4.1 线段的比 教案5(北师大版八年级下)
- 格式:doc
- 大小:199.50 KB
- 文档页数:5
第四章相像图形4.1 线段的比一、教学设计目标1.知道线段比的观点.2.会计算两条线段的比.3.熟记比率的基天性质,并能进行证明和运用.二、教学设计过程1.两条线段的比的观点两条线段的比就是两条线段长度的比.比方:线段 a 的长度为 3 厘 M ,线段 b 的长度为6M ,所以两线段a,b 的比为 3∶6=1 ∶2,对吗?不对,由于a、b 的长度单位不一致,所以不对.注意:在量线段时要采用同一个长度单位.2..例题在某市城区地图(比率尺 1∶ 9000)上,新安大街的图上长度与光彩大街的图上长度分别是 16 cm、 10 cm.(1)新安大街与光彩大街的实质长度各是多少M ?(2)新安大街与光彩大街的图上长度之比是多少?它们的实质长度之比呢?解:( 1)依据题意,得新安大街的图上长度1新安大街的实质长谎9000光彩大街的图上长度1光彩大街的实质长度9000所以,新安大街的实质长度是16× 9000=144000( cm) ,144000 cm=1440 m 。
光彩大街的实质长度是10× 9000=90000( cm)90000 cm=900 m.( 2)新安大街与光彩大街的图上长度之比是 16∶ 10=8∶ 5 新安大街的实质长度与光彩大街的实际长度之比是144000∶ 90000=8∶ 5由例 2 的结果能够发现:新安大街的图上长度光彩大街的图上长度新安大街的实质长度光彩大街的实质长度三、随堂练习1.在比率尺为1∶8000 的某学校地图上,矩形体育场的图上尺寸是 1 cm ×2 cm,矩形运动场的实质尺寸是多少?解:依据题意,得所以,矩形体育场的长是2× 8000=16000( cm ) =160(m ) 矩形体育场的宽是1× 8000=8000 ( cm ) =80 ( m )所以,矩形体育场的实质尺寸是长为160 m,宽为 80 m.四、活动与研究为了参加北京市申办2008 年奥运会的活动,假如有两边长分别为 1, a (此中 a >1)的一块矩形绸布,要将它剪裁出三面矩形彩旗(面料没有节余),使每条彩旗的长和宽之比与 原绸布的长和宽之比同样,画出两种不一样裁剪方法的表示图,并写出相应的a 的值 .解:方案( 1):∵长和宽之比与原绸布的长和宽之比同样,(* )1∴1a3 a1解得: a= 3方案( 2): 由( *)得1 x 12 a111a∴ x= 1,a= 2a方案( 3):由( *)得1y ∴ y= 1a 1 2a2且1z∴ z= 1a 1a由1 1=a 得 a= 16a 2a 2方案( 4):由( *)得1b1na1a11 a1a1a∴ b=1a m a12- 1 n=1-2m=aa∵m+n=1 ∴ 1-1+a2- 1=1 a2∴a= 2 2 5(负值舍去)24.2 黄金切割一、教学设计目标理解黄金切割二、教学设计过程如图:点 C 把线段 AB 分红两条线段AC 和 AB ,假如AC=BC那么称线段AB被点C黄金AB AC切割,点 C 叫做线段AB 的黄金切割点,AC 与 AB 的比叫做黄金比。
教案:线段的比目标:通过本节课的学习,使学生掌握线段的比的概念和计算方法,并能够运用所学知识解决实际问题。
教学重点:线段的比的概念和计算方法教学难点:线段的比的应用问题教学准备:教学课件,练习题,实物线段模型教学过程:1.导入新课(5分钟)引导学生回顾一下上一节课的内容,复习两线段之间的运算关系,并提出本节课的话题,线段的比。
2.引入概念(10分钟)展示一组实物线段模型,并让学生观察,比较其长度。
引导学生思考如何表示这种长度之间的比例关系。
通过与学生讨论,引出线段的比的概念,并给出定义:“线段的比是指两条线段在长度上的相对大小关系。
”3.计算方法(15分钟)通过实例,介绍计算线段的比的方法。
首先,设置一个比例尺,将线段分成相等的小段,然后,分别计算两个线段的长度,并进行比较。
最后,用一个比值来表示线段的比。
例如:线段AB的长度为6cm,线段CD的长度为4cm,可以表示为AB:CD=6:44.实例练习(20分钟)让学生根据所学方法,完成一些线段比的计算练习。
提供一些实际场景的问题,例如:张三和李四一起从校门口到教室,张三走了80米,李四走了60米,两人之间的距离应如何表示?引导学生用线段比的方法解答问题。
