣2≤x≤2,x∈N*}={1,2},B={y|y=x2,x∈R}={y|y≥0},那么A∩B={1,2}.应选:C.2.(5分)已知复数z知足(1+i)z=|2i|,i为虚数单位,那么z等于()A.1﹣i B.1+i C.﹣i【解答】解:∵(1+i)z=|2i|=2,∴z====1﹣i,应选:A.3.(5分)在以下向量中,能够把向量表示出来的是()A.,B.,C.,D.,【解答】解:依照平面向量的大体定理可知,作为平面向量基底的一组向量必需为非零不共线向量,而A中的为零向量,不符合条件;C,D中的两组向量均为共线向量,不符合条件;应选:B.4.(5分)在区间(0,3)上任取一个实数x,那么2x<2的概率是()A.B.C.D.【解答】解:由已知区间(0,3)上任取一个实数x,对应集合的区间长度为3,而知足2x<2的x<1,对应区间长度为1,因此所求概率是;应选:C.5.(5分)抛物线y=4x2的核心到准线的距离为()A.2B.1C.D.【解答】解:抛物线的标准方程x2=y,那么核心坐标为(,0),准线方程为x=﹣,∴核心到准线的距离d=P=,应选:D.6.(5分)已知a,b都是实数,p:直线x+y=0与圆(x﹣a)2+(y﹣b)2=2相切;q:a+b=2,那么p是q的()A.充分没必要要条件B.必要不充分条件C.充要条件D.既不充分也没必要要条件【解答】解:假设直线x+y=0与圆(x﹣a)2+(y﹣b)2=2相切,那么圆心(a,b)到直线的距离d==,即|a+b|=2,那么a+b=2或a+b=﹣2,即p是q的必要不充分条件,应选:B.7.(5分)如下图的程序框图的算法思路来源于我国古代数学名著《九章算术》,执行该程序框图假设输出的a=4,那么输入的a,b不可能为()A.4,8B.4,4C.12,16D.15,18【解答】解:依照题意,执行程序后输出的a=4,那么执行该程序框图前,输人a、b的最大公约数是4,分析选项中的四组数,不知足条件的是选项D.应选:D.8.(5分)已知函数,那么以下说法不正确的选项是()A.f(x)的一个周期为2πB.f(x)向左平移个单位长度后图象关于原点对称C.f(x)在上单调递减D.f(x)的图象关于对称【解答】解:函数,关于答案:A、函数的最小正周期为2π,故正确.C、当x时,,故正确.D,当时,x+,函数取最小值,故正确.关于C、将函数的图象向右平移个单位,图象关于原点对称.而答案是:f(x)向左平移个单位长度后图象关于原点对称.故错误.应选:B.9.(5分)函数f(x)=|x|+(其中a∈R)的图象不可能是()A.B.C.D.【解答】解:当a=0时,f(x)=|x|,且x≠0,故A符合,当x>0时,且a>0时,f(x)=x+≥2,当x<0时,且a>0时,f(x)=﹣x+在(﹣∞,0)上为减函数,故B符合,当x<0时,且a<0时,f(x)=﹣x+≥2=2,当x>0时,且a<0时,f(x)=x+在(0,+∞)上为增函数,故D符合,应选:C.10.(5分)如下图是一个三棱锥的三视图,那么此三棱锥的外接球的体积为()A.B.C.D.【解答】解:由三视图知:几何体为三棱锥,且一条侧棱与底面垂直,高为1,三棱锥的底面为等腰直角三角形,将其扩充为长方体,对角线长为=,三棱锥的外接球的半径为,体积为•=π,应选:C.11.(5分)设双曲线的两条渐近线与直线别离交于A,B两点,F 为该双曲线的右核心,假设60°<∠AFB<90°,那么该双曲线离心率e的取值范围是()A.B.C.D.【解答】解:双曲线的两条渐近线方程为y=±x,时,y=±,∴A(,),B(,﹣),∵60°<∠AFB<90°,∴<k FB<1,∴<<1,∴<<1,∴<<1,∴1<e2﹣1<3,∴<e<2.应选:C.12.(5分)已知函数,g(x)=|a﹣1|cosx(x∈R),假设对任意的x1,x2∈R,都有f(x1)≤g(x2),那么实数a的取值范围为()A.[0,2]B.RC.[﹣2,0]D.(﹣∞,﹣2]∪[0,+∞)【解答】解:对任意的x1、x2∈R,都有f(x1)≤g(x2)⇔f(x)max≤g(x)min,函数,注意到f(x)max=f(1)=﹣1,又g(x)=|a﹣1|cosx≥﹣|a﹣1|,故﹣|a﹣1|≥﹣1,解得0≤a≤2,应选:A.二、填空题(每题5分,总分值20分,将答案填在答题纸上)13.(5分)假设直线l⊥平面β,平面α⊥平面β,那么直线l与平面α的位置关系为l∥α或l ⊂α.【解答】解:∵直线l⊥平面β,平面α⊥平面β,∴由直线与平面垂直、平面与平面垂直的性质定理得:直线l与平面α的位置关系为l∥α或l⊂α.故答案为:l∥α或l⊂α.14.(5分)假设实数x,y知足不等式组,那么的取值范围是[﹣5,﹣2] .【解答】解:作出实数x,y知足不等式组对应的平面区域如图:其中B(1,2),C(0,1)z=的几何意义,即动点P(x,y)与定点Q(2,﹣3)连线斜率的取值范围,由图象可知QB直线的斜率k==﹣5.直线QC的斜率k==﹣2,因此那么的取值范围是:[﹣5,﹣2]故答案为:[﹣5,﹣2].15.(5分)甲、乙、丙三人中只有一人做了好事,他们各自都说了一句话,而且其中只有一句实话.甲说:是乙做的.乙说:不是我做的.丙说:不是我做的.那么做好事的是丙.(填甲、乙、丙中的一个)【解答】解:假设做好事的是甲,那么甲说的是假设,乙和丙说的都是实话,不合题意;假设做好事的是乙,那么甲和丙说的是实话,乙说的是谎话,不合题意;假设做好事的是丙,那么甲和丙说的是谎话,乙说的是实话,符合题意.综上,做好事的是丙.故答案为:丙.16.(5分)△ABC中,BC=2,,那么△ABC面积的最大值为2.【解答】解:设AC=x,那么:AB=x.依照三角形的面积按公式,=xsinC=x,由余弦定理得:,=x=,故:S△ABC依照三角形的三边关系:,解得:,故:当x=2时,.故答案为:2三、解答题(本大题共5小题,共70分.解许诺写出文字说明、证明进程或演算步骤.)17.(12分)已知数列{a n}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=log2a n,求.【解答】解:(1)当n≥2时,a n=S n﹣S n﹣1=(23n+1﹣2)﹣(23n﹣2﹣2)=23n﹣2,当n=1时,a1=S1=23×1﹣2,符合上式∴a n=23n﹣2,(n∈N*).(2)由(1)得b n=log2a n=3n﹣2,∴==(﹣),∴=[(1﹣)+(﹣)+…+(﹣)]=(1﹣)= 18.(12分)中国政府实施“互联网+”战略以来,电话作为客户端愈来愈为人们所青睐,通过电话实现衣食住行消费已经成为一种要紧的消费方式,“一机在手,走遍天下”的时期已经到来.在某闻名的夜市,随机调查了100名顾客购物时利用电话支付的情形,取得如下的2×2列联表,已知其中从利用电话支付的人群中随机抽取1人,抽到青年的概率为.(1)依照已知条件完成2×2列联表,并依照此资料判定是不是有99.5%的把握以为“市场购物用电话支付与年龄有关”?(2)现采纳分层抽样从这100名顾客中依照“利用电话支付”和“不利用电话支付”中抽取取得一个容量为5的样本,设事件A为“从那个样本中任选2人,这2人中至少有1人是不利用电话支付的”,求事件A发生的概率?P(K2≥k0)0.050.0250.0100.005k0 3.841 5.024 6.6357.8792×2列联表青年中老年合计使用手机支付60不使用手机支付24合计100附:【解答】(本小题总分值12分)解:(1)∵从利用电话支付的人群中随机抽取1人,抽到青年的概率为∴利用电话支付的人群中的青年的人数为人,那么利用电话支付的人群中的中老年的人数为60﹣42=18人,因此2×2列联表为:青年中老年合计421860使用手机支付162440不使用手机支付合计5842100K2的观测值∵8.867>7.879,P(K2≥7.879)=0.005,故有99.5%的把握以为“市场购物用电话支付与年龄有关”.