Pspice仿真类型及不同电源参数
- 格式:doc
- 大小:73.00 KB
- 文档页数:12
PSpice基本仿真分析例程⼀、瞬态分析⼆、直流分析2.1、直流分析电路2.2、直流分析配置2.3、直流分析输出波形受供电电源的限制,输出最⼤值为±15V。
三、交流分析3.1.1、交流分析电路13.1.1、交流分析设置13.1.1、交流分析输出波形图1由于使⽤的运放为理想运放,没有频率特性,因此输出电压固定为输⼊2V。
3.2.1、交流分析电路2添加电容C1使放⼤电路有了频率特性,低频C1断路,⾼频C1短路。
3.2.1、交流分析配置23.2.1、交流分析波形图2四、参数分析4.1.1、直流参数分析电路4.1.2、直流参数分析配置增益对数递增100-1M4.1.3、直流参数分析波形图由图中所⽰环路增益越⼩误差越⼤。
五、温度分析5.1基本温度分析电路5.2、器件温度系数参数设定(TC)5.3、温度分析参数配置5.3.1、初始TNOM设定为0℃5.3.2、直流分析温度配置5.4、温度分析波形图六、交流&参数分析(低通滤波器)6.1.1、交流扫⾯低通滤波器电路图6.1.1、交流扫⾯低通滤波器仿真配置6.1.1、交流扫⾯低通滤波器输出波形每10倍频40db。
七、BUCK降压电路7.1.1、BUCK降压电路仿真原理图7.1.2、BUCK降压电路仿真配置(瞬态分析)7.1.3、BUCK降压电路输出波形Ⅰ、V(OUT)输出端波形Ⅱ、电感电流与V(OUT)稳态波形。
7.2.1、BUCK降压电路仿真2 通过调整电源输⼊与负载电阻,测试电路中重要参数变化。
Sbreak模拟负载,Sbreak的值在10Ω与20Ω之间变化。
Sbreak参数:7.2.2、仿真参数配置7.2.3、BUCK降压电路相关参数波形。
仿真⽂件:链接:https:///s/1iyoNV5LS5iU3obppImrNJA提取码:suc7。
基于PSpice的升压型开关稳压电源设计与仿真20世纪50年代,美国宇航局以小型化、重量轻为目标,为搭载火箭开发了开关电源。
在半个多世纪的发展过程中,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代由传统技术设计制造的连续工作的线性电源,并广泛用于电子、电气设备中。
20世纪80年代,计算机全面实现了开关电源化,率先完成了计算机的电源换代。
20世纪90年代,开关电源在电子、电气设备以及家电领域得到了广泛的应用,开关电源技术进入快速发展期。
Cadence旗下的PSpice是一款电路仿真软件,能够对复杂的模数混合电路进行仿真,而且开关电源也不例外。
1升压变换器拓扑结构升压变换器属于间接能量传输变换器。
供电过程包含能量的存储和释放两方面。
如图1所示,Vclock是脉冲信号源,提供PWM电压,用以功率开关S1的导通与截止。
Rsense为电流取样电阻,Resr为电容的等效串联电阻。
在开关S1导通期间,二极管D1截止,电感储存能量,输出电容单独为负载提供电能。
在开关S1断开期间,二极管D1导通,储存了能量的电感与输入电源串联,为输出提供电能,其中一部分转移到电容C1里。
1.1工作于CCM条件下的升压变换器波形对图1所示电路,借助PSpice进行仿真,获得如图2所示的波形图。
这是典型的电感电流连续导通模式(CCM)。
图1基础升压变压器结构电路图2工作于CCM条件下的Boost变换器波形曲线①代表PWM波形,用于触发功率开关导通或断开。
当开关S1导通时,公共点SW/D电压几乎降到0.相反,当开关S1断开时,公共点SW/D电压增加为输出电压和二极管的正向压降之和,如曲线②所示。
曲线③描述了电感两端电压的变化。
高电平期间,电感左侧电压为Vin,右侧几乎为0,对应功率开关导通;而低电平期间,电感左侧电压仍为Vin,而右侧突变为Vout,因为功率开关截止,同时二极管导通,此时对应电感电压为负值,这就意味着输出电压大于输入电压。
基于PSpice的开关电源设计与仿真_开关电源是一种高效率的电源系统,能将输入电压转换为稳定的输出电压。
它由不同的电子元件和模块组成,如开关管、反馈控制电路、滤波电容等。
为了确保开关电源的性能,设计和仿真是非常重要的步骤。
在本文中,我们将介绍如何使用PSpice进行开关电源的设计和仿真。
首先,我们需要了解开关电源的基本原理和要求。
开关电源通常由一个开关管和一个输出滤波电容组成。
通过周期性地开关开关管,可以实现输入电压的转换。
