壳聚糖及羧甲基壳聚糖对螺蛳体内铅镉的脱除
- 格式:pdf
- 大小:1.76 MB
- 文档页数:3
APTES改性羧甲基壳聚糖微球对铅离子吸附性能及机理研究康小虎;白志山;王炳捷;杨晓勇【摘要】以羧甲基壳聚糖(CMCS)为基体,3-氨基丙基三乙氧基硅烷(APTES)作为改性剂,制备了用于吸附铅离子的改性羧甲基壳聚糖微球(A-CMCS).使用扫描电子显微镜(SEM)、能谱仪(EDS)、傅里叶红外光谱仪(FT-IR)对吸附剂的表面形貌以及化学组成及结构进行了表征.研究了初始溶液的pH值、吸附温度以及铅离子的初始浓度对A-CMCS吸附性能的影响,结果表明当pH值为5、吸附温度为303 K时吸附剂对铅离子的吸附浓度达到最大为275.2 mg/g,比未改性之前的交联微球的吸附量提升43%.并使用吸附动力学以及等温吸附模型、FT-IR和X射线光电子能谱(XPS)对吸附机理进行了探究,其结果发现A-CMCS微球对铅离子的吸附过程是一个以化学吸附为主的单分子层吸附过程,其中氨基基团在整个吸附过程的起主导作用.【期刊名称】《功能材料》【年(卷),期】2019(050)008【总页数】9页(P8161-8169)【关键词】改性吸附材料;3-氨基丙基三乙氧基硅烷;吸附机理;羧甲基壳聚糖;铅离子【作者】康小虎;白志山;王炳捷;杨晓勇【作者单位】华东理工大学机械与动力工程学院,上海200237;华东理工大学机械与动力工程学院,上海200237;华东理工大学机械与动力工程学院,上海200237;华东理工大学机械与动力工程学院,上海200237【正文语种】中文【中图分类】TQ424.30 引言随着经济的不断发展,我国的工业规模也愈加扩大,在矿山开采、金属冶炼、机械制造、电镀、电解、化工等工业的许多生产过程中都会产生重金属废水[1],其中铅离子是毒性最强,使用量最大的重金属之一[2]。
健康人血铅的正常范围为0.483~1.45 μmol/L,当血铅含量达到2.72~3.84 μmol/L时就可能发生铅中毒[3-4],如贫血,生殖、遗传毒性,致癌以及对神经系统造成影响,尤其对儿童的危害更大[5-6],所以对水溶液中铅离子的去除是目前的一个重要环境问题。
壳聚糖对重金属离子的吸附性能张毅;张转玲;黎淑婷;刘叶;张昊【摘要】The adsorption of Cu2+, Ni2+, Co2+by chitosan was studied, and the influences of adsorption time and addition amount of chitosan on adsorption capacity was discussed. The result shows that when the amount of chitosan is 1.5 g, and metal salt solution is 50 mL of the 25 g/L, the removal rate can reach maximum. Moreover, the removal rate increased linearly before 10 min, and tended to the balance after 20 min. Compared the adsorption characteristic of Cu2+, Ni2+, Co2+with chitosan, zeolite, activated carbon and diatomite, the removal rate of chitosan for Cu2+,Ni2+, Co2+is 73.99%, 69.38%!and 65.51%!respectively, without selectivity, which is much higher than that of zeolite, activated carbon and diatomite.It is proved that there is a huge advantage of chitosan on the adsorptionof Cu2+, Ni2+, Co2+compared with zeolite, activated carbon and diatomite by using adsorption dynamics.%研究壳聚糖对Cu2+、Ni2+、Co2+的吸附性,分别讨论了吸附时间和用量对重金属离子去除率的影响.结果表明:当壳聚糖的用量为1.5 g时,对50 mL的25 g/L的重金属溶液的去除率达到最大值,且前10 min内去除率呈线性增加,吸附20 min后趋于平衡.