江苏省高三数学内部专题 二个基本原理
- 格式:pdf
- 大小:496.32 KB
- 文档页数:4
第十章计数原理、概率、随机变量及其分布1.计数原理(1)理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.(2)理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.(3)理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.(4)会用二项式定理解决与二项展开式有关的简单问题.2.概率(1)事件与概率①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.②了解两个互斥事件的概率加法公式.(2)古典概型①理解古典概型及其概率计算公式.②会计算一些随机事件所含的基本事件数及事件发生的概率.(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率.②了解几何概型的意义.3.概率与统计(1)理解取有限个值的离散型随机变量及其分布列的概念,认识分布列刻画随机现象的重要性,会求某些取有限个值的离散型随机变量的分布列.(2)了解超几何分布,并能进行简单应用.(3)了解条件概率的概念,了解两个事件相互独立的概念;理解n次独立重复试验模型及二项分布,并能解决一些简单问题.(4)理解取有限个值的离散型随机变量的均值、方差的概念,会求简单离散型随机变量的均值、方差,并能利用离散型随机变量的均值、方差概念解决一些简单问题.(5)借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.10.1两个计数原理、排列与组合1.分类加法计数原理完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么完成这件事共有N=________________种不同的方法.2.分步乘法计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么完成这件事共有N=____________种不同的方法.3.两个计数原理的区别分类加法计数原理和分步乘法计数原理解决的都是有关做一件事的不同方法的种数问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法______________,用其中______________都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法______________,只有______________才算做完这件事.4.两个计数原理解决计数问题时的方法最重要的是在开始计算之前要进行仔细分析——是需要分类还是需要分步.(1)分类要做到“______________”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“______________”,即完成了所有步骤,恰好完成任务,当然步与步之间要______________,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.5.排列(1)排列的定义:从n个不同元素中取出m(m≤n)个元素,按照____________排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的________________的个数叫做从n个不同元素中取出m个元素的排列数,用符号______表示.(3)排列数公式:A m n=________________________.这里n,m∈N*,并且________.(4)全排列:n个不同元素全部取出的一个____________,叫做n个元素的一个全排列.A n n=n×(n-1)×(n-2)×…×3×2×1=__________,因此,排列数公式写成阶乘的形式为A m n=,这里规定0!=________.6.组合(1)组合的定义:从n个不同元素中取出m(m≤n)个元素____________,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的____________的个数,叫做从n个不同元素中取出m个元素的组合数,用符号________表示.(3)组合数公式:C m n=A m nA m m=____________=____________.这里n∈N*,m∈N,并且m≤n.(4)组合数的两个性质:①C m n=____________;②C m n+1=____________+____________.自查自纠1.m1+m2+…+m n2.m1×m2×…×m n3.相互独立任何一种方法互相依存各个步骤都完成4.(1)不重不漏(2)步骤完整相互独立5.(1)一定的顺序(2)所有不同排列A m n(3)n(n-1)(n-2)…(n-m+1)m≤n(4)排列n!n!(n-m)!16.(1)合成一组(2)所有不同组合C m n(3)n (n -1)(n -2)…(n -m +1)m !n !m !(n -m )!(4)①C n -mn ②C m n C m -1n(2016·郑州模拟)某项测试要过两关,第一关有3种测试方案,第二关有5种测试方案,某人参加该项测试,不同的测试方法种数为( )A .8B .15C .125D .243 解:由分步计数原理知所求为3×5=15.故选B.某校学生会由高一年级3人,高二年级3人,高三年级4人组成,现要选择不同年级的两名成员参加市里组织的活动,则共有选法( )A .27种B .33种C .36种D .81种解:由两个计数原理知,所求为3×3+3×4+3×4=33(种).故选B.(2016·四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( ) A .24 B .48 C .60 D .72解:由题可知,五位数要为奇数,则个位数只能是1,3,5;分为两步:先从1,3,5三个数中选一个作为个位数有C 13种方法,再将剩下的四个数字排列有A 44种方法,则满足条件的五位数有C 13A 44=72个.故选D.