为了达到稳定的输出电压,需要反馈控制电路来监测输出电压,并根据需要调节开关管的开关频率和占空比。
在设计开关电源之前,需要确定以下参数:1.输入电压范围:开关电源能够接受的输入电压范围。
2.输出电压:需要得到的稳定输出电压。
3.输出电流:需要保持的输出电流水平。
4.开关频率:开关管的开关频率。
5.开关管和输出滤波电容的评估:选择适合的开关管和输出滤波电容。
6.反馈控制电路:确定适当的反馈控制电路。
接下来,我们将使用PSpice进行开关电源的设计和仿真。
2.设计反馈控制电路并将其与开关电源原理图连接。
可以选择使用比较器、反馈电阻等。
3.设置合适的仿真参数,例如输入电压范围、输出电压、输出电流等。
4.运行仿真,观察开关电源的性能。
可以检查输出电压是否稳定,开关管和滤波电容的工作状态等。
在仿真过程中,您可以通过修改参数和测试不同的设计选择,以获得最佳的开关电源性能。
还可以进行波形分析和参数优化,以确保开关电源在各种工作条件下都能正常工作。
总结起来,基于PSpice的开关电源设计和仿真是一项重要任务。
通过使用PSpice软件,我们可以在设计和测试阶段进行快速和准确的电路仿真。
这有助于我们更好地理解和优化开关电源的性能,并确保其在实际应用中能够稳定工作。
P S P I C E仿真目录介绍: (3)新建PSpice仿真 (4)新建项目 (4)放置元器件并连接 (4)生成网表 (6)指定分析和仿真类型 (7)Simulation Profile设置: (8)开始仿真 (8)参量扫描 (11)Pspice模型相关 (13)PSpice模型选择 (13)查看PSpice模型 (13)PSpice模型的建立 (14)介绍:PSpice是一种强大的通用模拟混合模式电路仿真器,可以用于验证电路设计并且预知电路行为,这对于集成电路特别重要。
PSpice可以进行各种类型的电路分析。
最重要的有:●非线性直流分析:计算直流传递曲线。
●非线性瞬态和傅里叶分析:在打信号时计算作为时间函数的电压和电流;傅里叶分析给出频谱。
●线性交流分析:计算作为频率函数的输出,并产生波特图。
●噪声分析●参量分析●蒙特卡洛分析PSpice有标准元件的模拟和数字电路库(例如:NAND,NOR,触发器,多选器,FPGA,PLDs和许多数字元件)分析都可以在不同温度下进行。
默认温度为300K电路可以包含下面的元件:●Independent and dependent voltage and current sources 独立和非独立的电压、电流源●Resistors 电阻●Capacitors 电容●Inductors 电感●Mutual inductors 互感器●Transmission lines 传输线●Operational amplifiers 运算放大器●Switches 开关●Diodes 二极管●Bipolar transistors 双极型晶体管●MOS transistors 金属氧化物场效应晶体管●JFET 结型场效应晶体管●MESFET 金属半导体场效应晶体管●Digital gates 数字门●其他元件 (见用户手册)。
新建PSpice仿真新建项目如图 1所示,打开OrCAD Capture CIS Lite Edition,创建新项目:File > New > project。
PSpice A/D数模仿真技术主要包括以下几类仿真:
1、直流扫描分析(DC Sweep)
电路的某一个参数在一定范围内变化时,电路直流输出特性的分析和计算。
2、交流扫描分析(AC Sweep)
计算电路的交流小信号线性频率响应特性,包括幅频特性和相频特性,以及输入输出阻抗。
3、噪声分析(Noise)
在设定频率上,计算电路指定输出端的等效输出噪声和指定输入端的等效输入噪声电平。
4、直流偏置点分析(Bias Point)
当电路中电感短路,电容断路时,电路静态工作点的计算。
进行交流小信号和瞬态分析之前,系统会自动计算直流偏置点,以确定瞬态分析的初始条件和交流小信号条件下的非线性器件的线性化模型参数。
5、时域/瞬态分析(Transient)
在给定激励下,电路输出的瞬态时域响应的计算,其初始状态可由用户自定义,也可是直流偏置点。
6、蒙特卡洛分析(Monte-Carlo)
根据实际情况确定元件参数分布规律,然后多次重复进行指定电路特性的分析,每次分析时的元件参数都采用随机抽样方式,完成多次分析后进行统计分析,就可以得到电路特性的分散变化规律。
