正数与负数-数轴-相反数-绝对值练习题
- 格式:doc
- 大小:290.50 KB
- 文档页数:6
数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。
人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案满分:100分时间:90分钟一、选择题(每小题3分共36分)1.(2022春•沙依巴克区校级期中)下列各数中是负数的为()A.﹣1B.0C.0.2D.【答案】A【解答】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.2.(2022春•明水县期末)一种食品包装袋上标着:净含量200g(±3g)表示这种食品的标准质量是200g这种食品净含量最少()g为合格.A.200B.198C.197D.196【答案】C【解答】解:∵200﹣3=197(g)∴这种食品净含量最少197g为合格故选:C.3.(2022•牡丹区三模)中国人很早开始使用负数中国古代数学著作《九章算术》的“方程”一章在世界数学史上首次正式引入负数用正、负数来表示具有相反意义的量.一次数学测试以80分为基准简记90分记作+10分那么70分应记作()A.+10分B.0分C.﹣10分D.﹣20分【答案】C【解答】解:以80分为基准简记90分记作+10分那么70分应记作:70﹣80=﹣10分故选:C.4.(2022春•朝阳区期中)某机器零件的实物图如图所示在数轴上表示该零件长度(L)合格尺寸正确的是()A.B.C.D.【答案】C【解答】解:已知图可知L的取值范围是9.8≤L≤10.2A选项表示的是L≤9.8 不正确;B选项表示的是L≥10.2 不正确;C选项表示的是9.8≤L≤10.2 正确;D选项表示的是L≥10.2或L≤9.8 不正确;故选:C.5.(2022春•杨浦区校级期中)下列说法正确的是()A.有理数都可以化成有限小数B.若a+b=0 则a与b互为相反数C.在数轴上表示数的点离原点越远这个数越大D.两个数中较大的那个数的绝对值较大【答案】B【解答】解:A、有理数是有限小数和无限循环小数所以此选项错误;B、a+b=0 两个数的和为零则这两个数互为相反数此选项正确;C、在数轴上右边的数离原点越远这个数越大左边的数离原点越远这个数越小此选项错误;D、特殊值法2>﹣3 但|2|<|﹣3| 此选项错误.故选:B.6.(2021秋•荷塘区期末)有理数a在数轴上的位置如图所示则|a﹣5|=()A.a﹣5B.5﹣a C.a+5D.﹣a﹣5【答案】B【解答】解:∵a<5∴|a﹣5|=﹣(a﹣5)=5﹣a.故选:B.7.(2022•玉屏县二模)数轴上表示数m和m+2的点到原点的距离相等则m为()A.﹣2B.2C.1D.﹣1【答案】D【解答】解:由题意得:|m|=|m+2|∴m=m+2或m=﹣(m+2)∴m=﹣1.故选:D.8.(2021秋•渑池县期末)若|a﹣1|与|b﹣2|互为相反数则a+b的值为()A.3B.﹣3C.0D.3或﹣3【答案】A【解答】解:∵|a﹣1|与|b﹣2|互为相反数∴|a﹣1|+|b﹣2|=0又∵|a﹣1|≥0 |b﹣2|≥0∴a﹣1=0 b﹣2=0解得a=1 b=2a+b=1+2=3.故选:A.9.(2021秋•房县期末)已知:有理数a b满足ab≠0 则的值为()A.±2B.±1C.±2或0D.±1或0【答案】C【解答】解:∵ab≠0∴a>0 b<0 此时原式=1﹣1=0;a>0 b>0 此时原式=1+1=2;a<0 b<0 此时原式=﹣1﹣1=﹣2;a<0 b>0 此时原式=﹣1+1=0故选:C.10.(2021秋•镇平县校级期末)若|a|=8 |b|=5 且a>0 b<0 a﹣b的值是()A.3B.﹣3C.13D.﹣13【答案】C【解答】解:∵|a|=8 |b|=5 且a>0 b<0∴a=8 b=﹣5∴a﹣b=13故选:C.11.有理数a b在数轴上的对应点的位置如图所示.把﹣a b0按照从小到大的顺序排列正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<0【答案】A【解答】解:由数轴可知a<0<b|a|<|b|∴0<﹣a<b故选:A.12.(2021秋•勃利县期末)有理数a b在数轴上的对应点如图所示则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【答案】B【解答】解:∵从数轴可知:b<0<a|b|>|a|∴①正确;②错误∵a>0 b<0∴ab<0 ∴③错误;∵b<0<a|b|>|a|∴a﹣b>0 a+b<0∴a﹣b>a+b∴④正确;即正确的有①④故选:B.二、填空题(每小题2分共10分)13.(2022春•南岗区校级期中)如果向东走6米记作+6米那么向西走5米记作米.【答案】-5【解答】解:向东走6米记作+6米则向西走5米记作﹣5米故答案为:﹣5.14.(2022春•崇明区校级期中)小明在小卖部买了一袋洗衣粉发现包装袋上标有这样一段字样:“净重800±5克”请说明这段字样的含义.【答案】一袋洗衣粉的重量在795克与805克之间.【解答】解:“净重800±5克”意思是标准为800克最多为800+5=805克最少为800﹣5=795克.故答案为一袋洗衣粉的重量在795克与805克之间.15.(2022春•嘉定区校级期中)数轴上的A点与表示﹣2的点距离3个单位长度则A点表示的数为.