5.拓展应用(20分钟)让学生结合自己的生活实际,设计一个线段比的问题,并进行求解。
例如:王五拿着一个长3cm的尺和4个长2cm的木棍,王五想用这些木棍摆出一个正方形。
王五应该怎样分配这些木棍呢?鼓励学生自主思考和解决问题,并邀请他们上台分享和展示自己的答案。
6.归纳总结(10分钟)通过学生的讨论和分享,帮助他们归纳总结线段比的计算方法和应用技巧。
7.课堂小结(5分钟)对本节课的主要知识点进行复习,并对学生的学习情况进行总结。
8.课后作业(5分钟)布置课后作业,让学生继续巩固所学内容。
例如:完成作业册中的相关练习题或编写自己的线段比问题,并找寻解答。
教学反思:通过本节课的教学,学生理解了线段比的概念和计算方法,并能够应用所学知识解决实际问题。
八年级数学 4.1.1 线段的比【学习目标】1、结合现实情境了解线段的比和成比例线段。
2、理解并掌握比例的性质及其简单应用。
【重点】会求两条线段的比。
【难点】会求两条线段的比,注意线段长度的单位要统一。
【学习过程】一、引入新课大家见到过形状相同的图形吗?请举出例子来说明.二、新课学习1、两条线段的比的概念探究一:如图,⑴线段AB=4cm ,CD=1cm ,则线段AB 与CD 的长度比是 。
⑵若把大树和小颖的高分别看成是如图所示的线段AB ,CD ,已知小颖身高是1.6cm ,大数的实际高度是 。
※实际长度之比 图上长度之比,比例尺= 。
※定义:如果选用同一个 量得两条线段AB 、CD 的长度分别是m 、n ,那么就说这两条线段的比AB :CD = ,或写成CDAB = 。
其中,线段AB 叫做这个线段比的 :CD 叫做这个线段比的 。
如果把nm 表示成比值k ,那么CD AB = ,或AB= 。
※2、求两条线段的比时要注意的问题:(1)两条线段的比就是它们的长度之比。
(2)两条线段的比,与所采用的长度单位无关,只须一致即可。
(3)两条线段的比值总是正数。
3、练习:(1)线段AB=10cm ,CD=15cm ,则AB :CD= 。
(2)小明的身高1.65m ,臂长60cm ,则身高与臂长的比值是 。
(3)甲、乙两地距离为3.5km ,画在地图上为7cm ,则这张地图的比例尺为 。
4、【例题】在某市城区地图(比例尺1:9000)h ,新安大街的图上长度与光华大街的图上长度分别是16cm ,10cm 。
⑴新安大街与光华大街的实际长度各是多少米?⑵新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢?解:(1)根据题意,得19000=新安大街的图上长度新安大街的实际长度 =光华大街的实际长度光华大街的图上长度 因此,新安大街的实际长度是光华大街的实际长度是 C D⑵ 新安大街与光华大街的图上长度之比是16:10=则新安大街与光华大街的实际长度之比是:由上题的结果可以发现:=新安大街的图上长度新安大街的图上长度光华大街的实际长度光华大街的实际长度三、课堂练习1.课本103页随堂练习12、课本103页习题4.1第1题四、课堂检测1、若线段AB=3 cm ,CD=6 cm ,则AB ∶ CD________,CD ∶AB=_________。
初二数学暑假专题 图形的相似北师大版【本讲教育信息】一.教学内容:暑假专题——图形的相似二.教学目标:1.了解线段的比、成比例线段、黄金分割.2.了解相似多边形的性质,掌握两个三角形相似的条件.3.了解图形的位似,能够利用作位似图形等方法将一个图形放大或缩小,利用图形的相似解决一些实际问题.三.知识要点分析: 1.线段的比(1)比例的性质:①a b =c d ⇔ad =bc ;②a b =c d ⇒b a =d c ;③a b =c d ⇒a ±b b =c ±d d ;④a b =cd=e f =…=mn (b +d +f +…+n ≠0)⇒a +c +e +…+m b +d +f +…+n =a b. (2)点C 把线段AB 分成AC 和BC 两条线段.如果AC AB =BCAC ,那么称线段AB 被点C黄金分割.点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 2.相似三角形的判定、性质(1)相似三角形的对应角相等,对应边成比例.(2)两个三角形相似的条件:①两角对应相等的两个三角形相似;②三边对应成比例的两个三角形相似;③两边对应成比例且夹角相等的两个三角形相似. 