(2017河南五校质量监测改编)6名同学排成一排照相,甲不站两端,则不同的站法有________种.解:所求为A 14A 55=480种.故填480.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有____________种.解:按A →B →C →D 顺序分四步涂色,共有4×3×2×2=48(种).故填48.类型一 分类与分步的区别与联系甲同学有若干本课外参考书,其中有5本不同的数学书,4本不同的物理书,3本不同的化学书.现在乙同学向甲同学借书,试问:(1)若借一本书,则有多少种不同的借法? (2)若每科各借一本,则有多少种不同的借法? (3)若借两本不同学科的书,则有多少种不同的借法?解:(1)因为需完成的事情是“借一本书”,所以借给他数学、物理、化学书中的任何一本,都可以完成这件事情.故用分类计数原理,共有5+4+3=12(种)不同的借法.(2)需完成的事情是“每科各借一本书”,意味着要借给乙三本书,只有从数学、物理、化学三科中各借一本,才能完成这件事情.故用分步计数原理,共有5×4×3=60(种)不同的借法.(3)需完成的事情是“从三种学科的书中借两本不同学科的书”,要分三种情况:①借一本数学书和一本物理书,只有两本书都借,事情才能完成,由分步计数原理知,有5×4=20(种)借法;②借一本数学书和一本化学书,同理,由分步计数原理知,有5×3=15(种)借法;③借一本物理书和一本化学书,同理,由分步计数原理知,有4×3=12(种)借法.而上述的每一种借法都可以独立完成这件事情,由分类计数原理知,共有20+15+12=47(种)不同的借法.【点拨】仔细区分是“分类”还是“分步”是运用两个原理的关键.两个原理的区别在于一个与分类有关,一个与分步有关.如果完成一件事有n 类办法,这n 类办法彼此之间是相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事,求完成这件事的方法种数,就用分类加法计数原理;如果完成一件事需要分成n 个步骤,缺一不可,即需要依次完成n 个步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步乘法计数原理.电视台在“欢乐在今宵”节目中拿出两个信箱,其中放着竞猜中成绩优秀的50位观众的来信,甲箱中有30封,乙箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两箱剩下来信中各确定一名幸运观众,有多少种不同结果?解:①幸运之星在甲箱中抽取,选定幸运之星,再在两箱内各抽一名幸运观众,根据分步计数原理有30×29×20=17 400种结果.②幸运之星在乙箱中抽取,有20×19×30=11 400种结果. 根据分类计数原理共有不同结果17 400+11 400=28 800(种).类型二 排列数与组合数公式(1)解方程3A x 8=4A x -19;(2)解方程C x +1x +3=C x -1x +1+C x x +1+C x -2x +2.解:(1)利用3A x 8=38!(8-x )!,4A x -19=49!(9-x +1)!, 得到3×8!(8-x )!=4×9!(10-x )!.利用(10-x )!=(10-x )(9-x )(8-x )!,将上式化简后得到(10-x )(9-x )=4×3. 再化简得到x 2-19x +78=0.解方程得x 1=6,x 2=13.由于A x 8和A x -19有意义,所以x 满足x ≤8和x -1≤9.于是将x 2=13舍去,原方程的解是x =6.(2)由组合数的性质可得C x -1x +1+C x x +1+C x -2x +2=C 2x +1+C 1x +1+C 4x +2=C 2x +2+C 4x +2, 又C x +1x +3=C 2x +3,且C 2x +3=C 2x +2+C 1x +2, 即C 1x +2+C 2x +2=C 2x +2+C 4x +2.所以C 1x +2=C 4x +2,所以5=x +2,x =3.经检验知x =3符合题意且使得各式有意义,故原方程的解为x =3.【点拨】(1)应用排列、组合数公式解此类方程时,应注意验证所得结果能使各式有意义.(2)应用组合数性质C m n +1=C m -1n+C m n 时,应注意其结构特征:右边下标相同,上标相差1;左边(相对于右边)下标加1,上标取大.使用该公式,像拉手风琴,既可从左拉到右,越拉越长,又可以从右推到左,越推越短.(1)解方程:3A 3x =2A 2x +1+6A 2x ; (2)已知1C m 5-1C m 6=710C m 7,则C m8=____________. 解:(1)由3A 3x =2A 2x +1+6A 2x 得3x (x -1)(x -2)=2(x +1)x +6x (x -1), 由x ≠0整理得3x 2-17x +10=0.解得x =5或23(舍去).即原方程的解为x =5.(2)由已知得m 的取值范围为{m |0≤m ≤5,m ≤Z },m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,整理可得m 2-23m +42=0,解得m =21(舍去)或m =2.故C m 8=C 28=28.故填28.类型三 排列的基本问题5名男生、2名女生站成一排照相: (1)两名女生要在两端,有多少种不同的站法? (2)两名女生都不站在两端,有多少种不同的站法? (3)两名女生要相邻,有多少种不同的站法? (4)两名女生不相邻,有多少种不同的站法? (5)女生甲要在女生乙的右方,有多少种不同的站法? (6)女生甲不在左端,女生乙不在右端,有多少种不同的站法?解:(1)两端的两个位置,女生任意排,中间的五个位置男生任意排:A 22A 55=240(种); (2)中间的五个位置任选两个排女生,其余五个位置任意排男生:A 25A 55=2 400(种);(3)把两名女生当作一个元素,于是对六个元素任意排,然后解决两个女生的任意排列:A 66A 22=1 440(种); (4)把男生任意全排列,然后在六个空中(包括两端)有顺序地插入两名女生:A 55A 26=3 600(种); (5)七个位置中任选五个排男生问题就已解决,因为留下两个位置女生排法是既定的:A 57=2 520(种); (6)采用排除法,在七个人的全排列中,去掉女生甲在左端的A 66 个,再去掉女生乙在右端的A 66个,但女生甲在左端同时女生乙在右端的A 55 种排除了两次,要找回来一次.