7、最坏情况分析(Worst)
电路中元件处于极限情况时,电路输入输出特性分析,是蒙特卡洛的极限情况。
8、参数扫描分析(Parametric Sweep)
电路中指定元件参数暗规律变化时,电路特性的分析计算。
9、温度分析(Temperature)
在指定温度条件下,分析电路特性。
10、灵敏度分析(Sensitivity)
计算电路中元件参数变化对电路性能的影响。
《PSpice使用教程》课件•引言•PSpice基础操作•电路元件与模型库•仿真设置与运行分析目•高级功能应用•故障排查与问题解决录引言它能够对电路进行直流分析、交流分析、瞬态分析等,并输出相应的电压、电流等波形图。
PSpice 广泛应用于电子工程、通信工程、自动化控制等领域。
PSpice是一款电子电路仿真软件,全称为Personal Simulation Program with Integrated Circuit Emphasis。
PSpice简介模拟电路设计和分析数字电路设计和验证混合信号电路仿真电源电路设计和优化PSpice应用领域本课件旨在帮助学习者掌握PSpice软件的使用方法,提高电子电路设计和分析能力。
课件结构本课件包括引言、基础知识、电路仿真实践、高级应用和结论等部分,其中引言部分介绍PSpice软件的基本概念、应用领域和课件目的;基础知识部分介绍电路仿真所需的基本理论和PSpice软件的基本操作;电路仿真实践部分通过实例演示PSpice软件的使用方法;高级应用部分介绍PSpice 软件在复杂电路设计中的应用;结论部分总结本课件的主要内容和学习成果。
课件目的课件目的和结构VSPSpice基础操作软件安装与启动系统要求安装步骤启动方法属性栏显示选中对象的属性和参数设置等。
显示当前打开的项目文件和电路图等。
工具栏提供常用工具的快捷按钮,如画笔、选择、移动、旋转等。
主界面组成包括菜单栏、工具栏、项目栏、菜单栏提供文件、编辑、视图、插入、模拟、工具和帮助等菜单选项。
界面布局及功能介绍菜单栏和工具栏使用菜单栏操作01工具栏操作02自定义工具栏03通过菜单栏或工具栏中的新建选项来创建一个新的PSpice 项目。
新建项目保存项目另存为功能最近打开项目通过菜单栏或工具栏中的保存选项来保存当前项目文件和电路图等。
用户可以选择将当前项目另存为其他格式或版本的文件。
PSpice 软件会自动记录最近打开过的项目文件,方便用户快速打开。
【教程】PSpice的4种基本仿真分析详解PSpice A/D将直流工作点分析、直流扫描分析、交流扫描分析和瞬态TRAN分析作为4种基本分析类型,每一种电路的模拟分析只能包括上述4种基本分析类型中的一种,但可以同时包括参数分析、蒙特卡罗分析、及温度特性分析等其他类型的分析,现对4种基本分析类型简介如下。
1. 直流扫描分析(DC Sweep)直流扫描分析的适用范围:当电路中某一参数(可定义为自变量)在一定范围内变化时,对应自变量的每一个取值,计算出电路中的各直流偏压值(可定义为输出变量),并可以应用Probe功能观察输出变量的特性曲线。
例对图1所示电路作直流扫描分析图1(1)绘图应用OrCAD/Capture软件绘制好的电路图如图2所示。
图2(2)确定分析类型及设置分析参数a) Simulation Setting(分析类型及参数设置对话框)的进入•执行菜单命令PSpice/New Simulation Profile,或点击工具按钮,屏幕上弹出New Simulation(新的仿真项目设置对话框)。
如图3所示。
图3•在Name文本框中键入该仿真项目的名字,点击Create按钮,即可进入Simulation Settings (分析类型及参数设置对话框),如图4所示。
图4b)仿真分析类型分析参数的设置图2所示直流分压电路的仿真类型及参数设置如下(见图4):•Analysis type下拉菜单选中“DC Sweep”;•Options下拉菜单选中“Primary Sweep”;•Sweep variable项选中“Voltage source”,并在Name栏键入“V1”;•Sweep type项选中“Linear”,并在Start栏键入“0”、End栏键入“10”及Increment栏键入“1”。
以上各项填完之后,按确定按钮,即可完成仿真分析类型及分析参数的设置。
另外,如果要修改电路的分析类型或分析参数,可执行菜单命令PSpice/Edit Simulation Profile,或点击工具按钮,在弹出的对话框中作相应修改。