3.相似多边形的性质(1)相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比. (2)相似多边形的周长比等于相似比,面积比等于相似比的平方.4.位似图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点.位似图形上任意一对对应点到位似中心的距离之比等于位似比. 5.本讲内容结构如下:线段的比黄金分割形状相同的图形相似多边形的概念相似三角形及其判定条件的探索相似的综合应用,测量旗杆的高度相似多边形的性质图形的放大与缩小【典型例题】知识点1:线段的比例1.已知a 2=b 3=c 4=d5≠0,求a +b +c +d b +c的值.题意分析:本例考查比例的性质,从已知和所求来看不能直接利用比例的性质解题. 思路分析:根据已知比例式的特点,设一个参数表示出a 、b 、c 、d ,再代入所求代数式求解.或利用比例的性质把已知和所求变形,以寻求中间比. 解:∵a 2=b 3=c 4=d5≠0,∴a +b +c +d 2+3+4+5=a 2,b +c 3+4=b 3=a 2, ∴a +b +c +d 14=b +c 7,∴a +b +c +d b +c=147=2.解题后的思考:本例是等比性质与反比性质的综合运用.例2.已知线段AB =6,C 为AB 的黄金分割点,求AC -BC 的值.题意分析:黄金分割点把已知线段分成的较长线段与原线段的比是黄金比.思路分析:由黄金比和AB 的长度可求出AC 、BC 的长度,再求差即可.但应注意点C 的位置有两个.解:(1)若AC >BC ,如图所示:AB C∵点C 是线段AB 的黄金分割点,∴AC =5-12·AB =5-12×6=35-3,BC =AB -AC =6-(35-3)=9-35. ∴AC -BC =(35-3)-(9-35)=65-12. (2)若AC <BC ,如图所示:ABC则BC =5-12·AB =35-3. ∴AC =AB -BC =6-(35-3)=9-35, ∴AC -BC =(9-35)-(35-3)=12-65. 综上所述,AC -BC 的值为65-12或12-65.解题后的思考:本例极容易忽视一条线段上有两个黄金分割点,即AC 不一定是较长线段,应分情况计算.注意,本例两种情况下的结果可分析出是互为相反数,因此可先计算其中一种的结果,另一种取其相反数即可.小结:解决比例问题除了要熟练掌握比例的性质,还有一种重要方法,那就是引入比值k 的方法.利用这种方法可以很方便地推导出比例的性质、解决比例式求值问题.知识点2:相似图形例3.如图所示,△ABC ∽△DBA ,∠BAC =80°,∠C =70°,AB =5cm ,AC =3cm ,BC =6cm ,求∠BDA 、∠BAD 、∠DAC 、BD 、AD 、DC .BCD题意分析:本题根据相似三角形的性质求相似三角形的对应角的度数和对应边的长度. 思路分析:把已知的角、线段和所求的角、线段分类,化归到相应的相似三角形中,其中∠DAC 和DC 不能转化为相似三角形的角和边,应利用求差的方法来解.解:∵△ABC ∽△DBA ,∴∠BDA =∠BAC =80°,∠BAD =∠C =70°. ∴∠DAC =∠BAC -∠BAD =80°-70°=10°.∵△ABC ∽△DBA ,∴AB DB =BC BA =ACDA.即5BD =65=3AD ,解得BD =256,AD =52, ∴DC =BC -BD =6-256=116.解题后的思考:解决相似三角形的性质问题时,注意对应位置上的字母必须对应,这样才能保证其中的角、线段的对应关系.例4.如图所示,在矩形ABCD 中,E 在AD 上,EF ⊥BE ,交CD 于F ,连接BF ,则图中与△ABE 一定相似的三角形是( )A .△EFBB .△DEFC .△CFBD .△EFB 与△DEFAB CDEF题意分析:要判定两个三角形是否相似,只需看这两个三角形是否具备相似条件,另外还要注意矩形的四个角都是直角这一隐含条件.思路分析:由题中给的已知条件可知,∠EAB =∠FDE =90°,∠DEF +∠EFD =∠DEF +∠BEA =90°,故∠EFD =∠BEA ,所以△ABE 与△DEF 相似,选项A 、C 中均没有△DEF ,故可排除,而我们又无法找到△EFB 与△ABE 相似所具备的条件,因此选项B 是正确的.