有A 77-2A 66+A 55=3 720(种).【点拨】(1)有约束条件的排列问题一般有以下几种基本类型与方法:①特殊元素优先考虑;②对于相邻问题采用“捆绑法”,整体参与排序后,再考虑整体内容排序;③对于不相邻问题,采用“插空”法,先排其他元素,再将不相邻元素插入空档;④对于定序问题,可先不考虑顺序限制,排列后再除以定序元素的全排列数.(2)解题的基本思路通常有正向思考和逆向思考两种.正向思考时,通过分步、分类设法将问题分解;逆向思考时,从问题的反面入手,然后“去伪存真”.3名女生和5名男生排成一排. (1)如果女生全排在一起,有多少种不同排法? (2)如果女生都不相邻,有多少种排法? (3)如果女生不站两端,有多少种排法?(4)其中甲必须排在乙前面(可不邻),有多少种排法? (5)其中甲不站左端,乙不站右端,有多少种排法?解:(1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有6个元素,排成一排有A 66种排法,而其中每一种排法中,三个女生又有A 33种排法,因此共有A 66·A 33=4 320(种)不同排法.(2)(插空法)先排5个男生,有A 55种排法,这5个男生之间和两端有6个位置,从中选取3个位置排女生,有A 36种排法,因此共有A 55·A 36=14 400(种)不同排法. (3)法一(位置分析法) 因为两端不排女生,只能从5个男生中选2人排列,有A 25种排法,剩余的位置没有特殊要求,有A 66种排法,因此共有A 25·A 66=14 400(种)不同排法.法二(元素分析法) 从中间6个位置选3个安排女生,有A 36种排法,其余位置无限制,有A 55种排法,因此共有A 36·A 55=14 400(种)不同排法. (4)8名学生的所有排列共A 88种,其中甲在乙前面与乙在甲前面各占其中的12,所以符合要求的排法种数为12A 88=20 160(种).(5)甲、乙为特殊元素,左、右两边为特殊位置.法一(特殊元素法) 甲在最右边时,其他的可全排,有A 77种;甲不在最右边时,可从余下6个位置中任选一个,有A 16种.而乙可排在除去最右边位置后剩余的6个中的任意一个上,有A 16种,其余人全排列,共有A 16·A 16·A 66种.由分类加法计数原理,共有A 77+A 16·A 16·A 66=30 960(种).法二(特殊位置法) 先排最左边,除去甲外,有A 17种,余下7个位置全排,有A 77种,但应剔除乙在最右边时的排法A 16·A 66种,因此共有A 17·A 77-A 16·A 66=30 960(种).法三(间接法) 8个人全排,共A 88种,其中,不合条件的有甲在最左边时,有A 77种,乙在最右边时,有A 77种,其中都包含了甲在最左边,同时乙在最右边的情形,有A 66种.因此共有A 88-2A 77+A 66=30 960(种).类型四 组合的基本问题课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法? (1)只有1名女生; (2)两队长当选; (3)至少有1名队长当选; (4)至多有2名女生当选; (5)既要有队长,又要有女生当选.解:(1)1名女生,4名男生,故共有C 15·C 48=350(种).(2)将两队长作为一类,其他11个作为一类,故共有C 22·C 311=165(种). (3)至少有1名队长当选含有两类:只有1名队长和2名队长.故共有:C 12·C 411+C 22·C 311=825(种). 或采用间接法:C 513-C 511=825(种).(4)至多有2名女生含有三类:有2名女生、只有1名女生、没有女生,故选法为:C25·C38+C15·C48+C58=966(种).(5)分两类:第一类女队长当选:有C412种选法;第二类女队长不当选:有C14·C37+C24·C27+C34·C17+C44种选法.故选法共有:C412+C14·C37+C24·C27+C34·C17+C44=790(种).【点拨】①分类时不重不漏;②注意间接法的使用,在涉及“至多”“至少”等问题时,多考虑用间接法(排除法);③应防止出现如下常见错误:如对(3),先选1名队长,再从剩下的人中选4人得C12·C412≠825,请同学们自己找错因.从7名男同学和5名女同学中选出5人,分别求符合下列条件的选法总数为多少?(1)A,B必须当选;(2)A,B都不当选;(3)A,B不全当选;(4)至少有2名女同学当选;(5)选出3名男同学和2名女同学,分别担任体育委员、文娱委员等五种不同的工作,但体育委员必须由男同学担任,文娱委员必须由女同学担任.解:(1)只要从其余的10人中再选3人即可,有C310=120(种).(2)5个人全部从另外10人中选,总的选法有C510=252(种).(3)直接法,分两类:A,B一人当选,有C12C410=420(种).A,B都不当选,有C510=252(种).所以总的选法有420+252=672(种).间接法:从12人中选5人的选法总数中减去从不含A,B的10人中选3人(即A,B都当选)的选法总数,得到总的选法有C512-C310=672(种).(4)直接法,分四步:选2名女生,有C25C37=10×35=350(种);选3名女生,有C35C27=210(种);选4名女生,有C45C17=35(种);选5名女生,有C55=1(种).所以总的选法有350+210+35+1=596(种).间接法:从12人中选5人的选法总数中减去不选女生与只选一名女生的选法数之和,即满足条件的选法有C512-(C57+C15C47)=596(种).(5)分三步:选1男1女分别担任体育委员、文娱委员的方法有C17C15=35(种);再选出2男1女,补足5人的方法有C26C14=60(种);最后为第二步选出的3人分派工作,有A33=6(种)方法.所以总的选法有35×60×6=12 600(种).类型五分堆与分配问题按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本; (5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本; (7)甲得1本,乙得1本,丙得4本. 