单斜臂式悬架刚度与阻尼特性设计计算与仿真
- 格式:pdf
- 大小:8.83 MB
- 文档页数:5
基于ADAMS的悬置刚度仿真指南悬置系统是汽车重要的组成部分之一,悬置系统的刚度对于汽车的操控性、行驶稳定性以及乘坐舒适度具有重要的影响。
在汽车的设计与开发过程中,需要对悬置系统的刚度进行仿真分析,以评估悬置系统的性能与优化方案。
ADAMS是一款基于多体动力学原理的仿真软件,通过ADAMS可以对悬置系统进行仿真分析,评估不同刚度设置下的悬置系统性能,从而优化悬置系统的设计。
以下是基于ADAMS的悬置刚度仿真指南:1.建立悬置系统模型:首先,根据实际车型的悬置系统设计,建立ADAMS中的刚体系统模型。
模型的建立包括车身、悬挂弹簧、减震器等关键部件。
2.约束和连接:根据实际情况,为刚体系统中的各个部件添加合适的约束和连接关系,以模拟实际的力学性能。
3.刚度参数设置:设置悬挂弹簧和减震器的刚度参数。
通过设置不同的刚度值,可以评估悬挂系统在不同刚度下的动力学性能。
4.路面加载:设置适当的路面加载,在ADAMS中模拟实际道路的动力学输入。
5.运行仿真:运行ADAMS仿真,获取悬置系统在不同刚度设置下的动力学响应,如车身的加速度、悬挂系统的行程、悬挂系统的受力情况等。
6.评估性能:分析仿真结果,评估悬置系统在不同刚度设置下的性能表现。
比较不同刚度设置下的悬置系统动力学响应,选择最优的刚度设置。
7.优化方案:根据评估结果,对悬置系统的刚度进行优化设计。
可以通过改变悬挂弹簧的刚度、减震器的阻尼等方式进行优化,并重新进行仿真分析以验证优化方案的效果。
8.结果分析与报告:对优化后的悬置系统进行结果分析,并将分析结果整理成报告,为后续的悬置系统设计和优化提供参考。
悬架强度、刚度仿真分析方法1.概述1.1汽车悬架悬架是汽车的车架(或承载式车身)与车桥(或车轮)之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并减少由此引起的震动,以保证汽车能平顺地行驶。
1.2使用软件说明ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换,如NASTRAN, I-DEAS, AutoCAD等。
是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。
在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等领域有着广泛的应用。
ANSYS功能强大,操作简单方便,现在已成为国际最流行的有限元分析软件,在历年的FEA评比中都名列第一。
目前,中国100多所理工院校采用ANSYS软件进行有限元分析或者作为标准教学软件。
ANSYS Mechanical是利用ANSYS的求解器进行结构和热分析的。
其可进行结构、动态特性、热传递、磁场及形状优化的有限元分析。
1.3相关力学理论刚度是指材料或结构在受力时抵抗弹性变形的能力。
是材料或结构弹性变形难易程度的表征。
材料的刚度通常用弹性模量E来衡量。
在宏观弹性范围内,刚度是零件荷载与位移成正比的比例系数,即引起单位位移所需的力。
它的倒数称为柔度,即单位力引起的位移。
刚度可分为静刚度和动刚度。
刚度是使物体产生单位变形所需的外力值。
刚度与物体的材料性质、几何形状、边界支持情况以及外力作用形式有关。
材料的弹性模量和剪切模量(见材料的力学性能)越大,则刚度越大。
2.前处理2.1定义材料建立几何模型后,进入Engineering Data界面,选择钢材料作为悬架分析的材料。
基于可视化界面的悬架性能分析与刚度阻尼参数选择匹配张增年1 , 高立新2 , 周慧会3 , 娟3徐(1 . 浙江万里学院电子信息学院,浙江宁波315100 ; 2 . 奇瑞汽车有限公司,安徽芜湖院,安徽合肥230009)241000 ; 3 . 合肥工业大学机械与汽车工程学摘要:文章建立了基于横向和垂向动力学合成的整车系统模型,以某款商务车为研究对象,分析了汽车悬架设计中主要的性能指标。
利用Vi sual C + + 编程,通过可视化界面实现了悬架阻尼刚度参数的选择匹配和复杂的计算分析过程,并且可直接输入整车参数得出仿真曲线,对悬架性能和参数进行有效的评价。