解:B解题后的思考:一般情况下,在判断两个三角形是否相似时,若不知道两个三角形各边长度关系时,应考虑两角是否对应相等.小结:判断两三角形相似的方法有三种,其中“两角对应相等,两三角形相似”最简单,也最常用.知识点3:相似图形的应用例5.有一块三角形形状的铁板,如图所示,其中,AB =90cm ,AC =60cm ,BC =45cm ,现要在AB 、AC 上确定两点D 、E ,然后沿DE 将上面部分剪去,使剩下的四边形部分BDEC 为梯形,且DE =15cm ,如何确定点D 和点E 的位置?B CDE题意分析:欲确定点D 、E 的位置,只要求出AD 、AE 的长即可.思路分析:由已知条件,较易推出△ADE ∽△ABC ,利用其对应边成比例,即可求出AD 、AE 的长.解:由四边形BDEC 为梯形,得DE ∥BC ,所以∠ADE =∠B ,∠AED =∠C ,△ADE ∽△ABC .所以DE BC =AD AB =AE AC ,即1545=AD 90=AE 60.因此AD =30(cm ),AE =20(cm ).即点D 应距顶点A30cm ,点E 应距顶点A20cm .解题后的思考:本题利用相似三角形的性质求出AD 、AE 的长,进而确定点D 和点E 的位置.题中要求“使剩下的四边形部分BDEC 为梯形”,如果将这一要求去掉,又该如何剪呢?例6.如图,电影胶片上每一个图片的规格为cm ×cm ,放映银幕的规格为2m ×2m ,若放映机的光源S 距胶片20cm 时,问银幕应在离镜头多远的地方才能使放映的图像刚好布满整个银幕?S题意分析:如图所示,可以看作一个正四棱锥.光源S 到胶片的距离正好是点S 到胶片中心的距离,光源S 到银幕的距离正好是点S 到银幕中心的距离.思路分析:设胶片和银幕两个正方形的中心(对角线交点)分别为O 2、O 1.则SO 1SO 2=SD 1SD 2=A 1D 1A 2D 2. B 1C 1D 1SA 1O 1O 2B 2A 2C 2D 2解:设银幕距镜头xcm ,根据题意,得2m =200cm . x 20=200,解得x =80007. 80007cm =807m . 答:银幕距镜头807m 时,放映的图像刚好布满整个银幕.解题后的思考:解决此类问题首先应建立数学模型,把实物立体图形转化为平面几何图形,从而构造出相似三角形.小结:图形相似与现实世界有着密切的联系,常见的应用问题有两类:一是阳光下测量物体的高度.二是从某一点观测物体.总结:学习本讲应注意两点:一是利用比例的性质、相似图形的性质解决一些计算类的题目;二是在判断三角形相似或说明角相等、线段之间的关系时逐步加强逻辑推理的力度,认识和把握更为复杂的图形,提高研究“空间与图形”的水平.【预习导学案】(暑假专题——证明)一.预习前知1.什么是定义、命题、定理、公理、推论、证明?2.平行线的性质有哪些?如何判定两直线平行?3.三角形内角和定理及其推论是什么?二.预习导学1.下列语句中不是命题的是()A.相等的角不是对顶角B.两直线平行,内错角相等C.两点之间线段最短D.过点O作线段MN的垂线2.地理老师在黑板上画了一幅世界五大洲的图形,并给每个洲都写上了代号,然后,他请5个同学每人认出2个洲来,5个同学的回答是:甲:3号是欧洲,2号是美洲乙:4号是亚洲,2号是大洋洲丙:1号是亚洲,5号是非洲丁:4号是非洲,3号是大洋洲戊:2号是欧洲,5号是美洲地理老师说:“你们每个人都认对了一半。
课题: 4.1线段的比(1)学习目标1.知道线段比的概念.2.会计算两条线段的比. 学习重点难点会求两条线段的比. 注意线段长度的单位要统一. 预习过程:一、认识线段的比: 1、阅读课本P101页,回答课本问题:2、想一想:两条线段长度的比与采用的长度单位有没有关系?例如:数学课本长为21cm ,宽为15cm ,则长与宽的比为______________;如果把单位改为mm ,则数学课本长与宽的比为________________;如果把单位改为m ,则数学课本长与宽的比为________________.你得到结论了吗? 两条线段长度的比与采用的长度单位_________. 3、阅读课本P102页,回答下列问题:如果选用 量得两条线段AB 和CD 的长分别是m ,n ,那么就说这两条线段的比AB:CD=m:n ,或写成nmCD AB .其中,线段AB ,CD 分别叫做这个线段比的 和 .