壳聚糖吸附Cu2+、Ni2+、Co2+的去除率分别为73.99%、69.38%和65.51%,远远大于沸石、活性炭、硅藻土对Cu2+、Ni2+、Co2+的去除率,且无选择性.运用吸附动力学进行论证,证明壳聚糖对Cu2+、Ni2+、Co2+的吸附相对于沸石、活性炭、硅藻土存在巨大的优势.【期刊名称】《天津工业大学学报》【年(卷),期】2016(035)003【总页数】5页(P16-20)【关键词】壳聚糖;吸附性;重金属离子;吸附动力学【作者】张毅;张转玲;黎淑婷;刘叶;张昊【作者单位】天津工业大学纺织学院,天津 300387;天津工业大学纺织学院,天津 300387;天津工业大学纺织学院,天津 300387;天津工业大学纺织学院,天津300387;天津工业大学纺织学院,天津 300387【正文语种】中文【中图分类】TS102.528.3当今生态农业越来越受到人们的重视,在国家“十三五”规划中也重点强调了“创新、协调、绿色、开放、共享”的发展理念.由于许多农业用水和土壤中存在大量的重金属离子,严重影响到农业的发展,所以去除重金属离子进行土壤修复成为实现生态农业的重大任务之一.目前,重金属离子的去除技术主要有化学法、离子交换法、电渗析、反渗透、纳滤等[1],其中使用最为广泛的是化学方法[2].化学吸附法是一种应用较早、应用广泛的方法,且具有操作简单、成本低、处理效果好等特点,对重金属废水和有毒废水的处理具有很大的优势[3].用于化学吸附的载体有千万种,但人们为了实现废物利用,减少废物的产生量[4-5],将目光投向了来源广泛的壳聚糖.同时,由于壳聚糖的应用非常广泛,且原料比较充足,因此壳聚糖的研究一直是一个比较热门的方向[6].甲壳素又名甲壳质、几丁质、壳蛋白、明角质,其化学结构与天然纤维素相似,所不同的是纤维素在2位上是羟基,甲壳质在2位是乙酰氨基[7].壳聚糖(chitosan)就是甲壳质经浓碱水解脱去乙酰基后生成的水溶性产物,又名聚氨基葡萄糖,其化学式为C6H11NO4.壳聚糖无毒无害,具有可生物降解性、生物相容性、广谱抗菌性等优良特性,在生物技术领域、食品方面、化妆品行业等得到广泛应用[8-11].在环保方面,壳聚糖主要用于水体污染治理.其主要的官能团为C2—NH2、C3—OH、C6—OH,而C2—NH2基团上的氮原子具有孤对电子,能进入金属离子的空轨道,形成配位键结合.因此,壳聚糖对去除重金属有很好的效果[12].目前,对壳聚糖及其他吸附剂在高浓度金属离子溶液中的吸附特征研究较少.本文以壳聚糖为主要研究对象,与活性炭、沸石和硅藻土在Cu2+、Co2+、Ni2+高浓度溶液中吸附性能进行对比研究,并应用吸附动力学进行科学论证.1.1 实验原料及设备原料:壳聚糖,国药集团化学试剂有限公司产品,脱乙酰度为86.4%;活性炭,天津市密欧化学试剂有限公司产品;沸石、硅藻土、无水硫酸铜,天津市光复精细化工研究所产品;硝酸镍、硝酸钴,天津市风船化学试剂科技有限公司产品.设备:气浴摇床,巩义市予华仪器责任有限公司产品;岛津UV2401PC型紫外-可见分光光度计产品,岛津公司产品;真空泵,巩义市英峪高科仪器厂产品.1.2 CuSO4、NiSO4、Co(NO3)2标准曲线的测定配置25 g/L的CuSO4溶液,取5个试管编号1、2、3、4、5备用;分别量取5、10、15、20、25 mL配好的Cu-SO4溶液置于5个试管中,在1~4号试管中分别加入20、15、10、5 mL蒸馏水,摇匀.以CuSO4质量浓度为0 g/L为基准线(0轴),对CuSO4质量浓度为5 g/L、10 g/L、15 g/L、20 g/L、25 g/L样品分别测定在光波长为700 nm的紫外吸收光值.NiSO4、Co(NO3)2溶液测定标准曲线的过程与Cu-SO4溶液的类似,其中NiSO4、Co(NO3)2溶液的初始质量浓度为50 g/L,NiSO4溶液的测试波长为395.2 nm,Co(NO3)2溶液的测试波长为511.4 nm.1.3 壳聚糖用量对Cu2+、Ni2+、Co2+吸附性的测定取质量浓度为25 g/L的CuSO4溶液50 mL,共12份,分别置于250 mL锥形瓶中,分别加入0.2 g、0.4 g、0.6 g、0.8 g、1.0 g、1.2 g、1.4 g、1.6 g、1.8 g、2.0 g、2.2 g、2.4 g壳聚糖,在气浴摇床中室温振动2 h,过滤后按照标准曲线制备条件测定吸光度值,计算其去除率. NiSO4、Co(NO3)2测定方法同上. 1.4 时间对壳聚糖吸附Cu2+、Ni2+、Co2+的测定为了更好地研究壳聚糖对重金属的吸附性能,本实验以沸石、硅藻土和活性炭作对比,探究了时间对壳聚糖吸附Cu2+、Ni2+、Co2+的影响.