解:(1)无序不均匀分组问题.先选1本,有C 16种选法;再从余下的5本中选2本,有C 25种选法;最后余下3本全选,有C 33种选法. 故共有C 16C 25C 33=60(种).(2)有序不均匀分组问题.由于甲、乙、丙是不同的三人,在(1)题基础上,还应考虑再分配,共有C 16C 25C 33A 33=360(种). (3)无序均匀分组问题.先分三步,则应是C 26C 24C 22种方法,但是这里出现了重复.不妨记六本书为A ,B ,C ,D ,E ,F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB ,CD ,EF ),则C 26C 24C 22种分法中还有(AB ,EF ,CD ),(CD ,AB ,EF ),(CD ,EF ,AB ),(EF ,CD ,AB ),(EF ,AB ,CD ),共有A 33种情况,而这A 33种情况仅是AB ,CD ,EF 的顺序不同,因此只能作为一种分法,故分配方式有C 26C 24C 22A 33=15(种).(4)有序均匀分组问题.在(3)的基础上再分配给3个人,共有分配方式C 26C 24C 22A 33·A 33=C 26C 24C 22=90(种). (5)无序部分均匀分组问题.共有C 46C 12C 11A 22=15(种).(6)有序部分均匀分组问题. 在(5)的基础上再分配给3个人,共有分配方式C 26C 12C 11A 22·A 33=90(种). (7)直接分配问题.甲选1本,有C 16种方法;乙从余下的5本中选1本,有C 15种方法,余下4本留给丙,有C 44种方法,故共有分配方式C 16C 15C 44=30(种).【点拨】平均分配给不同人的分法等于平均分堆的分法乘以堆数的全排列.分堆到位相当于分堆后各堆再全排列,平均分堆不到指定位置,其分法数为:平均分堆到指定位置堆数的阶乘.对于分堆与分配问题应注意:①处理分配问题要注意先分堆再分配;②被分配的元素是不同的(像“名额”等则是相同元素,不适用),位置也应是不同的(如不同的“盒子”);③分堆时要注意是否均匀,如6分成(2,2,2)为均匀分组,分成(1,2,3)为非均匀分组,分成(4,1,1)为部分均匀分组.(1)6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有____________种不同的分派方法.解:先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种分派方法.故填90.(2)(2015·广州调研)有4名优秀学生A ,B ,C ,D 全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有____________种.解:先把4名学生分为2、1、1的3组,有C 24C 12C 11A 22=6种分法,再将3组分到3个学校,有A 33=6种情况,则共有6×6=36种不同的保送方案.故填36.(3)(2015·江西模拟改编)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有____________种不同的分法.解:将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种取法; 第2步,在余下的5名教师中任取2名作为一组,有C 25种取法; 第3步,余下的3名教师作为一组,有C 33种取法.6名教师分组共有C 16C 25C 33=60种取法.再把这3组教师分配到3所中学,有A 33=6种分法, 因此共有60×6=360种不同的分法.故填360.类型六 数字排列问题用0,1,2,3,4,5这6个数字. (1)能组成多少个无重复数字的四位偶数?(2)能组成多少个奇数数字互不相邻的六位数(无重复数字)? 解:(1)符合要求的四位偶数可分为三类: 第一类:0在个位时,有A 35个;第二类:2在个位时,千位从1,3,4,5中选定一个(A 14种),十位和百位从余下的数字中选,有A 24种,于是有A 14·A 24个; 第三类:4在个位时,与第二类同理,也有A 14·A 24个. 由分类加法计数原理得,共有A 35+2A 14·A 24=156(个).(2)先排0,2,4,再让1,3,5插空,总的排法共A 33·A 34=144(种),其中0在排头,将1,3,5插在后三个空的排法共A 22·A 33=12(种),此时构不成六位数, 故总的六位数的个数为A 33·A 34-A 22·A 33=144-12=132(种). 【点拨】本例是有限制条件的排列问题,先满足特殊元素或特殊位置的要求,再考虑其他元素或位置,同时注意题中隐含条件0不能在首位.(2015·山西模拟改编)用五个数字0,1,2,3,4组成没有重复数字的自然数,问: (1)四位数有几个?(2)比3 000大的偶数有几个?解:(1)首位数字不能是0,其他三位数字可以任意,所以四位数有C 14A 34=96个.(2)比3 000大的必是四位数或五位数. (Ⅰ)若是四位数,则首位数字必是3或4.①若4在首位,则个位数字必是0或2,有C 12A 23个数, ②若3在首位,则个位数字必是0或2或4,有C 13A 23个数,所以比3 000大的四位偶数有C12A23+C13A23=30个.(Ⅱ)若是五位数,则首位数字不能是0,个位数字必是0或2或4,①若0在个位,则有A44个;②若0不在个位,则有C12C13A33个数,所以比3 000大的五位偶数有A44+C12C13A33=60个.故比3 000大的偶数共有30+60=90个.1.解答计数应用问题的总体思路根据完成事件所需的过程,对事件进行整体分类,确定可分为几大类,整体分类以后,再确定在每类中完成事件要分几个步骤,这些问题都弄清楚了,就可以根据两个基本原理解决问题了,此外,还要掌握一些非常规计数方法,如:(1)枚举法:将各种情况一一列举出来,它适用于种数较少且计数对象不规律的情况;(2)转换法:转换问题的角度或转换成其他已知问题;(3)间接法:若用直接法比较复杂,难以计数,则可考虑利用正难则反的策略,先计算其反面情形,再用总数减去即得.2.