如果把n m 表示成比值k (k 是无单位的正实数),那么CDAB =k ,或AB= ,所以nm= ,或m = . 注意:(1)求两条线段的比时,两条线段的长度单位________!不统一时,要先化成________长度单位,再求线段的比;(2)线段的比是线段_______的比,是一个没有单位的________;(3)两条线段长度的比与采用的长度单位_________,只要采用________的长度单位即可 【基础练习一】1、 线段a=5cm,b=50cm,则a:b=_____.线段a=3cm,b=12mm,则a:b=_____.2、 延长线段AB 到C ,使BC=2AB,则AC:AB=______3、已知点P在线段AB上,且AP:PB=2:5,则AB:PB=_____,AP:AB=_____.4、正方形的边长和对角线的比是,等边三角形的高与边长的比是二、回忆比例尺:1.阅读课本P102页例1,尝试回答下列问题:(1)什么是比例尺?比例尺就是_________与____________的比。
4.1.1成比例线段(1)【教学目标】知识与技能:知道线段比的概念.会计算两条线段的比. 过程与方法通过计算作图掌握概念:线段的比、成比例线段。
情感、态度与价值观在获得知识的过程中培养学习的自信心. 【教学重难点】教学重点:成比例线段、比例的性质教学难点:会求两条线段的比,注意线段长度的单位要统一. 【导学过程】【创设情景,引入新课】、小学里已经学过了比例的有关知识,下面请同学们口答下列问题: (1)若a 与b 的比值和c 与d 的比值相等,应记为: 。
(2)已知2:3=4:x ,则:x= 。
【自主探究】(1) 自主学习完成课本60--62页试一试与概括:填写下列空格: (1)、“比例线段”的概念: 。
已知四条线段a 、b 、c 、d,如果dcb a =(或a:b=c:d ),那么a 、b 、c 、d 叫做组成比例的 , (2)“比例线段”和“线段的比”的区别“比例线段”和“线段的比”这两个概念有什么区别?结论: (3)注意:概念的有序性线段的比有顺序性,a:b 和b:a 通常是不相等的。
比例线段也有顺序性,如dcb a =叫做线段a 、b 、c 、d 成比例,而不能说成是b 、a 、c 、d 成比例。
【课堂探究】例1如图一块矩形的绸布长AB=am ,宽AD=1m ,按照图中所示的方式将它剪裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同。
即 那么a 的值应当是多少?判断下列线段a 、b 、c 、d 是否是成比例线段: (1)a =4,b =6,c =5,d =10;(2)a =2,b =5,c =152,d =35. 解:AB ADAD AE =把(1)题中a、b、c、d调换位置可以得到几种情况?哪些情形是成比例线段。
成比例线段在大小排序上有何规律?给你四个数据怎样最快的获取成比例线段排序的最大可能性?总结:如何判断成比例线段,说出你的方法并交流。
【当堂训练】1、已知m、n、p、q是成比例线段,其中m=2cm,n=6cm,q=27cm,则p=_______cm.2、(★★)已知三个数1,2、3,请你再添一个数,使它们构成的四个数成比例关系。
第四章 相似图形
●课时安排
14课时
第一课时
●课 题
§4.1.1 线段的比(一)
●教学目标
(一)教学知识点
1.知道线段比的概念.
2.会计算两条线段的比.
(二)能力训练要求
会求两条线段的比.
(三)情感与价值观要求
通过有关比例尺的计算,让学生懂得数学在现实生活中的作用,从而增强学生学习数学的信心.
●教学重点
会求两条线段的比.
●教学难点
会求两条线段的比,注意线段长度的单位要统一.
●教学方法
自主探索法
●教具准备
投影片一张:例题(记作§4.1.1 A )
●教学过程
Ⅰ.创设问题情境,引入新课
[师]同学们,大家见到过形状相同的图形吗?请举出例子来说明.
[生]课本P 38中两张图片;
同一底片洗印出来的大小不同的照片;
两个大小不同的正方形,等等.
[师]对,大家举出的这些例子都是形状相同、大小不同的图形,即为相似图形.本章我们就要研究相似图形以及与之有关的问题.从两个大小不同的正方形来看,它们之所以大小不同,是因为它们的边长的长度不同,因此相似图形与对应线段的长度有关,所以我们首先从线段的比开始学习.