取质量浓度为25 g/L CuSO4溶液50 mL,共4份,分别置于250 mL锥形瓶中,分别加入适量的壳聚糖、沸石、硅藻土和活性炭,在气浴摇床中室温震荡5 min、10 min、20 min、30 min、40 min、50 min、60 min、70 min、80 min,按时间序列分别取出后过滤,按照标准曲线制备条件测定吸光度值,计算其去除率. 式中:E为去除率(%);C0为吸附前金属盐的质量浓度(g/L);C1为吸附后金属盐的质量浓度(g/L).NiSO4、Co(NO3)2测定方法同上.1.5 壳聚糖对Cu2+、Ni2+、Co2+的吸附性能判定应用吸附动力学判定材料的吸附性能是一种较好的方法.吸附动力学主要是对不同吸附时间内的吸附行为和吸附速率的描述.目前应用最多的主要有准一级反应动力学和准二级反应动力学2种[13].准一级动力学反映的是一种在固相和液相之间可逆的平衡反应,实验数据和准二级动力学的拟合度可以用来判断吸附过程是否由化学吸附主导.准一级动力学和准二级动力学的公式为[14-15]:(1)准一级动力学[16]式中:Qe为吸附一定时间后的吸附容量(g/g);V为被吸附溶液体积(mL);m为吸附剂的用量(g);qe为吸附平衡时吸附容量(g/g);qt为吸附某时刻的吸附容量(g/g);k1为准一级动力学模型速率常数(min-1);t为吸附时间(min).(2)准二级动力学式中:k2为准二级动力学模型速率常数(g·g-1·min-1).2.1 CuSO4、NiSO4和Co(NO3)2标准曲线根据1.2实验步骤,做出CuSO4、NiSO4和Co(NO3)2的浓度与吸光度值的线性关系曲线,如图1所示.利用origin7.5线性拟合求得其标准曲线方程为:由于R值均达到0.999以上,表明所测得金属盐浓度和其吸光度值线性关系优良,可用于实验中计算金属离子浓度的依据.2.2 壳聚糖用量对Cu2+、Ni2+和Co2+吸附的影响根据1.3实验步骤获取一系列壳聚糖不同用量的吸光度值,并利用标准曲线求得吸附后重金属离子的浓度,进而得到壳聚糖用量对Cu2+、Ni2+和Co2+吸附的影响,如图2所示.由图2可以看出,随着壳聚糖用量的增加,其对Cu2+、Ni2+和Co2+去除率逐渐增大,当壳聚糖的用量达到1.5 g时,去除率基本达到最高值,当壳聚糖用量继续增加时,去除率基本不变,这是因为壳聚糖在吸附重金属离子的同时也在发生解吸过程,所以吸附和解吸必然存在一个平衡状态,而当达到这个平衡状态时,即使增加壳聚糖的加入量,溶液中的重金属离子浓度也不会再变化,即去除率也不再变大.由图2还可看出,壳聚糖对Cu2+的去除率最高,为70.84%;Co2+次之,69.38%;Ni2+最低,65.51%.但之间的差距不大,说明壳聚糖对Cu2+、Ni2+和Co2+的吸附机理相同,都是通过C2—NH2基团上的氮原子作用,因为其具有孤对电子,能进入金属离子的空轨道中形成配位键结合.所以壳聚糖的用量增加,导致了有效吸附基团的增多,即增加了与金属离子的配位活性点,使得对金属离子去除率提高.当金属离子浓度降低到一定程度时,使得配位活性降低,使得壳聚糖的用量达到最大值.2.3 时间对壳聚糖、沸石、硅藻土和活性炭吸附Cu2+、Ni2+、Co2+的影响由2.2实验结果分析得知,当壳聚糖用量为1.5 g时,其对Cu2+、Ni2+和Co2+的去除率基本达到最大值.所以在1.4实验中,壳聚糖、沸石、硅藻土和活性炭的加入量均为1.5 g.时间对壳聚糖、沸石、硅藻土和活性炭吸附Cu2+、Ni2+、Co2+的影响如图3所示.由图3可见,10 min内壳聚糖、沸石、藻土和活性炭对Cu2+、Ni2+、Co2+吸附近似呈线性增加,10~20 min内壳聚糖、沸石、硅藻土和活性炭对Cu2+、Ni2+、Co2+吸附均趋于最大值,其中壳聚糖的增加速率远远大于其余3种,约为其余3种中最大者2.5倍,而且无选择性;20 min内壳聚糖对Cu2+、Ni2+的去除率约为其余3种中最大者3倍,而对Co2+的去除率约为其余3种中最大者2倍.由此可见,壳聚糖对Cu2+、Ni2+、Co2+的去除率最高,是一种优良的重金属离子吸附剂.2.4 壳聚糖对Cu2+、Ni2+和Co2+的优良吸附性分析为进一步证实壳聚糖对Cu2+、Ni2+和Co2+具有优良的吸附性,依据吸附动力学原理,分别建立了壳聚糖、沸石、硅藻土和活性炭对Cu2+、Ni2+、Co2+吸附动力模型,如图4和表1、表2表、3所示.由图4和表1、表2、表3的图形和参数的拟合得到相关的平衡吸附容量qe和准二级反应速率常数k2及相关系数R.拟合方程的R值均在0.99以上,拟合动力学曲线的线性很好,说明壳聚糖、沸石、硅藻土和活性炭对Cu2+、Ni2+、Co2+的吸附行为都很好地符合了准二级吸附动力学方程.由此说明,吸附反应中决定吸附速率快慢的是化学吸附过程(整合吸附).准二级反应速率常数k2反映吸附速率的快慢,k2值越小吸附速率越快.