排列与组合的区别与联系排列、组合之间的主要区别在于是否要考虑选出元素的先后顺序,不需要考虑顺序的是组合问题,需要考虑顺序的是排列问题,排列是在组合的基础上对入选的元素进行全排列,因此,分析解决排列问题的基本思路是“先选,后排”.3.解排列、组合题的基本方法(1)限制元素(位置)优先法:①元素优先法:先考虑有限制条件的元素,再考虑其他元素;②位置优先法:先考虑有限制条件的位置,再考虑其他位置.(2)正难则反排异法:有些问题,正面考虑情况复杂,可以反面入手把不符合条件的所有情况从总体中去掉.(3)复杂问题分类分步法:某些问题总体不好解决时,常常分成若干类,再由分类加法计数原理解决或分成若干步,再由分步乘法计数原理解决.在解题过程中,常常既要分类,也要分步,其原则是先分类,再分步.(4)相离问题插空法:某些元素不能相邻或要在某特殊位置时可采用插空法,即先安排好没有限制条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间.(5)相邻问题捆绑法:把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”作全排列,最后再“松绑”——将“捆绑”元素在这些位置上作全排列.(6)相同元素隔板法:将n个相同小球放入m(m≤n)个盒子里,要求每个盒子里至少有一个小球的放法,等价于种放法.这是针对相同元素的将n个相同小球串成一串,从间隙里选m-1个结点,剪截成m段,共有C m-1n-1组合问题的一种方法.(7)定序问题用除法:对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同进行排列,然后用总的排列数除以这几个元素的全排列数.4.解组合问题时应注意(1)在解组合应用题时,常会遇到“至少”“至多”“含”等词,要仔细审题,理解其含义.(2)关于几何图形的组合题目,一定要注意图形自身对其构成元素的限制,解决这类问题常用间接法(或排除法).(3)分组、分配问题:分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同,是不可区分的,而后者则即使两组元素个数相同,但因元素不同,仍然是可区分的.对于这类问题必须先分组后排列,若平均分m 组,则分法=取法m !.1.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A .56B .65 C.5×6×5×4×3×22D .6×5×4×3×2解:因为每位同学均有5种讲座可供选择,所以6位同学共有5×5×5×5×5×5=56种选法.故选A.2.A 32n =10A 3n ,n =( )A .1B .8C .9D .10解:原式等价于2n (2n -1)(2n -2)=10n (n -1)(n -2),n >3且n ∈N *,整理得n =8.故选B.3.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A .60种B .70种C .75种D .150种解:从中选出2名男医生的选法有C 26=15种,从中选出1名女医生的选法有C 15=5种,所以不同的选法共有15×5=75种,故选C.4.(2017·全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种解:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有C 24种方法,然后进行全排列A 33即可,由乘法原理,不同的安排方式共有C 24×A 33=36种方法.故选D.5.(2016·郑州二模)某校开设A 类选修课2门;B 类选修课3门,一位同学从中选3门,若要求两类课程中至少选一门,则不同的选法共有( )A .3种B .6种C .9种D .18种解:可分以下两种情况:①A 类选修课选1门,B 类选修课选2门,有C 12C 23种不同选法;②A 类选修课选2门,B 类选修课选1门,有C 22C 13种不同选法.所以根据分类加法计数原理知不同的选法共有:C 12C 23+C 22C 13=6+3=9(种).故选C.6.(2017·江西新余第一中学调研)西部某县将7位大学生志愿者(4男3女) 分成两组, 分配到两所小学支教, 若要求女生不能单独成组, 且每组最多5人, 则不同的分配方案共有( ) A .36种 B .68种 C .104种 D .110种解:分组的方案有3、4和2、5两类,第一类有(C 37-1)A 22=68(种);第二类有(C 27-C 23)A 22=36(种),所以共有68+36=104种不同的方案.故选C.7.(2017·天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)解:本题分两类:一类是一个数字是偶数,三个数字是奇数的四位数有C 14C 35A 44=960(个),二类是四个数字都是奇数的四位数有A 45=120(个),所以共有1 080个.故填1 080.8.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)解:第一步,选出4人,由于至少1名女生,故有C 48-C 46=55种不同的选法;第二步,从4人中选出队长,。
1.1 深刻领会两个原理分类计数原理与分步计数原理是关于计数的两个基本原理,它们不仅是推导排列数、组合数计算公式的依据,而且这两个原理的运用贯穿于全章学习的始终,其基本思想方法,贯穿在解全章应用问题的始终。
一、对两个原理的理解1、理解两个原理的关键在于明确分类计数原理,强调完成一件事情的几类办法互不干扰,彼此之间交集为空集,并集为全集,不论哪一类办法中的哪一种方法都能单独完成事件;分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成事件,步与步之间互不影响,即前一步用什么方法不影响后一步采取什么方法。
两个原理的共同点是把一个原始事件分解成若干个分事件来完成。
2、使用分类计数原理还是分步计数原理要根据我们完成某件事情时采取的方式而定,分类来完成这件事情时用分类计数原理,分步骤来完成这件事情时用分步计数原理。
在具体运用环境中去理解应用分类计数原理和分步计数原理的关键是分清“类”和“步”。
用分类计数原理的关键在于恰当分类,分类时要做到“不重不漏”,各类的每一种方法都能独立完成;应用分步计数原理的关键在于分步,分步时必须做到“不重叠不跳步”,各步均是完成事件必须经由的缺一不可的步骤。