(2)这100名顾客中采纳分层抽样从“利用电话支付”和“不利用电话支付”中抽取取得一个容量为5的样本中:利用电话支付的人有人,记编号为1,2,3,不利用电话支付的人有2人,记编号为a,b,那么从那个样本中任选2人有(1,2)(1,3)(1,a)(1,b)(2,3)(2,a)(2,b)(3,a)(3,b)(a,b)共10种其中至少有1人是不利用电话支付的(1,a)(1,b)(2,a)(2,b)(3,a)(3,b)(a,b)共7种,故.19.(12分)已知圆锥SO,SO=2,AB为底面圆的直径,AB=2,点C在底面圆周上,且OC⊥AB,E在母线SC上,且SE=4CE,F为SB中点,M为弦AC中点.(1)求证:AC⊥平面SOM;(2)求四棱锥O﹣EFBC的体积.【解答】(本小题总分值12分)(Ⅰ)证明:∵SO⊥平面ABC,∴SO⊥AC,又∵点M是圆O内弦AC的中点,∴AC⊥MO,又∵SO∩MO=O∴AC⊥平面SOM(Ⅱ)∵SO⊥平面ABC,SO为三棱锥S﹣OCB的高,∴而V O与V O﹣SCB等高,,﹣EFBC∴因此,20.(12分)已知椭圆的离心率为,F1(﹣c,0),F2(c,0)为椭圆C的左、右核心,M为椭圆C上的任意一点,△MF1F2的面积的最大值为1,A、B为椭圆C上任意两个关于x轴对称的点,直线与x轴的交点为P,直线PB交椭圆C于另一点E.(1)求椭圆C的标准方程;(2)求证:直线AE过定点.【解答】(本小题总分值12分)解:(1)∵,∵当M为椭圆C的短轴端点时,△MF1F2的面积的最大值为1,∴,而a2=b2+c2∴故椭圆C标准方程为:(2)证明:设B(x1,y1),E(x2,y2),A(x1,﹣y1),且x1≠x2,∵,∴P(2,0)由题意知BP的斜率必存在,设BP:y=k(x﹣2),代入得(2k2+1)x2﹣8k2x+8k2﹣2=0,△>0得,∵x1≠x2∴AE斜率必存在,AE:由对称性易知直线AE过的定点必在x轴上,那么当y=0时,得=即在的条件下,直线AE过定点(1,0).21.(12分)已知函数f(x)=﹣4x3+ax,x∈R.(1)讨论函数f(x)的单调性;(2)假设函数f(x)在[﹣1,1]上的最大值为1,求实数a的取值集合.【解答】(本小题总分值12分)解:(1)f'(x)=﹣12x2+a.当a=0时,f(x)=﹣4x3在R上单调递减;当a<0时,f'(x)=﹣12x2+a<0,即f(x)=﹣4x3+ax在R上单调递减;当a>0时,f'(x)=﹣12x2+a.时,f'(x)<0,f(x)在上递减;时,f'(x)>0,f(x)在上递增;时,f'(x)<0,f(x)在上递减;综上,当a≤0时,f(x)在R上单调递减;当a>0时,f(x)在上递减;在上递增;上递减.(2)∵函数f(x)在[﹣1,1]上的最大值为1.即对任意x∈[﹣1,1],f(x)≤1恒成立.亦即﹣4x3+ax≤1对任意x∈[﹣1,1]恒成立.变形可得,ax≤1+4x3.当x=0时,a•0≤1+4•03即0≤1,可得a∈R;当x∈(0,1]时,.那么令,那么.当时,f'(x)<0,当时,f'(x)>0.因此,,∴a≤3.当x∈[﹣1,0)时,.那么令,那么.当x∈[﹣1,0)时,f'(x)<0,因此,g(x)max=g(﹣1)=3,∴a≥3.综上,a=3,∴a的取值集合为{3}.[选修4-4:坐标系与参数方程选讲]22.(10分)已知在极坐标系中曲线C1的极坐标方程为:ρ=4cosθ,以极点为坐标原点,以极轴为x轴的正半轴成立直角坐标系,曲线C2的参数方程为:(t为参数),点A(3,0).(1)求出曲线C1的直角坐标方程和曲线C2的一般方程;(2)设曲线C1与曲线C2相交于P,Q两点,求|AP|•|AQ|的值.【解答】解:(1)由ρ=4cosθ,得ρ2=4ρcosθ,∴x2+y2=4x,故曲线C1的直角坐标方程为x2+y2=4x,即(x﹣2)2+y2=4.由,消去参数t,可得.∴曲线C2:;(2)将代入x2+y2=4x,得t2﹣t﹣3=0,∵△=1+4×3=13>0,∴方程有两个不等实根t1,t2别离对应点P,Q,∴|AP|•|AQ|=|t1|•|t2|=|t1•t2|=|﹣3|=3,即|AP|•|AQ|=3.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣5|+|2x+1|.(1)求不等式f(x)>x﹣1的解集;(2)假设f(x)>|a﹣1|关于x∈R恒成立,求实数a的范围.【解答】(本小题总分值10分)解:(1)|2x﹣5|+|2x+1|>x﹣1等价于或或别离解得或无解或综上:不等式的解集为.(2)f(x)=|2x﹣5|+|2x+1|≥|(2x﹣5)﹣(2x+1)|=6当且仅当(2x﹣5)(2x+1)≤0,即时f(x)有最小值6,∴|a﹣1|<6,∴﹣6<a﹣1<6,∴﹣5<a<7即a∈(﹣5,7).。
黑龙江省哈师大附中、东北师大附中、辽宁省实验中学2018届东北三省三校高三第三次联合模拟考试理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则=()A. B . C . D .2.已知复数,则复数的模为()A .5B .C .D .3.在2018年初的高中教师信息技术培训中,经统计,哈尔滨市高中教师的培训成绩,若已知,则从哈市高中教师中任选位教师,他的培训成绩大于90分的概率为()A .0.85B .0.65C .0.35D .0.154.已知等比数列的前项和为,若,则()A .2B . C.4 D .15.已知,则=( )A .B . C. D .6.非零向量满足;,则与夹角的大小为()A .135°B .120° C.60° D .45°7.下面是某几何体的视图,则该几何体的体积为()1=0,0.1.2.31x A x B x A B -10.1,01,-10,021-2)2i zi (z 531052~85.9X N 8085=0.35P X n a n Sn 11,3;a Sn S 4a 24cos 45a sin 2a 7-257251-515,a b 0a b a a b a b bA .B . C. D.8.已知实数满足,则函数存在极值的概率为()A . B . C.D .9.执行下面的程序框图,若输入的值分别为1,2,输出的值为4,则的取值范围为()A .B . C.D .10.已知点分别是双曲线,的左、右焦点,为坐标原点,点在双曲线的右支上,的面积为4,且该双曲线的两条渐近线互相垂直,则双曲线的方程为()A . B . C. D .11.棱长为2的正方体中,为棱中点,过点,且与平面平行的正738393103,a b 01,01a b 321f x x ax bx 19132589,S a n m 37m 715m 1531m 3163m 12F F 2222:1(0x y C a a b ,b>0)O P C 122F F OP 12PF F C 22122x y 22144x y 2284x y 22124x y 1111ABCD A BC D E AD 1B 1A BE。