从表1、表2、表3中可见,壳聚糖k2值远小于其余3种物质的k2值,表明壳聚糖对Cu2+、Ni2+、Co2+的吸附速率快,这一点与图3中反应的)规律完全相符,这也进一步表明,壳聚糖对Cu2+、Ni2+、Co2+的吸附相对于活性炭、硅藻土和沸石存在巨大的优势,是一种理想的重金属离子吸附剂.(1)壳聚糖作为一种金属离子吸附剂,其吸附率与时间和用量有关:随着壳聚糖用量的增加,其对Cu2+、Ni2+、Co2+去除率逐渐增大,当壳聚糖的用量达到1.5 g时,去除率基本达到最高值,当壳聚糖用量继续增加时,去除率基本不变;随着时间的增加,前10 min内壳聚糖对3种离子的去除率呈线性增加,20 min 时趋于平衡,且去除率远远大于活性炭、硅藻土和沸石对这3种重金属离子的去除率,且无选择性.(2)壳聚糖吸附初始质量浓度为25 g/L的Cu2+、Ni2+、Co2+溶液的最佳条件是:用量为3 g/L,时间20 min,去除率分别达73.99%、69.38%和65.51%. (3)运用吸附动力学进行论证,证明壳聚糖对Cu2+、Ni2+、Co2+的吸附相对于活性炭、硅藻土和沸石存在巨大的优势,是一种理想的重金属离子吸附剂.【相关文献】[1]卢会霞,王建友,傅学起,等.EDI过程处理低浓度重金属离子废水的研究[J].天津工业大学学报,2008,27(3):15-18.LU H X,WANG J Y,FU X Q,et al.Study on dilute heavy metal ions waste water treatment by EDI process[J].Journal of Tianjin Polytechnic University,2008,27(3):15-18(in Chinese).[2]沈品华.电镀废水治理方法探讨[J].电镀与环保,1998,18 (3):28-32.SHEN P H.Study on treatment method of electroplating wastewater[J].Electroplating&Pollution Control,1998,18 (3):28-32(in Chinese).[3]YANG S,FU S,LIU H,et al.Hydrogel beads based on carboxymethyl cellulosefor removal heavy metal ions[J].Journal of Applied Polymer Science,2011,119(2):1204-1210.[4]陆朝阳,沈莉莉,张全兴.吸附法处理染料废水的工艺及其机理研究进展[J].工业水处理,2004,24(3):12-16.LU C Y,SHEN L L,ZHANG Q X.Research development of technics and mechanism of dye wastewater treatment by adsorption[J].Industrial Water Treatment,2004,24(3):12-16 (in Chinese).[5]黄君涛,熊帆,谢伟立,等.吸附法处理重金属废水研究进展[J].水处理技术,2006,32(2):9-12.HUANG J T,XIONG F,XIE W F,et al.Progress in researcheson on treatment of heavy metal wastewater by adsorption process[J].Technology of Water Treatment,2006,32(2):9-12(in Chinese).[6]杨俊玲.甲壳素和壳聚糖的化学改性研究[J].天津工业大学学报,2001,20(5):79-82. YANG J L.Study on the chemical modification of chitin and chitosan[J].Journal of Tianjin Polytechnic University,2001,20 (5):79-82(in Chinese).[7]付宁,杨俊玲,倪磊.壳聚糖制备条件的研究和结构表征[J].天津工业大学学报,2009,28(2):63-66.FU N,YANG J L,NI L.Research of preparation conditions and structure characterizationof chitosan[J].Journal of Tianjin Polytechnic University,2009,28(2):63-66(in Chinese).[8]JANG T D.Chitosant[M].Beijing:Chemical Industry Press,2001.