3、正确理解分类和分步:“分类”指做“一件事情,完成它可以有n类办法”,这是对完成这件事的所有办法的一个分类。
分类时首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准上进行分类;其次,分类时要注意满足两条基本原则:①完成这件事情的任何一种方法必须属于某一类;②分别属于不同两肋的两种方法是不同的方法。
“分步”指“做一件事,完成它需要分成n个步骤”,这是说完成这件事情的任何一种方法,都要分成n个步骤。
分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事情必须并且只需连续完成这n个步骤后,这件事才算最终完成。
4、分类分步计数原理是本章知识的起点,又是重点。
分类分步计数原理是处理问题的基本手段。
第14章 计数原理、二项式定理、概率14.1 两个基本计数原理考纲要求1.理解分类计数原理和分步计数原理.2.会用分类计数原理和分步计数原理分析和解决一些简单的实际问题.1.分类计数原理:完成一件事,有n 类方式,在第1类方式中有m 1种不同的方法,在第2类方式中有m 2种不同的方法,……,在第n 类方式中有m n 种不同的方法,那么完成这件事情共有__________种不同的方法.2.分步计数原理:完成一件事,需要分成n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的方法,……做第n 步有m n 种不同的方法,那么完成这件事情共有____________种不同的方法.1.5名同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法有__________种.2.有不同颜色的四件上衣与不同颜色的三条长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数是__________.3.书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第3层放有6本不同的体育书.从书架上任取1本书,不同的取法数为__________.从第1,2,3层分别各取一本书,不同的取法数为__________.4.由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有________.5.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有________种(用数字作答).在计数问题中如何判定是分类计数原理还是分步计数原理?提示:如果已知的每类办法中的每一种方法都能完成这件事,应该用分类计数原理;如果每类办法中的每种方法只能完成事件的一部分,就用分步计数原理.一、分类计数原理的应用【例1】方程x 2m +y 2n=1表示焦点在y 轴上的椭圆,其中m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},那么这样的椭圆有多少个?方法提炼使用分类计数原理计数的两个条件一是根据问题的特点能确定一个适合于它的分类标准.二是完成这件事情的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法.请做针对训练3二、分步计数原理的应用【例2】已知集合M ={-3,-2,-1,0,1,2},点P (a ,b )(a ,b ∈M )表示平面上的点,问:(1)点P 可表示平面上多少个不同的点?(2)点P 可表示平面上多少个第二象限的点?(3)点P 可表示多少个不在直线y =x 上的点?方法提炼应用分步计数原理要注意两点:(1)明确题目中所指的“完成一件事”是什么,必须经几步才能完成.(2)完成这件事需分为若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少任何一步本事件都不可能完成.请做针对训练1三、两个计数原理的综合应用【例3】某个同学有课外参考书若干本,其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他欲带参考书到图书馆阅读.(1)若他从这些书中带一本去图书馆,有多少种不同的带法?(2)若带外语、数学、物理参考书各一本,有多少种不同的带法?(3)若从这些参考书中选两本不同学科的参考书带到图书馆,有多少种不同的带法?方法提炼在解决实际问题的过程中,并不一定是单一的分类或分步,而是可能同时应用两个原理,即分类时,每类的方法可能要运用分步完成,而分步时,每步的方法数可能会采取分类的思想求.请做针对训练2从近三年高考试题来看,高考对此部分内容考查都在附加题中.单独考查较少,往往结合概率进行考查,题型为解答题,难度为中档题.1.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)2.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有__________种.3.高三一班有学生50人,男30人,女20人;高三二班有学生60人,男30人,女30人;高三三班有学生55人,男35人,女20人.(1)从高三一班或二班或三班学生中选一名学生任校学生会主席,有多少种不同的选法?(2)从高三一班、二班的男生中,或从高三三班的女生中选一名学生任校学生会体育部部长,有多少种不同的选法?参考答案基础梳理自测知识梳理1.N=m1+m2+…+m n2.N=m1×m2×…×m n基础自测1.32 解析:分5步完成,每一步有两种不同的方法,故不同的报名方法有25=32种.2.12 解析:由分步计数原理,一条长裤与一件上衣配成一套,分两步,第一步选上衣有4种选法,第二步选长裤有3种选法,所以有4×3=12种选法.3.15 120 解析:由分类计数原理,不同的取法总数为4+5+6=15.由分步计数原理,不同的取法总数为4×5×6=120.4.174个解析:可用排除法,由0,1,2,3可组成的所有四位数有3×4×4×4=192(个),其中无重复的数字的四位数共有3×3×2×1=18(个),故共有192-18=174(个).5.24 解析:分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法;其次甲从剩下的3门课程中任选1门,有3种方法;最后乙从剩下的2门课程中任选1门,有2种方法.