哈尔滨师大附中、东北师大附中、辽宁省实验中学2018年高三第一次联合模拟考试理科数学试卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数21ii +的模为( )A.12D.22.已知集合{A x y ==,{}B x x a =≥,若A B A =,则实数a 的取值范围是( )A.(],3-∞-B.(),3-∞-C.(],0-∞D.[)3,+∞3.从标有1、2、3、4、5的五张卡片中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为( ) A.14B.12C.13D.234.已知1sin 33a π⎛⎫-= ⎪⎝⎭,则5cos 6a π⎛⎫-=⎪⎝⎭( )A.13B.13-D. 5.中心在原点,焦点在y 轴上的双曲线的一条渐近线经过点()2,4-,则它的离心率为( )B.26.()52121xx ⎛⎫+- ⎪⎝⎭展开式中的常数项是( )A.12B.12-C.8D.8-7.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A.32B.92C.1D.38.已知函数()()cos 0f x x x ωωω+>的图象的相邻两条对称轴之间的距离是2π,则该函数的一个单调增区间为( ) A.,36ππ⎡⎤-⎢⎥⎣⎦B.5,1212ππ⎡⎤-⎢⎥⎣⎦C.2,63ππ⎡⎤⎢⎥⎣⎦D.2,33ππ⎡⎤-⎢⎥⎣⎦9.辗转相除法是欧几里德算法的核心思想,如图所示的程序框图所描述的算法就是辗转相除法,若输入8521m =,6105n =,则输出m 的值为( )A.148B.37C.333D.010.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的侧面积为,则该半球的体积为( )A.43πB.23π11.已知抛物线2:2C y x =,直线1:2l y x b =-+与抛物线C 交于A ,B 两点,若以AB 为直径的圆与x 轴相切,则b 的值是( )A.15-B.25-C.45-D.85-12.在ABC △,90C =∠°,24AB BC ==,,M N 是边AB 上的两个动点,且1MN =,则CM CN ⋅的取值范围为( )A.11,94⎡⎤⎢⎥⎣⎦B.[]5,9C.15,94⎡⎤⎢⎥⎣⎦D.11,54⎡⎤⎢⎥⎣⎦二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.在ABC △中,2AB =,AC =23ABC π=∠,则BC =______________. 14.若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则1y x +的最大值为______________.15.甲、乙、丙三位教师分别在哈尔滨、长春、沈阳的三所中学里教不同的学科A 、B 、C ,已知:①甲不在哈尔滨工作,乙不在长春工作;②在哈尔滨工作的教师不教C 学科; ③在长春工作的教师教A 学科;④乙不教B 学科. 可以判断乙教的学科是______________.16.已知函数()21ln 2f x x x x =+,0x 是函数()f x 的极值点,给出以下几个命题:①010x e <<;②01x e >;③()000f x x +<;④()000f x x +>;其中正确的命题是______________.(填出所有正确命题的序号)三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知正项数列{}n a 满足:2423n n n S a a =+-,其中n S 为数列{}n a 的前n 项和.(1)求数列{}n a 的通项公式; (2)设211n n b a =-,求数列{}n b 的前n 项和n T . 18.某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间[]20,10--,需求量为100台;最低气温位于区间[)25,20--,需求量为200台;最低气温位于区间[)35,25--,需求量为300台。
东北三校高三数学第二次联合考试哈师大附中 东北师大附中 辽宁省实验中学说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟. 参考公式:sin α+sin β=2sin2cos2βαβα-+sin α-sin β=2cos 2sin 2βαβα-+ cos α+cos β=2cos 2cos 2βαβα-+ cos α-cos β=-2sin 2sin 2βαβα-+ 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个函数中,不存在反函数的函数的是 A.y=-x 4 B.y=x 4 C.y=3xD.y=x 21log 2.设α、β为钝角且sin α=55,cos β=-10103,则α+β的值为A.π43B. π45 C. π47D. π45或π47 3.对于直线a 、b 和平面α、β,a ∥b 的一个充分条件是A.a ∥α,b ∥αB.a ∥α,b ∥β,α∥βC.a ⊥α,b ⊥β,α∥βD.α⊥β,a ⊥α,b ∥β 4.函数f (x )=ctg wx (w >0)图象的相邻两支截y=8π所得线段长为4π.则f (8π)的值是 A.0 B.-1 C.1 D. 4π5.今有一组实验数据如下t 1.993 3.018 4.001 5.182 6.121S 1.501 4.413 7.498 12.18 17.93现准备下列函数中的一个近似地表示数据满足的规律,其中接近的一个是 A.S -1=2t -3B.S =t 2log 23C.2S =t 2-1 D.S =-2t -2 6.已知A (0,0),B (a ,b ),P 1是AB 中点,P 2是BP 1中点,P 3是P 1P 2中点,…,P n +2是P n P n +1 中点,则P n 点的极限位置A.)2,2(b aB.)3,3(b aC.)32,32(b aD.)43,43(b a 7.函数f (x )=x 2+x 1 (x ≤-21)的值域是 A.]47,(--∞ B. ]223,(3--∞ C.),47[+∞- D. ),223[3+∞-8.已知|a |≠|b |,m =ba b a n ba b a ++=--,,则m 、n 之间的关系是A.m >nB.m <nC.m =nD.m ≤n9.如图在正三棱锥A —BCD 中,E 、F 分别是AB 、BC 的中点,EF ⊥DE ,且BC =1,则正三棱锥A —BCD 的体积是 A.122 B. 242 C.123 D. 24310.在平面直角坐标系中,x 轴正半轴上有5个点,y轴正半轴有3个点,将x 轴上这5个点和y轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有 A.30个 B.35个 C.20个 D.15个 11.若直线y=kx +1与曲线x =12+y 有两个不同的交点,则k 的取值范围是A.-22kB.-2<k <-1C.1<k <2D.k <2或k >212.某厂有一批长为2.5 m 的条形钢材,要截成60 cm 长的A 型和43 cm 长的B 型的两种规格的零件毛坯,则下列哪种方案最佳(所剩材料最少)A.A 型4个B.A 型2个,B 型3个C.A 型1个,B 型4个D.B 型5个第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.椭圆12222=+by a x (a >b >0)的离心率为21,F 为左焦点,A 为左顶点,B 为上顶点,C 为下顶点,直线CF 与AB 交于D ,则tg BDC =__________.14.已知(x +1)6·(ax -1)2的展开式中,x 3的系数是56,则实数a 的值为______________.15.(理)已知直线l 的参数方程为⎪⎩⎪⎨⎧--=+=1222t y t x (t 为参数),若以原点为极点,x 轴的正半轴为极轴的极坐标系中,点P 的极坐标为(-2,π),则点P 到直线l 的距离为______________.(文)函数y=sin x -|sin x |的最小值为______________. 16.在△ABC 中A >B ,下列不等式中正确的是①sin A >sin B ;②cos A <cos B ;③sin2A >sin2B ;④cos2A <cos2B 其中正确的序号为______________.三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知集合A ={x |62)21(--x x <1},B ={x |l og 4(x +a )<1},若A ∩B =∅,求实数a 的取值范围.18.(本小题满分12分)已知复数z 满足(z +1)(z +1)=|z 2|,且11+-z z 是纯虚数; (Ⅰ)求z ; (Ⅱ)求arg z .19.