[9]RAVI Kumar M N V,MUZZARELLI R A A,MUZZARELLI C,et al.Chitosan chemistry and pharmaceutical perspectives [J].Chem Rev,2004,104:6017-6084.[10]GUIBAL E,MILOT C,TOBIN J M.Metal-anion sorption by chitosan beads:Equilibrium and kinetic studies[J].Ind Eng Chem Res,1998,37:1454-1463.[11]NGAH W S W,GHANI S A,HOON L L,et parative adsorption of Lead(Ⅱ)on flake and bead-types of chitosan[J]. J Chin Chem Soc,2002,49:625-628.[12]GUIBAL E.Interactions of metal ions with chitosan-based sorbents:A review [J].Separation and Purification Technology,2004,38(1):43-74.[13]CHANDRA V,PARK J,CHUN Y,et al.Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal[J].ACS Nano,2010,4(7):3979-3986.[14]SOYO M L,MOURE A,DOMINGUEZ H,et al.Recovery,concentrationandpurification of phenolic compounds by adsorption:A review[J].Journal of Food Engineering,2011,105 (1):1-27.[15]CHAUHAN D L,SANKARARAMAKRISHNAN.Highly enhanced adsorption for decontamination of lead ions from battery wastewaters using chitosan functionalized with xanthate[J]. Bioresource Technology,2008,99(18):9021-9024.[16]WU D L,WANG W,ZHANG J H,et al.Preparation of mulberry branch biomass char and its usage in wastewater treatment[J].Water Environment Research,2012,84(11):2060-2069.。
羧甲基壳聚糖研究进展和圆圆;谢光银;关立平【摘要】羧甲基壳聚糖是壳聚糖的衍生物之一,具有良好的水溶性、保湿性、成膜性、抗菌性、絮凝性。
主要介绍了羧甲基壳聚糖的制备方法及其在日化、农业、食品、医学、环保等多领域的应用。
%solubility, hygroscopicity, film forming, antibacterial activity and flocculation. This paper mainly introduces the preparation method of carboxymethyl chitosan and its application in chemical, agriculture, food, medi-cine, environmental protection, etc.【期刊名称】《浙江纺织服装职业技术学院学报》【年(卷),期】2014(000)001【总页数】6页(P22-27)【关键词】羧甲基壳聚糖;性能;制备;应用【作者】和圆圆;谢光银;关立平【作者单位】西安工程大学陕西西安 710048; 浙江纺织服装职业技术学院【正文语种】中文【中图分类】TS193.1甲壳素(Chitin,CHT)是目前自然界中发现的唯一碱性天然多糖有机物,其在自然界中的数量仅次于纤维素,是第二大天然合成物质,主要来源于虾壳和蟹壳等,是一种可再生的自然资源,其废弃物可自然降解,并且对环境不会造成污染[1-2]。
甲壳素经过浓碱处理脱去 N-乙酰基的产物称作脱乙酰甲壳素,即壳聚糖(Chitosan,CS)。
但由于壳聚糖具有紧密晶体结构,仅能溶于稀酸,不能溶于中性水和一般有机溶剂,因此使它的应用受到限制[3]。
于是,有研究人员对壳聚耱进行化学改性,制成水溶性的壳聚耱衍生物,很大程度上拓宽了它的应用范围,其中羧甲基化就是它的一种改性方法。