于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种).考点探究突破【例1】解:以m的值为标准分类,分为五类.第一类:m=1时,使n>m,n有6种选择;第二类:m=2时,使n>m,n有5种选择;第三类:m=3时,使n>m,n有4种选择;第四类:m=4时,使n>m,n有3种选择;第五类:m=5时,使n>m,n有2种选择.∴共有6+5+4+3+2=20种方法,即有20个符合题意的椭圆.【例2】解:(1)确定平面上的点P(a,b)可分两步完成:第一步确定a的值,共有6种确定方法;第二步确定b的值,也有6种确定方法.根据分步乘法计数原理,得到平面上的点数是6×6=36.(2)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种确定方法;第二步确定b,由于b>0,所以有2种确定方法.由分步乘法计数原理,得到第二象限点的个数是3×2=6.(3)点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个.由(1)得不在直线y=x上的点共有36-6=30个.【例3】解:(1)完成的事情是带一本书,无论是带外语书还是带数学书、物理书,事情都能完成,从而确定为分类计数原理,结果为5+4+3=12种.(2)完成的事情是带3本不同学科的参考书,只有从外语、数学、物理中各选一本书后,才能完成这件事,因此应用分步计数原理,结果为5×4×3=60种.(3)选1本数学书和选1本外语书,应用分步计数原理,有5×4=20种选法,同样地,选外语书、物理书各一本有5×3=15种选法,选数学书、物理书各一本有4×3=12种选法,应用分类计数原理,结果为20+15+12=47种.演练巩固提升针对训练1.14 解析:用2,3组成四位数共有2×2×2×2=16(个),其中不出现2或不出现3的共2个,因此满足条件的四位数共有16-2=14(个).2.30 解析:分两类.第一类:A类选修课选1门,B类选修课选2门,不同的选法有3×6=18(种);第二类:A类选修课选2门,B类选修课选1门,不同的选法有3×4=12(种).根据分类计数原理共有18+12=30种不同的选法.3.解:(1)完成这件事有三类方法:第一类,从高三一班任选一名学生共有50种选法;第二类,从高三二班任选一名学生共有60种选法;第三类,从高三三班任选一名学生共有55种选法,根据分类计数原理,任选一名学生任校学生会主席共有50+60+55=165种选法.(2)完成这件事有三类方法:第一类,从高三一班男生中任选一名共有30种选法;第二类,从高三二班男生中任选一名共有30种选法;第三类,从高三三班女生中任选一名共有20种选法,综上知,共有30+30+20=80种选法.。
江苏省高考数学知识点归纳总结一、不等式与方程组在高考数学中,不等式与方程组是一个重要的知识点。
它涉及到数学推理和解题的方法。
针对江苏省高考中常见的不等式与方程组题型,我们进行了归纳总结。
1. 不等式a. 一次不等式:如何确定解的范围、如何判断解集的性质等问题,可以通过绘制数轴、利用符号法等方法进行求解。
b. 二次不等式:常见的二次不等式包括开口向上和开口向下的情况。
根据二次不等式关于未知数 x 的性质,我们可以利用判别式、配方法等来求解。
c. 绝对值不等式:处理绝对值不等式时,需要将绝对值的含义进行分析,根据绝对值的非负性进行讨论,采用分段讨论法或利用性质进行求解。
2. 方程组a. 二元一次方程组:根据方程组的性质,我们可以采用消元法、代入法或加减法等方法求解。
在求解过程中,注意使用变量替换和整理方程的技巧,以简化计算。
b. 三元一次方程组:对于三元方程组,同样可以使用消元法和代入法进行求解。
如果方程组较为复杂,可以考虑转换为矩阵形式进行求解。
c. 二元二次方程组:对于二元二次方程组,我们可以利用消元法、代入法或配方法进行求解。
在使用配方法时,注意将方程组转化为完全平方的形式。
d. 三元二次方程组:解决三元二次方程组时,可以应用代数行列式法、高次系数法等方法进行求解。
将方程组转化为矩阵形式可以简化求解过程。
二、函数与图像函数与图像是高考数学中的一个重要内容,涉及到函数的概念、性质,以及函数的图像表达等。
1. 函数的概念与性质a. 函数定义与性质:函数是一个对应关系,它将某个集合中的元素映射到另一个集合中的元素。
在函数的定义中,需要关注定义域、值域以及函数的性质,如单调性、奇偶性等。
b. 反函数:反函数是函数的一种特殊形式。
通过交换函数的自变量和因变量,可以得到原函数的反函数。
反函数的存在与性质需要通过函数的单调性来判断。
2. 函数的图像表达a. 一次函数:一次函数的图像是一条直线。
根据函数的斜率和截距可以确定图像的斜率和截距。
高三第一轮复习数学---两个原理一、教学目标:掌握分类计数原理与分步计数原理、并能用它分析和解决一些简单的应用问题。
二、教学重点:用它分析和解决一些简单的应用问题。
三、教学过程:(一)主要知识:1、分类计数原理(也称加法原理):做一件事情,完成它可以有n类办法,在第一类办法中有m种不同的方法,在第二类办法中有2m种不同的方法,……,在第n类办法中有n m 12、分步计数原理(也称乘法原理):做一件事情,完成它需要分成n个步骤,做第一步有m种不同的方法,那么m种不同的方法,做第二步有2m种不同的方法,……,做n步有n13、分类计数原理和分步计数原理的共同点是把一个原始事件分解成若干个分事件来完成。
4、两个原理的区别在于一个和分类有关,一个与分步有关,如果完成一件事情有n类办法,这n类办法彼此之间是相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理;如果完成一件事情需要分成n 个步骤,各个步骤都是不可缺少的,需要完成所有的步骤,才能完成这件事情,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数,就用分步计数原理。