(本小题满分12分)在四棱锥P —ABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,E 、F 分别是AB 、PC 的中点, (Ⅰ)求证:CD ⊥PD ;(Ⅱ)求证:EF ∥平面PAD ;(Ⅲ)当平面PCD 与平面ABCD 成多大角时,直线EF ⊥平面PCD .20.(本小题满分13分)已知抛物线C :y=-21x 2+6,点P (2,4),A 、B 在抛物线上,且直线PA 、PB 的倾斜角互补;(Ⅰ)证明:直线AB 的斜率为定值;(Ⅱ)当直线AB 在y轴上的截距为正数时,求△PAB 的面积S 的最大值及此时直线AB 的方程.21.(本小题满分12分)(理)在东西方向直线延伸的湖岸上有一港口A ,一艘机艇以40 km/h 的速度从A 港出发,30分钟后因故障而停在湖里,已知机艇出发后,先按直线前进,以后又改成正北,但不知 最初的方向和何时改变的方向,如果去营救,用图示表示营救区域(提示:满足不等式y≥ax +b 的点(x ,y)不在y=ax +b 的下方).(文)国贸城有一个个体户,2001年一月初向银行贷款10万元作开店资金,每月底.获得的利润是该月初投入资金的20%,每月底所缴的房租和所得税为该月所得金额(含利润)的10%,每月生活费和其他开支为3000元,余款作为资金全部投入再营业,如此继续,问到2001年年底.,这一个体户有现款多少元?(1.1812≈2.5) 22.(本小题满分13分)(理)若{a n }是正项递增的等差数列,n ∈N ,k ≥2,k ∈N ,求证:(Ⅰ)kk k k a a a a 112+++; (Ⅱ)k nk nk nk k k k k k k kk k n a aa a a a a a a a a a 2212132312221211)1(++++++++++++⋅⋅⋅⋅; (文)已知等比数列{x n }的各项为不等于1的正数,数列{yn }满足yn ·l og xn a =2(a >0且a ≠1),设y3=18,y6=12.(Ⅰ)求数列{yn }的前多少项和最大,最大值为多少?(Ⅱ)试判断是否存在自然数M ,使当n >M 时,x n >1恒成立?若存在,求出相应的M ,若不存在,请说明理由;(Ⅲ)令a n =l og xn x n +1(n >13,n ∈N ),试判断数列{a n }的增减性?。
2018年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学二模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知i为虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)设集合A={x|x2﹣x﹣2<0},集合B={x|1<x<4},则A∪B=()A.{x|1<x<2}B.{x|﹣1<x<4}C.{x|﹣1<x<1}D.{x|2<x<4} 3.(5分)已知平面向量,则向量=()A.(﹣2,﹣1)B.(﹣1,2)C.(﹣1,0)D.(﹣2,1)4.(5分)设x∈R,则使lg(x+1)<1成立的必要不充分条件是()A.﹣1<x<9B.x>﹣1C.x>1D.1<x<9 5.(5分)等比数列{a n}中,a3=﹣2,a11=﹣8,则a7=()A.﹣4B.4C.±4D.﹣56.(5分)过抛物线C:y2=4x的焦点F的直线交抛物线C于A(x1,y1)、B(x2,y2)两点,且,则弦AB的长为()A.B.4C.D.7.(5分)执行如图所示的程序框图,则输出的S=()A.B.C.D.18.(5分)如图所示,一个三棱锥的三视图是三个直角三角形,则该三棱锥的体积为()A.3B.4C.6D.89.(5分)“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是()A.B.C.D.10.(5分)矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折起,使面BAC⊥面DAC,则四面体A﹣BCD的外接球的体积为()A.πB.πC.πD.π11.(5分)双曲线C:的左顶点为A,右焦点为F,过点F作一条直线与双曲线C的右支交于点P,Q,连接PA,QA分别与直线l:交于点M,N,则∠MFN=()A.B.C.D.12.(5分)已知定义域为R的函数f(x)的导函数为f'(x),且满足f'(x)>f (x)+1,则下列正确的是()A.f(2018)﹣ef(2017)>e﹣1B.f(2018)﹣ef(2017)<e﹣1 C.f(2018)﹣ef(2017)>e+1D.f(2018)﹣ef(2017)<e+1二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)函数的值域为.14.(5分)设实数x,y满足约束条件,则z=3x+4y的最大值为.15.(5分)写出下列命题中所有真命题的序号.①两个随机变量线性相关性越强,相关系数r越接近1;②回归直线一定经过样本点的中心;③线性回归方程,则当样本数据中x=10时,必有相应的y=12;④回归分析中,相关指数R2的值越大说明残差平方和越小.16.(5分)数列{a n}中,,,设数列的前n项和为S n,则S n=.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)△ABC中的内角A,B,C的对边分别为a,b,c,已知b=2a﹣2ccosB.(1)求角C的大小;(2)求的最大值,并求出取得最大值时角A,B的值.18.(12分)某校从高一年级参加期末考试的学生中抽出50名学生,并统计了他们的数学成绩,将数学成绩进行分组,并根据各组人数制成如下频率分布表:分组频数频率[40,50)a0.04[50,60)3b[60,70)140.28[70,80)150.30[80,90)c d[90,100]40.08合计501(1)写出a,b,c,d的值,并估计本次考试全年级学生的数学平均分(同一组中的数据用该组区间的中点值作代表);(2)现从成绩在[90,100]内的学生中任选出两名同学,从成绩在[40,50)内的学生中任选一名同学,共三名同学参加学习习惯问卷调查活动.若A1同学的数学成绩为43分,B1同学的数学成绩为95分,求A1,B1两同学恰好都被选出的概率.19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,,D,E分别是棱CC1、BB1的中点.(1)证明:A1E⊥AD;(2)求点A到平面A1B1D的距离.20.(12分)在平面直角坐标系xOy中,动点M(x,y)总满足关系式.(1)点M的轨迹是什么曲线?并写出它的标准方程;(2)坐标原点O到直线l:y=kx+m的距离为1,直线l与M的轨迹交于不同的两点A,B,若,求△AOB的面积.21.(12分)已知定义域为(0,+∞)的函数f(x)=(x﹣m)e x(常数m∈R).(1)若m=2,求函数f(x)的单调区间;(2)若f(x)+m+1>0恒成立,求实数m的最大整数值.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标坐标系xOy中,曲线C1的参数方程为(θ为参数),曲线C2:.以O为极点,x轴的非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.(1)求曲线C1,C2的极坐标方程;(2)射线(ρ>0)与曲线C1的异于极点的交点为A,与曲线C2的交点为B,求|AB|.[选修4-5:不等式选讲]23.设函数f(x)=|2x﹣1|.(1)设f(x)+f(x+1)<5的解集为集合A,求集合A;(2)已知m为集合A中的最大自然数,且a+b+c=m(其中a,b,c为正实数),设.