1977年,Muzzarelli R A A[4]首次采用碱化甲壳素与氯乙酸反应, 经过加热制备出羧甲基壳聚糖(Carboxymethyl chitosan,CMCS)。
壳聚糖、羧甲基壳聚糖作为絮凝吸附剂壳聚糖、羧甲基壳聚糖作为絮凝吸附剂壳聚糖是直链型的高分子聚合物,因为分子中有游离氨基,在稀酸中被质子化,从而使壳聚糖分子链上带上大量正电荷,成为一种典型的阳离子絮凝剂,它兼有电中和和吸附絮凝的双重功能,能与带负电荷的胶体微粒互相吸引,降低其表面ζ电势,压缩微粒表面的蔓延双电层,从而使胶体微粒脱稳,并通过壳聚糖高分子链的吸附黏结和架桥作用而产生絮凝沉淀。
壳聚糖乙酸溶液已用于去除无机和有机悬浮固体、饮料澄清、果汁脱酸和脱色、食品生产废水及含油废水的处理等,还可有效地去除废水中有机农药(如DDT)和重金属。
壳聚糖对蛋白质、淀粉等有机物的絮凝作用很强,可以从食品加工等废水中回收蛋白质、淀粉用作饲料。
壳聚糖对染料有较好的亲和力,用于染料废水脱色和去COD。
印染工艺中用法的有机染料大多是水溶性的,普通犯难降解的有机化合物,常规活性污泥中的微生物无法吞噬降解,普通的化学降解效果也较差,难以达到排放标准。
传统的无机絮凝剂对疏水性染料、分子量较大的染料脱色效率高,但对水溶性极好、分子量较小的染料脱色效果差,且处理成本高。
刘秉涛等用羧甲基壳聚糖对水溶性染料举行脱色实验。
用浓度为10的羧甲基壳聚糖5mL,作用于浓度为50mg/L的500mL五种染料溶液:挺直耐晒蓝(B-2V)、挺直深蓝(B-2G1)、挺直大红(B-3G)、棕色及棕黄色染料,在pH=3搅拌20min,静置6h,脱色率分离为97.9%、75.5%、61.4%、92.2%和68.5%。
在各自最佳pH值,而其他条件相同的状况下,分离用羧甲基壳聚糖、、聚合铝、4种絮凝吸附剂举行脱色比较实验,其脱色率依次为98. 2%、89. 4%、80.5%和13.2%。
相同加入量条件下,羧甲基壳聚糖和壳聚糖脱色效果比传统的聚合铝和聚丙烯酰胺都要好。
羧甲基壳聚糖吸附絮凝5种染料的等温线均符合Freundlich公式。
羧甲基壳聚糖和壳聚糖兼有吸附、絮凝、易为微生物降解等优点,更适用染料废水的深度脱色处理。
2009,Vol.26No.3化学与生物工程Chemistry &Bioengineering30 基金项目:山东省自然科学基金资助项目(Y2007B46)收稿日期:2008-11-12作者简介:王孝平(1982-),男,山西长治人,硕士研究生,研究方向:可降解高分子材料;通讯联系人:玄光善,教授。
E 2mail :myqust@ 。
壳聚糖与羧甲基壳聚糖对铁离子的络合性能研究王孝平,姜皓然,田海燕,玄光善(青岛科技大学药学系,山东青岛266042) 摘 要:考察了壳聚糖及羧甲基壳聚糖对Fe (Ⅱ)及Fe (Ⅲ)的络合性能,优化了壳聚糖及羧甲基壳聚糖与铁离子的络合条件,包括p H 值、壳聚糖或羧甲基壳聚糖用量、铁离子的起始浓度、络合时间等。
结果表明,壳聚糖及羧甲基壳聚糖载铁量多且能形成稳定性适度的络合物,有开发补铁剂的应用前景。
关键词:壳聚糖;羧甲基壳聚糖;铁离子;络合中图分类号:O 64114 文献标识码:A 文章编号:1672-5425(2009)03-0030-04 铁元素是体内重要的微量元素之一,是合成血红蛋白、肌红蛋白和多种氧化酶的重要原料,与造血机能、氧的运输、细胞内生物氧化过程及免疫机能有着密切的关系。
铁在体内的含量虽然甚微,却是所有必需的微量元素中含量最多的元素[1]。
当体内缺铁或铁的利用发生障碍时,会使血红蛋白的合成减少,新生的红细胞中血红蛋白量不足。
严重缺铁时不仅发生贫血,也可引起体内含铁的酶类缺乏,导致细胞呼吸发生障碍,影响组织器官的功能,临床上可发生胃肠道、循环、神经等系统的功能障碍[2]。
目前,临床上一般以硫酸亚铁、ED TA 2铁(Ⅱ)和葡萄糖酸亚铁等作为补铁剂,但常伴有胃肠道刺激和锈味等不良反应,以及生物利用度低、化学稳定性差等问题,并且铁(Ⅱ)在体内产生内源性自由基,导致细胞膜脂质过氧化而使细胞膜损伤。
多糖铁(Ⅲ)的配合物作为补铁剂不仅具有适宜的配合稳定性,对肠胃道基本无刺激作用,而且释放出铁后配体多糖具有多方面的生物活性[3],是对机体有益的成分,可被吸收利用。