关键词:悬架; 性能分析; 刚度阻尼参数; 匹配中图分类号: T P302 . 7 ; U270 . 11 文献标识码: A文章编号:100325060 (2007) 0720813204 Anal y sis of suspension perf or mance an d m atc hing of t he st i ff n essan d da m p para meters b a s ed on visib l e interfacesZ H A N G Ze n g2nia n1 , G A O L i2xi n2 , Z H O U H u i2h u i3 , XU J ua n3( 1 . Dep t . of Elect ro nics a nd Info r m at io n , Zhejia n g Wa nli U ni ver sit y , Ni ngbo 315100 , Chi na ; 2 .Cher y A uto mo ti ve Co mp a n y , Wu h u 241000 , Chi na ; 3 . School of Machi n er y and A uto mo bile Engi n eeri ng , Hef e i U n i ver sit y of Technolo gy , Hef ei 230009 , Chi na) Abstract :A mo d el of a n i nt e g rat e d dyna m ic syst e m of s u s p e n s io n a n d st e eri n g i s set up by a n al y zi n g t he ca r mo tio n of st ee ri ng a nd bo unce a s well a s t hei r i nt eractio n acco r di ng to t he p ri nci p l e of ve h i cle sy s t e m dyna mic s. B y t a ki ng a n M PV a s a n e xa mp le , so me i n2dep t h a nal ysi s of t he su s p e n s i o n p e r2 fo r ma nce i s ca r ried o ut . The co mp le x calc ulatio n a nd mat c h i ng of t h e s u sp e n s io n p a ra met er s a r e co m2 p let ed wit h t he help of t he Vi s ual C + + p ro gra m , a nd vi si ble i nt erf ace s a re ma de . Th u s t h e si m ula2 tio n s a re o bt ai ne d by i np u t t i ng t h e ca r p a ra met er s di rect l y , a nd eval uatio n of t h e s u s p e n sio n p e r fo r m2 a n ce a n d p a r a m et e r s ca n be ma d e .K ey w ords :s u s p e n s io n ; p e r fo r ma n ce a n al y s i s ; stiff n e s s a n d da m p p a r a met e r s ; mat c hi n g悬架是车架(或承载式车身) 与车桥(或车轮)之间的一切传力连接装置的总称,其功用在于:在垂直方向起减振和悬挂作用; 在侧向可防止侧倾与左右车轮载荷转移; 在行驶方向上保证驱动和制动的实现并保持方向稳定性。
悬架的参数计算公式悬架系统是汽车重要的组成部分,它直接影响着汽车的操控性、舒适性和安全性。
悬架系统的设计需要考虑多个参数,其中包括弹簧刚度、阻尼系数、悬架几何参数等。
本文将重点介绍悬架的参数计算公式,帮助读者更好地理解悬架系统的设计原理。
1. 弹簧刚度计算公式。
弹簧刚度是指单位位移下所受的弹簧力,通常用N/mm或N/m来表示。
弹簧刚度的计算公式如下:K = F / δ。
其中,K表示弹簧刚度,F表示弹簧所受的力,δ表示弹簧的变形量。
在实际设计中,弹簧刚度需要根据车辆的质量、悬架的类型和使用环境来确定。
2. 阻尼系数计算公式。
阻尼系数是指单位速度下所受的阻尼力,通常用N/(m/s)来表示。
阻尼系数的计算公式如下:C = F / v。
其中,C表示阻尼系数,F表示阻尼器所受的力,v表示阻尼器的速度。
阻尼系数的大小直接影响着悬架系统的舒适性和稳定性,需要根据车辆的使用环境和悬架的类型来确定。