求证:M≥8.2018年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知i为虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:复数==i在复平面内对应的点位于第四象限.故选:D.2.(5分)设集合A={x|x2﹣x﹣2<0},集合B={x|1<x<4},则A∪B=()A.{x|1<x<2}B.{x|﹣1<x<4}C.{x|﹣1<x<1}D.{x|2<x<4}【解答】解:集合A={x|x2﹣x﹣2<0}={x|﹣1<x<2},集合B={x|1<x<4},则A∪B={x|﹣1<x<4}.故选:B.3.(5分)已知平面向量,则向量=()A.(﹣2,﹣1)B.(﹣1,2)C.(﹣1,0)D.(﹣2,1)【解答】解:向量=(,)﹣(,﹣)=(﹣,+)=(﹣1,2).故选:B.4.(5分)设x∈R,则使lg(x+1)<1成立的必要不充分条件是()A.﹣1<x<9B.x>﹣1C.x>1D.1<x<9【解答】解:由lg(x+1)<1得0<x+1<10,得﹣1<x<9,即不等式的等价条件是﹣1<x<9,则使lg(x+1)<1成立的必要不充分条件对应范围要真包含(﹣1,9),则对应的范围为x>﹣1,故选:B.5.(5分)等比数列{a n}中,a3=﹣2,a11=﹣8,则a7=()A.﹣4B.4C.±4D.﹣5【解答】解:由等比数列的性质可得:奇数项的符号相同,∴a 7=﹣=﹣=﹣4.故选:A.6.(5分)过抛物线C:y2=4x的焦点F的直线交抛物线C于A(x1,y1)、B(x2,y2)两点,且,则弦AB的长为()A.B.4C.D.【解答】解:抛物线y2=4x,∴P=2,且经过点F的直线与抛物线相交于A、B两点,其横坐标分别为x1,x2,利用抛物线定义,则|FA|=x1﹣(﹣)=x1+1,|FB|=x2﹣(﹣)=x2+1,∴|AB|=|FA|+|FB|=(x1+x2)+2=+2=.故选:C.7.(5分)执行如图所示的程序框图,则输出的S=()A.B.C.D.1【解答】解:s=﹣1,i=2≤4,a=1+1=2,s=﹣1+2=1,i=3≤4,a=1﹣=,s=1+=,i=3+1≤4,a=1﹣2=﹣1,s=﹣1=,i=4+1>4,输出s=,故选:C.8.(5分)如图所示,一个三棱锥的三视图是三个直角三角形,则该三棱锥的体积为()A.3B.4C.6D.8【解答】解:由三视图还原原几何体如图,该几何体为三棱锥,底面三角形ABC为直角三角形,侧棱PA⊥底面ABC,则该三棱锥的体积为.故选:B.9.(5分)“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是()A.B.C.D.【解答】解:观察这个图可知:大正方形的边长为2,总面积为4,而阴影区域的边长为﹣1,面积为4﹣2故飞镖落在阴影区域的概率为=1﹣.故选:A.10.(5分)矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折起,使面BAC⊥面DAC,则四面体A﹣BCD的外接球的体积为()A.πB.πC.πD.π【解答】解:矩形ABCD中,∵AB=4,BC=3,∴DB=AC=5,设DB交AC与O,则O是△ABC和△DAC的外心,球心一定在过O且垂直于△ABC的直线上,也在过O且垂直于△DAC的直线上,这两条直线只有一个交点O因此球半径R=2.5,四面体ABCD的外接球的体积:V=×π×(2.5)3=.故选:C.11.(5分)双曲线C:的左顶点为A,右焦点为F,过点F作一条直线与双曲线C的右支交于点P,Q,连接PA,QA分别与直线l:交于点M,N,则∠MFN=()A.B.C.D.【解答】解:(一般方法)双曲线C:的左顶点为A(﹣1,0),右焦点为F(2,0),设直线PQ的方程为x=ky+2,设P(x1,y1),Q(x2,y2)联立方程组可得,消x整理可得(3k2﹣1)y2+12ky+9=0,且k2≠,∴y1+y2=,y1•y2=,∴x1+x2=k(y1+y2)+4=,x1x2=k2y1y2+2k(y1+y2)+4=则直线PA的方程为y=•(x+1),直线QA的方程为y=•(x+1),分别令x=,可得y M=•,y N=•,∴=(,﹣•),=(,﹣•),∴•=+•=+=0,∴⊥,∴∠MFN=,(特殊方法),不妨令直线PQ为直线x=2,由,解得y=±3,∴P(2,3),Q(2,﹣3),∴直线PA的方程为y=3x+3,当x=时,y=,即M(,),同理可得N(,﹣),∴=(,﹣),=(,),∴•=﹣=0,∴⊥,∴∠MFN=,故选:C.12.(5分)已知定义域为R的函数f(x)的导函数为f'(x),且满足f'(x)>f (x)+1,则下列正确的是()A.f(2018)﹣ef(2017)>e﹣1B.f(2018)﹣ef(2017)<e﹣1 C.f(2018)﹣ef(2017)>e+1D.f(2018)﹣ef(2017)<e+1【解答】解:令g(x)=+e﹣x,则g′(x)=﹣=>0,故g(x)在R递增,故g(2018)>g(2017),即+e﹣2018>+e﹣2017,故f(2018)+1>ef(2017)+e,即f(2018)﹣ef(2017)>e﹣1,故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)函数的值域为(0,+∞).【解答】解:8x>0;∴8x+1>1;∴;∴f(x)的值域为(0,+∞).故答案为:(0,+∞).14.(5分)设实数x,y满足约束条件,则z=3x+4y的最大值为18.【解答】解:作出约束条件,所示的平面区域,让如图:作直线3x+4y=0,然后把直线L向可行域平移,结合图形可知,平移到点A时z 最大由可得A(2,3),此时z=18.故答案为:18.15.(5分)写出下列命题中所有真命题的序号②④.①两个随机变量线性相关性越强,相关系数r越接近1;②回归直线一定经过样本点的中心;③线性回归方程,则当样本数据中x=10时,必有相应的y=12;④回归分析中,相关指数R2的值越大说明残差平方和越小.【解答】解:对于①,两个随机变量线性相关性越强,则相关系数r的绝对值越接近1,∴①错误;对于②,回归直线一定经过样本点的中心,②正确;对于③,线性回归方程,当样本数据中x=10时,则y=0.2×10+10=12,∴样本数据x=10时,预测y=12,∴③错误;对于④,回归分析中,相关指数R2的值越大,说明残差平方和越小,∴④正确.综上,正确的命题是②④.故答案为:②④.16.(5分)数列{a n}中,,,设数列的前n项和为S n,则S n=.【解答】解:∵,,∴﹣=1,∴数列是等差数列,首项为2,公差为1.∴=2+n﹣1=n+1,∴a n=,∴=﹣,∴数列的前n项和为S n=+……+﹣+……+=﹣=.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)△ABC中的内角A,B,C的对边分别为a,b,c,已知b=2a﹣2ccosB.(1)求角C的大小;(2)求的最大值,并求出取得最大值时角A,B的值.【解答】解:(1)△ABC中,b=2a﹣2ccosB=2a﹣2c•,整理得a2+b2﹣c2=ab,即cosC===,因为0<C<π,则C=;(2)由(1)知,则B=π﹣A﹣,于是=cosA+sin(π﹣A)=cosA+sinA=2sin(A+),由,则0<A<,∴<A+<π,∴当时,取得最大值为2,此时B=.18.(12分)某校从高一年级参加期末考试的学生中抽出50名学生,并统计了他们的数学成绩,将数学成绩进行分组,并根据各组人数制成如下频率分布表:分组频数频率[40,50)a0.04[50,60)3b[60,70)140.28[70,80)150.30[80,90)c d[90,100]40.08合计501(1)写出a,b,c,d的值,并估计本次考试全年级学生的数学平均分(同一组中的数据用该组区间的中点值作代表);(2)现从成绩在[90,100]内的学生中任选出两名同学,从成绩在[40,50)内的学生中任选一名同学,共三名同学参加学习习惯问卷调查活动.