壳聚糖复合物对近江牡蛎糖胺聚糖中镉的脱除郭妍妍;吴红棉;衣美艳;范秀萍;陈萌萌;胡雪琼【期刊名称】《食品科学》【年(卷),期】2014(035)012【摘要】利用凹土-壳聚糖复合物对近江牡蛎糖胺聚糖中的镉进行脱除.考察酶解液的pH值、振荡时间、复合物添加量和振荡速率对脱镉率和牡蛎糖胺聚糖回收率的影响,并以脱镉率和牡蛎糖胺聚糖回收率为指标,通过响应面法优化脱镉条件.结果表明:壳聚糖复合物脱除牡蛎中镉的最优条件是:pH 7.2、振荡时间30 min、添加量6.4 mg/mL、振荡速率170 r/min,此时镉脱除率为73.7%,糖胺聚糖回收率为44.1%.表明凹土-壳聚糖复合物能有效地脱除近江牡蛎糖胺聚糖中的镉,并且对糖胺聚糖的回收率影响不大.【总页数】7页(P46-52)【作者】郭妍妍;吴红棉;衣美艳;范秀萍;陈萌萌;胡雪琼【作者单位】广东海洋大学食品科技学院,广东湛江 524088;广东海洋大学食品科技学院,广东湛江 524088;广东海洋大学食品科技学院,广东湛江 524088;广东海洋大学食品科技学院,广东湛江 524088;广东海洋大学食品科技学院,广东湛江524088;广东海洋大学食品科技学院,广东湛江 524088【正文语种】中文【中图分类】TS254.7【相关文献】1.壳聚糖及其衍生物脱除贝类中重金属的机理及应用研究进展 [J], 李子琪;孟倩;孙凤清;王英文;丁美玉;邱咏梅;解万翠2.壳聚糖对珠江口海域牡蛎酶解液中镉离子的脱除研究 [J], 李衍森;党爱翠3.壳聚糖及羧甲基壳聚糖对螺蛳体内铅镉的脱除 [J], 王贤波; 余霞奎; 刘军波; 李锋4.羧甲基壳聚糖/植酸复合膜对变压器油中金属杂质的吸附脱除研究 [J], 郑科旺; 李伟; 王伟; 覃彩芹5.功能化壳聚糖铜离子配合物树脂对白葡萄酒中敏感多酚和蛋白的脱除降解作用[J], 宁路方;耶玉婷;汪东风;许珂;王星宇因版权原因,仅展示原文概要,查看原文内容请购买。
羧甲基壳聚糖的性能及应用概况一、本文概述《羧甲基壳聚糖的性能及应用概况》这篇文章旨在全面介绍羧甲基壳聚糖(Carboxymethyl Chitosan,简称CMC)的基本性能及其在各个领域的应用情况。
羧甲基壳聚糖是一种由壳聚糖经过化学改性得到的水溶性多糖衍生物,具有良好的水溶性、生物相容性、生物可降解性和独特的物理化学性质。
由于其独特的性质,羧甲基壳聚糖在医药、食品、环保、农业和化妆品等多个领域得到了广泛应用。
本文将系统介绍羧甲基壳聚糖的基本性质、合成方法、改性技术,以及在不同领域中的应用实例和研究进展,以期为相关领域的研究人员和企业提供有价值的参考信息,推动羧甲基壳聚糖在各领域的应用和发展。
二、羧甲基壳聚糖的基本性质羧甲基壳聚糖(Carboxymethyl chitosan,简称CMC)是一种重要的壳聚糖衍生物,具有一系列独特的物理化学性质。
其最基本的性质源于其分子结构中的氨基和羧基官能团,这些官能团赋予了CMC出色的水溶性、离子交换能力和生物活性。
羧甲基壳聚糖的溶解性相较于未改性的壳聚糖有了显著提升。
由于羧甲基的引入,CMC在水中的溶解度大大增加,可以在广泛的pH值范围内溶解,这使得其在各种水溶液体系和生物应用中具有更大的灵活性。
CMC具有良好的离子交换能力。
其分子中的羧基可以发生电离,产生带有负电荷的离子,从而与带有正电荷的离子进行交换。
这种离子交换性质使得CMC在重金属离子吸附、水处理、药物载体等领域具有广泛的应用前景。
羧甲基壳聚糖还表现出良好的生物相容性和生物活性。
其分子结构中的氨基和羧基可以与生物体内的多种物质发生相互作用,如蛋白质、多糖、核酸等,从而显示出良好的生物相容性。
其生物活性使得CMC在生物医药、组织工程、生物传感器等领域具有潜在的应用价值。
羧甲基壳聚糖的基本性质使其在多个领域具有广泛的应用前景。
随着科学技术的不断发展,对CMC的研究和应用将会越来越深入,其在各个领域的应用也将不断拓展。
生物炭-壳聚糖复合材料对镉污染土壤的修复效果研究作者:杨克俭李忠徽姜凌闫江涛王显炜杨雅杰来源:《安徽农业科学》2024年第08期摘要[目的]探讨生物炭-壳聚糖复合材料(CBC)对镉(Cd)污染土壤的修复效果。
[方法]以黑麦草为供试植物进行盆栽试验,探究向酸性低镉土壤、中性高镉土壤和碱性高镉土壤中分别添加0、0.5%、1.0% 和3.0%(W/W)的CBC时,土壤pH、全镉含量、有效态镉含量、黑麦草根和茎叶的生物量以及其中的全镉含量变化情况。
[结果]施用CBC可以提高酸性和中性土壤的pH。
随着CBC施用量的增加,土壤中有效态镉含量降低,当施加量至3.0%时达到显著水平。
CBC可以钝化土壤中的镉活性,其钝化效果与土壤污染程度、酸碱性密切相关。
随着CBC施加量的增加,黑麦草根和茎叶中镉含量降低,尤其植物地上部分降低效果明显,也证明了CBC对土壤中镉具有钝化作用;黑麦草的富集系数(BCF)和转运系数(TF)随CBC施用量的增加而减小,表明施用CBC能够减弱土壤中的镉向植株体内的迁移,从而达到缓解镉毒害的作用。
[结论]CBC可以用于镉污染土壤的修复,尤其是在污染程度严重的酸性土壤中效果更加显著。