3. 悬架几何参数计算公式。
悬架几何参数包括悬架的几何结构、悬架的位置和角度等。
这些参数的设计需要考虑车辆的操控性和稳定性。
常见的悬架几何参数包括悬架的下摆臂长度、上摆臂长度、悬架的前后距离等。
这些参数的计算需要结合车辆的设计要求和悬架的类型来确定。
4. 悬架系统的动力学模型。
悬架系统的动力学模型包括悬架的质量、弹簧、阻尼器等参数,可以用来描述悬架系统的运动规律。
常见的悬架系统动力学模型包括单自由度模型、双自由度模型等。
这些模型可以用来分析悬架系统的振动特性和响应特性,对悬架系统的设计和优化具有重要的意义。
5. 悬架系统的优化设计。
悬架系统的优化设计需要考虑多个参数的综合影响,包括弹簧刚度、阻尼系数、悬架几何参数等。
优化设计的目标通常包括提高车辆的操控性、舒适性和安全性。
在实际设计中,可以利用计算机辅助设计软件来进行悬架系统的优化设计,通过多次模拟和分析来确定最佳的参数组合。
总结。
悬架系统的设计需要考虑多个参数,包括弹簧刚度、阻尼系数、悬架几何参数等。
汽车主动悬架系统建模及动力特性仿真分析首先,我们需要对汽车主动悬架系统进行机械建模。
主动悬架系统主要由减震器、弹簧、控制器和执行器组成。
减震器负责吸收车辆运动过程中的冲击力,提供较好的悬挂效果;弹簧则起到支撑车身和调整悬挂硬度的作用;控制器负责监测车辆的运动状态,并根据传感器的反馈信号调整悬挂硬度;执行器负责根据控制信号改变减震器的工作状态。
这些组成部分可以用方程和图表表示,以便进行后续仿真分析。
接下来,我们可以进行汽车主动悬架系统的动力特性仿真分析。
在仿真分析中,我们可以改变各个部件的参数,如弹簧硬度、减震器阻尼、控制器的响应时间等,以观察这些参数对悬挂系统的影响。
通过仿真分析,我们可以得到不同参数下悬挂系统的动力特性,如车辆的悬挂位移、车身加速度、车轮载荷等。
同时,我们也可以通过仿真分析来验证主动悬架系统对车辆行驶稳定性和驾驶舒适性的改善效果。
比较不同参数下的悬挂系统对车辆悬挂位移和车身加速度的变化,可以评估不同参数下的系统性能。
此外,还可以通过对比不同参数下车轮载荷的变化来了解悬挂系统对车辆操控性的改善效果。
通过这些仿真分析,我们可以得到最佳的悬挂系统参数,以优化车辆的行驶稳定性和驾驶舒适性。
总之,汽车主动悬架系统的建模和动力特性仿真分析是对该系统性能评估的重要环节。
通过对系统进行机械建模和动力仿真分析,可以得到系统的动力特性,并评估系统的改善效果。
这些分析结果将为系统设计和优化提供指导,以满足驾驶者的驾驶需求和提高汽车悬挂系统的性能。
车辆悬架模型的仿真与分析目前,关于汽车模型的研究很多。
詹长书等人研究了二自由度懸架模型的频域响应特性。
李俊等人模拟了不同车速和路况下二自由度车辆模型的动力学。
郑兆明研究了二自由度车轮动载荷的均方值。
基于Matlab建立了更加复杂的悬架模型,分析了其在模拟路面作用下的响应,分析了系统阻尼参数和刚度参数变化对车身动态响应的影响。
标签:汽车悬架;模型;模拟据公安部交通管理局统计,截至2019年3月底,全国机动车保有量达3.3亿辆,其中汽车达2.46亿辆,驾驶人达4.1亿,机动车、驾驶人总量及增量均居世界第一。
随着汽车数量的迅速增加,人们开始越来越重视汽车的乘坐舒适性,平顺性是舒适性的重要组成部分。
振动是影响平顺性的主要因素,因此车身系统参数的合理设计对提高汽车的舒适性和安全性具有重要意义。
1车辆悬架模型传统的悬架系统一般由弹性元件和参数固定的阻尼元件组成。
本文选择汽车后轮的任意悬架系统建立四分之一模型。
该模型的简图如下图1所示。
其中,1是螺旋弹簧,2是纵向推力杆,3是减震器,4是横向稳定器,5是定向推力杆。
2悬架刚度分析2.1悬架垂直刚度分析悬架系统的垂直刚度可以通过分析悬架两个车轮在同一方向上的运行情况来获得。
因为装有发动机的车辆的前轴载荷变化很大,所以前悬架通过调节螺旋弹簧的刚度和自由长度来确保车身姿态。
后悬架的轴重变化不大,只有螺旋弹簧的自由长度略有调整,后悬架螺旋弹簧的刚度没有调整。
这导致带有发动机的B 车型前悬架刚度略有增加。
除了悬架结构和参数的匹配外,前后悬架固有频率的正确匹配是降低车辆振动耦合度、有效提高车辆乘坐舒适性的重要方法之一。
由于B型前悬架的轴重变化很大,通过调整前悬架螺旋弹簧的刚度,前悬架和后悬架的偏置频率比几乎不变。
2.2悬架倾角的刚度分析一般来说,乘用车的前后侧倾刚度比要求在1.4和2.6之间,以满足略微不足的转向特性的要求。
B车型前悬架的侧倾刚度略高于C车型,这是由前悬架刚度的增加引起的。