若A1同学的数学成绩为43分,B1同学的数学成绩为95分,求A1,B1两同学恰好都被选出的概率.【解答】解:(1)由频率分布表,得:,解得a=2,b=0.06,c=12,d=0.24,估计本次考试全年级学生的数学平均分为:45×0.04+55×0.06+65×0.28+75×0.3+85×0.24+95×0.08=73.8.(2)设数学成绩在[90,100]内的四名同学分别为B1,B2,B3,B4,成绩在[40,50)内的两名同学为A1,A2,则选出的三名同学可以为:A1B1B2、A1B1B3、A1B1B4、A1B2B3、A1B2B4、A1B3B4、A2B1B2、A2B1B3、A2B1B4、A2B2B3、A2B2B4、A2B3B4,共有12种情况.A1,B1两名同学恰好都被选出的有A1B1B2、A1B1B3、A1B1B4,共有3种情况,所以A1,B1两名同学恰好都被选出的概率为.19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,,D,E分别是棱CC1、BB1的中点.(1)证明:A1E⊥AD;(2)求点A到平面A1B1D的距离.【解答】证明:(1)连接DE,由直三棱柱ABC﹣A1B1C1,得CC1⊥BC,∵BC⊥AC又有CC1∩AC=C,∴BC⊥平面ACC1A1∵D,E分别为CC1,BB1的中点,则DE∥BC,∴DE⊥平面ACC1A1,∴DE⊥AD∵,∴AD⊥A1D,A1D∩DE=D,AD⊥平面A1DE,∴A1E⊥AD.解:(2)设点A到平面A1B1D的距离为d,∵B1C1⊥A1C1,B1C1⊥CC1,CC1∩A1C1=C1,∴B1C1⊥平面A1DA由知,,即,解得.点A到平面A1B1D的距离为.20.(12分)在平面直角坐标系xOy中,动点M(x,y)总满足关系式.(1)点M的轨迹是什么曲线?并写出它的标准方程;(2)坐标原点O到直线l:y=kx+m的距离为1,直线l与M的轨迹交于不同的两点A,B,若,求△AOB的面积.【解答】解:(1)根据题意,动点M(x,y)总满足关系式,整理变形可得:,所以点M的轨迹是焦点在x轴上的椭圆,它的标准方程为.(2)设A(x1,y1),B(x2,y2),由点O到直线l:y=kx+m的距离为1,得,即m2=1+k2,联立直线与椭圆的方程,可得消去y,得(3+4k2)x2+8kmx+4m2﹣12=0,△=(8km)2﹣4(3+4k2)(4m2﹣12)=48(3+4k2﹣m2)=48(3k2+2)>0,,==.∵,∴,解得,,∴,∴.21.(12分)已知定义域为(0,+∞)的函数f(x)=(x﹣m)e x(常数m∈R).(1)若m=2,求函数f(x)的单调区间;(2)若f(x)+m+1>0恒成立,求实数m的最大整数值.【解答】解:(1)当m=2时,f(x)=(x﹣2)e x(x∈(0,+∞)),∴f'(x)=(x﹣1)e x,令f'(x)>0,有x>1,∴f(x)在(1,+∞)上为增函数,令f'(x)<0,有0<x<1,∴f(x)在(0,1)上为减函数,综上,f(x)在(0,1)上为减函数,f(x)在(1,+∞)上为增函数.(2)∵f(x)+m+1>0对于x∈(0,+∞)恒成立,即f(x)>﹣m﹣1对于x∈(0,+∞)恒成立,由(1)知①当m≤1时,f(x)在(0,+∞)上为增函数,∴f(x)>f(0)=﹣m,∴﹣m>﹣m﹣1恒成立∴m≤1②当m>1时,在(0,m﹣1)上为减函数,f(x)在(m﹣1,+∞)上为增函数.∴,∴﹣e m﹣1>﹣m﹣1∴e m﹣1﹣m﹣1<0设g(m)=e m﹣1﹣m﹣1(m>1),∴g'(m)=e m﹣1﹣1>0(m>1),∴g(m)在(1,+∞)上递增,而m∈Zg(2)=e﹣3<0,g(3)=e2﹣4>0,∴在(1,+∞)上存在唯一m0使得g(m0)=0,且2<m0<3,∵m∈Z,∴m最大整数值为2,使e m﹣1﹣m﹣1<0,即m最大整数值为2,有f(x)+m+1>0对于x∈(0,+∞)恒成立.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标坐标系xOy中,曲线C1的参数方程为(θ为参数),曲线C2:.以O为极点,x轴的非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.(1)求曲线C1,C2的极坐标方程;(2)射线(ρ>0)与曲线C1的异于极点的交点为A,与曲线C2的交点为B,求|AB|.【解答】(1)曲线C1的参数方程(θ为参数)可化为普通方程x2+(y﹣1)2=1,由,可得曲线C1的极坐标方程为ρ=2sinθ,曲线C2的极坐标方程为ρ2(1+cos2θ)=2.(2)射线(ρ>0)与曲线C1的交点A的极径为,射线(ρ>0)与曲线C2的交点B的极径满足,解得,所以.[选修4-5:不等式选讲]23.设函数f(x)=|2x﹣1|.(1)设f(x)+f(x+1)<5的解集为集合A,求集合A;(2)已知m为集合A中的最大自然数,且a+b+c=m(其中a,b,c为正实数),设.求证:M≥8.【解答】解:(1)f(x)+f(x+1)<5,即|2x﹣1|+|2x+1|<5;当时,不等式化为1﹣2x﹣2x﹣1<5,∴;当时,不等式化为1﹣2x+2x+1<5,不等式恒成立;当时,不等式化为2x﹣1+2x+1<5,∴;综上,集合;(2)证明:由(1)知m=1,则a+b+c=1;则;同理;则;即M≥8.。
2018年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学二模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知i为虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)设集合A={x|x2﹣x﹣2<0},集合B={x|1<x<4},则A∪B=()A.{x|1<x<2}B.{x|﹣1<x<4}C.{x|﹣1<x<1}D.{x|2<x<4} 3.(5分)已知平面向量,则向量=()A.(﹣2,﹣1)B.(﹣1,2)C.(﹣1,0)D.(﹣2,1)4.(5分)设x∈R,则使lg(x+1)<1成立的必要不充分条件是()A.﹣1<x<9B.x>﹣1C.x>1D.1<x<9 5.(5分)等比数列{a n}中,a3=﹣2,a11=﹣8,则a7=()A.﹣4B.4C.±4D.﹣56.(5分)过抛物线C:y2=4x的焦点F的直线交抛物线C于A(x1,y1)、B(x2,y2)两点,且,则弦AB的长为()A.B.4C.D.7.(5分)执行如图所示的程序框图,则输出的S=()A.B.C.D.18.(5分)如图所示,一个三棱锥的三视图是三个直角三角形,则该三棱锥的体积为()A.3B.4C.6D.89.(5分)“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是()A.B.C.D.10.(5分)矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折起,使面BAC⊥面DAC,则四面体A﹣BCD的外接球的体积为()A.πB.πC.πD.π11.(5分)双曲线C:的左顶点为A,右焦点为F,过点F作一条直线与双曲线C的右支交于点P,Q,连接PA,QA分别与直线l:交于点M,N,则∠MFN=()A.B.C.D.12.(5分)已知定义域为R的函数f(x)的导函数为f'(x),且满足f'(x)>f (x)+1,则下列正确的是()A.f(2018)﹣ef(2017)>e﹣1B.f(2018)﹣ef(2017)<e﹣1 C.f(2018)﹣ef(2017)>e+1D.f(2018)﹣ef(2017)<e+1二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)函数的值域为.14.(5分)设实数x,y满足约束条件,则z=3x+4y的最大值为.15.(5分)写出下列命题中所有真命题的序号.