5、“做一件事情,完成它可以有n类办法”,这里是对完成这件事情的所有办法的一个分类,分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足一个基本要求:完成这类事情的任何一种方法必须属于某一类,并且分别属于不同两类的两种方法是不同的方法,只有满足这些条件,才可用分类计数原理。
6、“做一件事情,完成它需要分成n个步骤”,这是指完成这件事情的任何一种方法,都要分成n个步骤,分步时,首先要根据问题的特点,确定一个分步的可行标准;其次,分步时还要注意满足完成一件事情必须并且只需连续完成这n个步骤后,这件事情才算圆满完成,只有满足这些条件,才能使用分步计数原理。
(二)例题分析:例1.(1)如图为一电路图,从A到B共有-Array ___________条不同的线路可通电。
江苏省高三数学知识点总结在江苏省高三数学的学习过程中,我们需要掌握的知识点非常多,如何有效总结这些知识点,让我们在备考中能够运用自如,是一个重要的问题。
在这篇文章中,我将结合我的学习经验,给出一些关于江苏省高三数学知识点的总结。
1.函数与方程函数与方程是数学的基础,也是江苏省高考数学的重要内容。
在这一章节中,我们需要掌握各种函数的性质,如基本初等函数的图像、定义域、值域等;同时也要熟悉各种方程的解法,包括一元一次方程、一元二次方程、一元三次方程等。
在解题过程中,我们应该善于运用函数和方程之间的关系,利用函数的性质来解决问题。
2.数列与数学归纳法数列与数学归纳法也是江苏省高三数学考试的固定考点。
我们需要熟练掌握数列的概念、性质以及常见数列的求和公式和通项公式。
在解题过程中,我们还要善于使用数学归纳法,将问题转化为数学归纳法的证明形式进行求解。
3.几何与向量在几何与向量这一章节中,我们需要熟练掌握各种几何图形的性质和定理,包括直线、圆、三角形、四边形等;同时也要掌握向量的基本概念和运算。
在解题过程中,我们要善于运用几何和向量之间的关系,将几何问题转化为向量问题进行求解。
4.概率统计与思维方法概率统计与思维方法是江苏省高三数学考试中的较为抽象和难以理解的内容。
在这一章节中,我们需要理解概率的基本概念和性质,包括概率的计算方法、事件的独立性等;同时也需要掌握统计学的基本知识,包括频数、频率、均值、方差等。
在解题过程中,我们还要运用常见的思维方法,如逻辑推理、数学归纳、反证法等,解决概率统计中的问题。
5.解析几何与立体几何解析几何与立体几何在江苏省高三数学考试中也是重点内容。
在这一章节中,我们需要掌握解析几何中的坐标系、平面与直线的性质和定理;同时也要熟悉立体几何中的各种空间图形的性质和定理。
在解题过程中,我们要善于将解析几何与立体几何相结合,利用解析几何的方法解决立体几何的问题。
以上就是我对江苏省高三数学知识点的总结。
高三数学江苏数学知识点江苏省的高三数学考试主要围绕一些重要的数学知识点展开。
下面我们将详细介绍几个常见的数学知识点。
一、平面向量计算在江苏的数学考试中,平面向量计算是一个非常重要的知识点。
平面向量的加法、减法、数量积和向量积的计算方法都需要掌握。
另外,还需要掌握平面向量的解析表示法以及平面向量的模、方向角等基本概念。
在做题时,注意运用向量的性质和计算方法,正确地理解和使用向量的概念。
二、几何图形的性质与判定几何图形的性质与判定也是考试重点之一。
这部分内容主要包括平行线的性质与判定、垂直线的性质与判定、各种三角形的性质与判定等。
为了掌握这些知识,要熟悉各种几何图形的定义和性质,能够准确地使用各种判定方法解决问题。
三、复数运算复数运算在江苏的数学考试中也起到重要的作用。
要掌握复数的加法、减法、乘法和除法运算法则,熟悉复数的共轭、模、辐角等概念,能够将复数表示为三角形式和指数形式,并能在运算中进行相互转化。
此外,还要理解复数平面的基本性质,能够画出复数的几何表示。
四、数列与数列的通项公式数列与数列的通项公式也是江苏数学考试的常考知识点。
对于等差数列和等比数列,要能根据给定的条件求出通项公式,反之,如果已知通项公式,要能根据要求求出数列中的具体项。
同时,还需要理解和掌握数列的性质和常见的数列求和公式。
以上是江苏高三数学知识点的简要介绍。
对于每个知识点,除了掌握相关的计算方法和定义,还要注重理解和应用。
在考试中,除了熟悉各个知识点,还要注重练习,掌握解题技巧,提高做题的准确性和速度。
希望同学们在备考中能够有条不紊地复习,顺利应对江苏的高三数学考试。
江苏省高三数学知识点汇总数学作为一门科学,是人类思维的逻辑化和抽象化的产物。
在江苏省高三数学课程中,各个知识点相互关联,构成了一个完整的体系。
本文将对江苏省高三数学课程中的知识点进行汇总,帮助同学们更好地掌握数学知识。
一、函数与导数函数与导数是高中数学的基础,也是高三数学的重要内容之一。
函数是研究数学问题的基本工具,导数则是函数变化率的刻画。
在高三数学中,同学们需掌握函数的定义、性质以及各种常见函数的图像与性质。
此外,还需要了解导数的定义、性质,以及导数的应用,如求函数的极值、判定函数的单调性等。
二、数列与数学归纳法数列是数学中一个重要的概念,它是有序数的一种排列方式。
在高三数学中,同学们需学习数列的定义、性质以及常见数列的求和公式。
此外,数学归纳法是解决数学问题的重要方法之一,需要注意掌握数学归纳法的思想和基本用法。
三、三角函数三角函数是高中数学中的重要内容,是研究角的函数关系的数学工具。
在高三数学中,同学们需学习三角函数的定义、性质以及常见三角函数的图像和变换。
此外,还需掌握三角恒等式的证明和应用,以及三角方程的求解方法。
四、平面向量平面向量是高中数学中的重要内容之一,它是描述平面上的有向线段的数学工具。
在高三数学中,同学们需学习平面向量的定义、性质以及常见的运算法则。
此外,还需了解平面向量与几何图形的关系,掌握平面向量的坐标表示以及平面向量的数量积和向量积的计算方法。
五、解析几何解析几何是高中数学中的重要内容之一,它是利用坐标和代数的方法研究几何图形的分支。
在高三数学中,同学们需掌握平面几何的坐标表示方法,如点的坐标、直线的方程、圆的方程等。
此外,还需学习空间几何的坐标表示方法,如点的坐标、直线的方程、平面的方程等。
六、微分方程微分方程是高中数学中的重要内容之一,它是研究函数的变化规律的数学工具。
在高三数学中,同学们需学习微分方程的定义、分类以及解微分方程的方法。
此外,还需了解微分方程在实际问题中的应用,如人口增长问题、放射性物质衰变问题等。