Ⅱ.新课讲解
1.两条线段的比的概念
[师]大家先回忆什么叫两个数的比?怎样度量线段的长度?怎样比较两线段的大小? [生]两个数相除又叫两个数的比,如a ÷b 记作b
a ;度量线段时要选用同一个长度单位,比较线段的大小就是比较两条线段长度的大小.
[师]由比较线段的大小就是比较两条线段长度的大小,大家能猜想线段的比吗? [生]两条线段的比就是两条线段长度的比.
[师]对.比如:线段a 的长度为3厘米,线段b 的长度为6米,所以两线段a ,b 的比为3∶6=1∶2,对吗?
[生]对.
[师]大家同意他的观点吗?
[生]不同意,因为a 、b 的长度单位不一致,所以不对.
[师]那么,应怎样定义两条线段的比,以及求比时应注意什么问题呢?
[生]如果选用同一个长度单位量得两条线段AB 、CD 的长度分别是m 、n ,那么就说这两条线段的比(ratio )AB ∶CD =m ∶n ,或写成
CD AB =n
m ,其中,线段AB 、CD 分别叫做这两个线段比的前项和后项. 如果把
n m 表示成比值k ,则CD
AB =k 或AB =k ·CD . 注意:在量线段时要选用同一个长度单位.
2.做一做
量出数学书的长和宽(精确到0.1 cm ),并求出长和宽的比.
[生]长为21.1 cm,宽为14.8 cm,长和宽的比为21.1∶14.8=211∶148
[师]如把单位改成mm 和m,比值还相同吗?
[生]改为mm 作单位,则长为211 mm ,宽为148 mm ,比值为211∶148
改用m 作单位,则长为0.211 m ,宽为0.148 m,长与宽的比为0.211∶0.148=211∶148 [师]从刚才的单位变换到计算比值,大家能得到什么吗?
[生]只要是选用同一单位测量线段,不管采用什么单位,它们的比值不变.
3.求两条线段的比时要注意的问题
[师]大家能说出几点?试一试.
[生](1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;
(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;
(3)两条线段的长度都是正数,所以两条线段的比值总是正数.
4.例题
投影片(§4.1.1 A )
Ⅲ.随堂练习
1.在比例尺为1∶8000的某学校地图上,矩形运动场的图上尺寸是1 cm×2 cm,矩形运动场的实际尺寸是多少?
解:根据题意,得
矩形运动场的图上长度∶矩形运动场的实际长度=1∶8000
因此,矩形运动场的长是
2×8000=16000(cm)=160(m)
矩形运动场的宽是
1×8000=8000(cm)=80(m)
所以,矩形运动场的实际尺寸是长为160 m,宽为80 m.
Ⅳ.课时小节
1.相似图形→两条线段的比.
2.两条线段的比
定义:两条线段的长度之比
表示法:线段a、b的长度分别为m、n,则a∶b=m∶n.
求法:先用同一长度单位量出线段的长度,再求出它们的比.
注意点:(1)两线段的比值总是正数.
(2)讨论线段的比时,不指明长度单位.
(3)对两条线段的长度一定要用同一长度单位表示.
比例尺:图上长度与实际长度的比.
Ⅴ.课后作业
习题4.1
1.解:一条线段的长度是另一条线段长度的5倍,这两条线段的比是5∶1.
2.解:早上8点
旗杆的高与其影长的比为30∶40=3∶4
中午12点
旗杆的高与其影长的比为30∶10=3∶1
3.解:等腰直角三角形ABC与等腰三角形DEF
腰的比为10∶12=5∶6
底边的比为
102∶8=52∶4
Ⅵ.活动与探究
为了参加北京市申办2008年奥运会的活动,如果有两边长分别为1,a(其中a>1)的一块矩形绸布,要将它剪裁出三面矩形彩旗(面料没有剩余),使每条彩旗的长和宽之比与原绸布的长和宽之比相同,画出两种不同裁剪方法的示意图,并写出相应的a的值.
解:方案(1):
∵长和宽之比与原绸布的长和宽之比相同,(*)
∴1
311a a = 解得:a =3
图4-1
方案(2):
由(*)得 a
x a 1121
11-== ∴x =
a
1,a =2 方案(3):
由(*)得 2
11y a
= ∴y =a 21 且1
1z a = ∴z =a 1 由a a 211+=a 得a =62
1
图4-2
方案(4):
由(*)得
a n a
b a 1111
1-== m a a a 11-= ∴b =a
1 n =1-
21a
m =a 2-1 ∵m +n =1 ∴1-21a +a 2-1=1 ∴a =2
522+(负值舍去) ●板书设计。