①两个随机变量线性相关性越强,相关系数r越接近1;②回归直线一定经过样本点的中心;③线性回归方程,则当样本数据中x=10时,必有相应的y=12;④回归分析中,相关指数R2的值越大说明残差平方和越小.16.(5分)数列{a n}中,,,设数列的前n项和为S n,则S n=.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)△ABC中的内角A,B,C的对边分别为a,b,c,已知b=2a﹣2ccosB.(1)求角C的大小;(2)求的最大值,并求出取得最大值时角A,B的值.18.(12分)某校从高一年级参加期末考试的学生中抽出50名学生,并统计了他们的数学成绩,将数学成绩进行分组,并根据各组人数制成如下频率分布表:(1)写出a,b,c,d的值,并估计本次考试全年级学生的数学平均分(同一组中的数据用该组区间的中点值作代表);(2)现从成绩在[90,100]内的学生中任选出两名同学,从成绩在[40,50)内的学生中任选一名同学,共三名同学参加学习习惯问卷调查活动.若A1同学的数学成绩为43分,B1同学的数学成绩为95分,求A1,B1两同学恰好都被选出的概率.19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,,D,E分别是棱CC1、BB1的中点.(1)证明:A1E⊥AD;(2)求点A到平面A1B1D的距离.20.(12分)在平面直角坐标系xOy中,动点M(x,y)总满足关系式.(1)点M的轨迹是什么曲线?并写出它的标准方程;(2)坐标原点O到直线l:y=kx+m的距离为1,直线l与M的轨迹交于不同的两点A,B,若,求△AOB的面积.21.(12分)已知定义域为(0,+∞)的函数f(x)=(x﹣m)e x(常数m∈R).(1)若m=2,求函数f(x)的单调区间;(2)若f(x)+m+1>0恒成立,求实数m的最大整数值.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标坐标系xOy中,曲线C1的参数方程为(θ为参数),曲线C2:.以O为极点,x轴的非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.(1)求曲线C1,C2的极坐标方程;(2)射线(ρ>0)与曲线C1的异于极点的交点为A,与曲线C2的交点为B,求|AB|.[选修4-5:不等式选讲]23.设函数f(x)=|2x﹣1|.(1)设f(x)+f(x+1)<5的解集为集合A,求集合A;(2)已知m为集合A中的最大自然数,且a+b+c=m(其中a,b,c为正实数),设.求证:M≥8.2018年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知i为虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:复数==i在复平面内对应的点位于第四象限.故选:D.2.(5分)设集合A={x|x2﹣x﹣2<0},集合B={x|1<x<4},则A∪B=()A.{x|1<x<2}B.{x|﹣1<x<4}C.{x|﹣1<x<1}D.{x|2<x<4}【解答】解:集合A={x|x2﹣x﹣2<0}={x|﹣1<x<2},集合B={x|1<x<4},则A∪B={x|﹣1<x<4}.故选:B.3.(5分)已知平面向量,则向量=()A.(﹣2,﹣1)B.(﹣1,2)C.(﹣1,0)D.(﹣2,1)【解答】解:向量=(,)﹣(,﹣)=(﹣,+)=(﹣1,2).故选:B.4.(5分)设x∈R,则使lg(x+1)<1成立的必要不充分条件是()A.﹣1<x<9B.x>﹣1C.x>1D.1<x<9【解答】解:由lg(x+1)<1得0<x+1<10,得﹣1<x<9,即不等式的等价条件是﹣1<x<9,则使lg(x+1)<1成立的必要不充分条件对应范围要真包含(﹣1,9),则对应的范围为x>﹣1,故选:B.5.(5分)等比数列{a n}中,a3=﹣2,a11=﹣8,则a7=()A.﹣4B.4C.±4D.﹣5=﹣=﹣【解答】解:由等比数列的性质可得:奇数项的符号相同,∴a=﹣4.故选:A.6.(5分)过抛物线C:y2=4x的焦点F的直线交抛物线C于A(x1,y1)、B(x2,y2)两点,且,则弦AB的长为()A.B.4C.D.【解答】解:抛物线y2=4x,∴P=2,且经过点F的直线与抛物线相交于A、B两点,其横坐标分别为x1,x2,利用抛物线定义,则|FA|=x1﹣(﹣)=x1+1,|FB|=x2﹣(﹣)=x2+1,∴|AB|=|FA|+|FB|=(x1+x2)+2=+2=.故选:C.7.(5分)执行如图所示的程序框图,则输出的S=()A.B.C.D.1【解答】解:s=﹣1,i=2≤4,a=1+1=2,s=﹣1+2=1,i=3≤4,a=1﹣=,s=1+=,i=3+1≤4,a=1﹣2=﹣1,s=﹣1=,i=4+1>4,输出s=,故选:C.8.(5分)如图所示,一个三棱锥的三视图是三个直角三角形,则该三棱锥的体积为()A.3B.4C.6D.8【解答】解:由三视图还原原几何体如图,该几何体为三棱锥,底面三角形ABC为直角三角形,侧棱PA⊥底面ABC,则该三棱锥的体积为.故选:B.9.(5分)“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是()A.B.C.D.【解答】解:观察这个图可知:大正方形的边长为2,总面积为4,而阴影区域的边长为﹣1,面积为4﹣2故飞镖落在阴影区域的概率为=1﹣.故选:A.10.(5分)矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折起,使面BAC⊥面DAC,则四面体A﹣BCD的外接球的体积为()A.πB.πC.πD.π【解答】解:矩形ABCD中,∵AB=4,BC=3,∴DB=AC=5,设DB交AC与O,则O是△ABC和△DAC的外心,球心一定在过O且垂直于△ABC的直线上,也在过O且垂直于△DAC的直线上,这两条直线只有一个交点O因此球半径R=2.5,四面体ABCD的外接球的体积:V=×π×(2.5)3=.故选:C.11.(5分)双曲线C:的左顶点为A,右焦点为F,过点F作一条直线与双曲线C的右支交于点P,Q,连接PA,QA分别与直线l:交于点M,N,则∠MFN=()A.B.C.D.【解答】解:(一般方法)双曲线C:的左顶点为A(﹣1,0),右焦点为F(2,0),设直线PQ的方程为x=ky+2,设P(x1,y1),Q(x2,y2)联立方程组可得,消x整理可得(3k2﹣1)y2+12ky+9=0,且k2≠,∴y1+y2=,y1•y2=,∴x1+x2=k(y1+y2)+4=,x1x2=k2y1y2+2k(y1+y2)+4=则直线PA的方程为y=•(x+1),直线QA的方程为y=•(x+1),分别令x=,可得y M=•,y N=•,∴=(,﹣•),=(,﹣•),∴•=+•=+=0,∴⊥,∴∠MFN=,(特殊方法),不妨令直线PQ为直线x=2,由,解得y=±3,∴P(2,3),Q(2,﹣3),∴直线PA的方程为y=3x+3,当x=时,y=,即M(,),同理可得N(,﹣),∴=(,﹣),=(,),∴•=﹣=0,∴⊥,∴∠MFN=,故选:C.12.(5分)已知定义域为R的函数f(x)的导函数为f'(x),且满足f'(x)>f (x)+1,则下列正确的是()A.f(2018)﹣ef(2017)>e﹣1B.f(2018)﹣ef(2017)<e﹣1 C.f(2018)﹣ef(2017)>e+1D.f(2018)﹣ef(2017)<e+1【解答】解:令g(x)=+e﹣x,则g′(x)=﹣=>0,故g(x)在R递增,故g(2018)>g(2017),即+e﹣2018>+e﹣2017,故f(2018)+1>ef(2017)+e,即f(2018)﹣ef(2017)>e﹣1,故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)函数的值域为(0,+∞).