关键词生物炭-壳聚糖复合材料;土壤酸碱性;钝化修复;镉污染土壤;黑麦草中图分类号 X53 文献标识码 A文章编号 0517-6611(2024)08-0066-05doi:10.3969/j.issn.0517-6611.2024.08.016Study on the Remediation Effect of Biochar-chitosan Composite on Cd Contaminated SoilYANG Ke-jian1,LI Zhong-hui1,JIANG Ling2 et al(1.Shaanxi Hydrogeology Engineering Geology and Environment Geology Survey Center,Xi’an,Shaanxi 710068;2.College of Water and Environment,Chang’an University,Xi’an,Shaanxi 710054)Abstract [Objective]To explore the remediation effect of biochar-chitosan composite (CBC) on Cd contaminated soil.[Method]A pot experiment was conducted with ryegrass as the test plant,the changes of soil pH,total Cd content,available Cd content,biomass of ryegrassroots and leaves,and total Cd content in acidic low Cd soil,neutral high Cd soil and alkaline high Cd soil were investigated when CBC was added to 0,0.5%,1.0% and 3.0% (W/W) respectively.[Result]The application of CBC could increase the pH of acidic and neutral soils.The available Cd decreased with the increase of CBC application,and reached a significant level when the application amount reached 3.0%.CBC could passivate Cd activity in soil,and its passivation effect was closely related to the degree of soil pollution and acid-base property.With the increase of CBC application,the Cd content in the roots and shoots of ryegrass decreased,especially the effect on the aboveground part of plants was significant,directly indicating that CBC had a immobilization effect on Cd in soil.The BCF and TF of ryegrass decreased with the increase of CBC application rate,indicating that the application of CBC could reduce the migration of Cd from soil to the plant body,thereby achieving the effect of alleviating Cd toxicity.[Conclusion]The CBC can be used for the remediation of Cd contaminated soil,especially in heavily polluted acidic soils.Key words Biochar-chitosan composite (CBC);Soil acidity and alkalinity;Immobilization remediation;Cd contaminated soil;Ryegrass镉(Cd)是重金属“五毒”元素之一,具有移动性大、毒性强、难降解等特点,易被植物吸收富集,严重影响农作物的产量和品质,并通过食物链进入人体,危害人体健康[1-2]。