【解答】解:8x>0;∴8x+1>1;∴;∴f(x)的值域为(0,+∞).故答案为:(0,+∞).14.(5分)设实数x,y满足约束条件,则z=3x+4y的最大值为18.【解答】解:作出约束条件,所示的平面区域,让如图:作直线3x+4y=0,然后把直线L向可行域平移,结合图形可知,平移到点A时z 最大由可得A(2,3),此时z=18.故答案为:18.15.(5分)写出下列命题中所有真命题的序号②④.①两个随机变量线性相关性越强,相关系数r越接近1;②回归直线一定经过样本点的中心;③线性回归方程,则当样本数据中x=10时,必有相应的y=12;④回归分析中,相关指数R2的值越大说明残差平方和越小.【解答】解:对于①,两个随机变量线性相关性越强,则相关系数r的绝对值越接近1,∴①错误;对于②,回归直线一定经过样本点的中心,②正确;对于③,线性回归方程,当样本数据中x=10时,则y=0.2×10+10=12,∴样本数据x=10时,预测y=12,∴③错误;对于④,回归分析中,相关指数R2的值越大,说明残差平方和越小,∴④正确.综上,正确的命题是②④.故答案为:②④.16.(5分)数列{a n}中,,,设数列的前n项和为S n,则S n=.【解答】解:∵,,∴﹣=1,∴数列是等差数列,首项为2,公差为1.∴=2+n﹣1=n+1,∴a n=,∴=﹣,∴数列的前n项和为S n=+……+﹣+……+=﹣=.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)△ABC中的内角A,B,C的对边分别为a,b,c,已知b=2a﹣2ccosB.(1)求角C的大小;(2)求的最大值,并求出取得最大值时角A,B的值.【解答】解:(1)△ABC中,b=2a﹣2ccosB=2a﹣2c•,整理得a2+b2﹣c2=ab,即cosC===,因为0<C<π,则C=;(2)由(1)知,则B=π﹣A﹣,于是=cosA+sin(π﹣A)=cosA+sinA=2sin(A+),由,则0<A<,∴<A+<π,∴当时,取得最大值为2,此时B=.18.(12分)某校从高一年级参加期末考试的学生中抽出50名学生,并统计了他们的数学成绩,将数学成绩进行分组,并根据各组人数制成如下频率分布表:(1)写出a,b,c,d的值,并估计本次考试全年级学生的数学平均分(同一组中的数据用该组区间的中点值作代表);(2)现从成绩在[90,100]内的学生中任选出两名同学,从成绩在[40,50)内的学生中任选一名同学,共三名同学参加学习习惯问卷调查活动.若A1同学的数学成绩为43分,B1同学的数学成绩为95分,求A1,B1两同学恰好都被选出的概率.【解答】解:(1)由频率分布表,得:,解得a=2,b=0.06,c=12,d=0.24,估计本次考试全年级学生的数学平均分为:45×0.04+55×0.06+65×0.28+75×0.3+85×0.24+95×0.08=73.8.(2)设数学成绩在[90,100]内的四名同学分别为B1,B2,B3,B4,成绩在[40,50)内的两名同学为A1,A2,则选出的三名同学可以为:A1B1B2、A1B1B3、A1B1B4、A1B2B3、A1B2B4、A1B3B4、A2B1B2、A2B1B3、A2B1B4、A2B2B3、A2B2B4、A2B3B4,共有12种情况.A1,B1两名同学恰好都被选出的有A1B1B2、A1B1B3、A1B1B4,共有3种情况,所以A1,B1两名同学恰好都被选出的概率为.19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,,D,E分别是棱CC1、BB1的中点.(1)证明:A1E⊥AD;(2)求点A到平面A1B1D的距离.【解答】证明:(1)连接DE,由直三棱柱ABC﹣A1B1C1,得CC1⊥BC,∵BC⊥AC又有CC1∩AC=C,∴BC⊥平面ACC1A1∵D,E分别为CC1,BB1的中点,则DE∥BC,∴DE⊥平面ACC1A1,∴DE⊥AD∵,∴AD⊥A1D,A1D∩DE=D,AD⊥平面A1DE,∴A1E⊥AD.解:(2)设点A到平面A1B1D的距离为d,∵B1C1⊥A1C1,B1C1⊥CC1,CC1∩A1C1=C1,∴B1C1⊥平面A1DA由知,,即,解得.点A到平面A1B1D的距离为.20.(12分)在平面直角坐标系xOy中,动点M(x,y)总满足关系式.(1)点M的轨迹是什么曲线?并写出它的标准方程;(2)坐标原点O到直线l:y=kx+m的距离为1,直线l与M的轨迹交于不同的两点A,B,若,求△AOB的面积.【解答】解:(1)根据题意,动点M(x,y)总满足关系式,整理变形可得:,所以点M的轨迹是焦点在x轴上的椭圆,它的标准方程为.(2)设A(x1,y1),B(x2,y2),由点O到直线l:y=kx+m的距离为1,得,即m2=1+k2,联立直线与椭圆的方程,可得消去y,得(3+4k2)x2+8kmx+4m2﹣12=0,△=(8km)2﹣4(3+4k2)(4m2﹣12)=48(3+4k2﹣m2)=48(3k2+2)>0,,==.∵,∴,解得,,∴,∴.21.(12分)已知定义域为(0,+∞)的函数f(x)=(x﹣m)e x(常数m∈R).(1)若m=2,求函数f(x)的单调区间;(2)若f(x)+m+1>0恒成立,求实数m的最大整数值.【解答】解:(1)当m=2时,f(x)=(x﹣2)e x(x∈(0,+∞)),∴f'(x)=(x﹣1)e x,令f'(x)>0,有x>1,∴f(x)在(1,+∞)上为增函数,令f'(x)<0,有0<x<1,∴f(x)在(0,1)上为减函数,综上,f(x)在(0,1)上为减函数,f(x)在(1,+∞)上为增函数.(2)∵f(x)+m+1>0对于x∈(0,+∞)恒成立,即f(x)>﹣m﹣1对于x∈(0,+∞)恒成立,由(1)知①当m≤1时,f(x)在(0,+∞)上为增函数,∴f(x)>f(0)=﹣m,∴﹣m>﹣m﹣1恒成立∴m≤1②当m>1时,在(0,m﹣1)上为减函数,f(x)在(m﹣1,+∞)上为增函数.∴,∴﹣e m﹣1>﹣m﹣1∴e m﹣1﹣m﹣1<0设g(m)=e m﹣1﹣m﹣1(m>1),∴g'(m)=e m﹣1﹣1>0(m>1),∴g(m)在(1,+∞)上递增,而m∈Zg(2)=e﹣3<0,g(3)=e2﹣4>0,∴在(1,+∞)上存在唯一m0使得g(m0)=0,且2<m0<3,∵m∈Z,∴m最大整数值为2,使e m﹣1﹣m﹣1<0,即m最大整数值为2,有f(x)+m+1>0对于x∈(0,+∞)恒成立.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标坐标系xOy中,曲线C1的参数方程为(θ为参数),曲线C2:.以O为极点,x轴的非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.(1)求曲线C1,C2的极坐标方程;(2)射线(ρ>0)与曲线C1的异于极点的交点为A,与曲线C2的交点为B,求|AB|.【解答】(1)曲线C1的参数方程(θ为参数)可化为普通方程x2+(y﹣1)2=1,由,可得曲线C1的极坐标方程为ρ=2sinθ,曲线C2的极坐标方程为ρ2(1+cos2θ)=2.(2)射线(ρ>0)与曲线C1的交点A的极径为,射线(ρ>0)与曲线C2的交点B的极径满足,解得,所以.[选修4-5:不等式选讲]23.设函数f(x)=|2x﹣1|.(1)设f(x)+f(x+1)<5的解集为集合A,求集合A;(2)已知m为集合A中的最大自然数,且a+b+c=m(其中a,b,c为正实数),设.求证:M≥8.【解答】解:(1)f(x)+f(x+1)<5,即|2x﹣1|+|2x+1|<5;当时,不等式化为1﹣2x﹣2x﹣1<5,∴;当时,不等式化为1﹣2x+2x+1<5,不等式恒成立;当时,不等式化为2x﹣1+2x+1<5,∴;综上,集合;(2)证明:由(1)知m=1,则a+b+c=1;则;同理;则;即M≥8.。