【答案】﹣5或1【解答】解:设A点表示的数为x则|x﹣(﹣2)|=3∴x+2=±3∴x=﹣5或x=1.故答案为:﹣5或1.16.(2021秋•许昌期末)如果a的相反数是2 那么(a+1)2022的值为.【答案】1【解答】解:∵a的相反数是2∴a=﹣2∴(a+1)2022=(﹣2+1)2022=1.故答案为:1.17.(2022•宽城县一模)如图在数轴原点O的右侧一质点P从距原点10个单位的点A处向原点方向跳动第一次跳动到OA的中点A1处则点A1表示的数为;第二次从A1点跳动到OA1的中点A2处第三次从A2点跳动到OA2的中点A3处如此跳动下去则第四次跳动后该质点到原点O的距离为.【答案】5;.【解答】解:根据题意A1是OA的中点而OA=10所以A1表示的数是10×=5;A2表示的数是10××=10×;A3表示的数是10×;A4表示的数是10×=10×=;故答案为:5;.三.解答题(共54分)18.(8分)(2021秋•荣成市期中)把下列各数填在相应的集合中:15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 π﹣1..正数集合{…};负分数集合{…};非负整数集合{…};有理数集合{…}.【解答】解:正数集合{15 0.81 171 3.14 π…};负分数集合{﹣﹣3.1 ﹣1.…};非负整数集合{15 171 0…};有理数集合{15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1.…}.故答案为:15 0.81 171 3.14 π;﹣﹣3.1 ﹣1.;15 171 0;15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1..19.(8分)(昌平区校级期中)画出数轴并把这四个数﹣2 4 0 在数轴上表示出来.【解答】解:在数轴上表示出来如下:20.(8分)(2021秋•太康县期末)已知|x|=3 |y|=7.(1)若x<y求x+y的值;(2)若xy<0 求x﹣y的值.【解答】解:由题意知:x=±3 y=±7(1)∵x<y∴x=±3 y=7∴x+y=10或4(2)∵xy<0∴x=3 y=﹣7或x=﹣3 y=7∴x﹣y=±1021.(10分)(2021秋•安居区期末)小虫从某点O出发在一直线上来回爬行假定向右爬行路程记为正向左爬行的路程记为负爬过的路程依次为(单位:厘米):+5 ﹣3 +10 ﹣8 ﹣6 +12 ﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中如果每爬行1厘米奖励一粒芝麻则小虫共可得到多少粒芝麻?【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0所以小虫最后能回到出发点O;(2)根据记录小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm所以小虫离开出发点的O最远为12cm;(3)根据记录小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm)所以小虫共可得到54粒芝麻.22.(10分)(2021秋•常宁市期末)超市购进8筐白菜以每筐25kg为准超过的千克数记作正数不足的千克数记作负数称后的记录如下:1.5 ﹣3 2 ﹣0.5 1 ﹣2 ﹣2 ﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售为促销超市决定打九折销售求这8筐白菜现价比原价便宜了多少钱?【解答】解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)答:以每筐25千克为标准这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)25×8﹣5.5=194.5(千克)答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元)583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.23.(10分)(2021秋•高新区校级期末)新华文具用品店最近购进了一批钢笔进价为每支6元为了合理定价在销售前五天试行机动价格卖出时每支以10元为标准超过10元的部分记为正不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况如表所示:第1天第2天第3天第4天第5天每支价格相对标准价格(元)+3+2+1﹣1﹣2售出支数(支)712153234(1)这五天中赚钱最多的是第天这天赚钱元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?【解答】解:(1)第1天到第5天的每支钢笔的相对标准价格(元)分别为+3 +2 +1﹣1 ﹣2则每支钢笔的实际价格(元)分别为13 12 11 9 8第1天的利润为:(13﹣6)×7=49(元);第2天的利润为:(12﹣6)×12=72(元);第3天的利润为:(11﹣6)×15=75(元);第4天的利润为:(9﹣6)×32=96(元);第5天的利润为:(8﹣6)×34=68(元);49<68<72<75<96故这五天中赚钱最多的是第4天这天赚钱96元.(2)49+72+75+96+68=360(元)故新华文具用品店这五天出售这种钢笔一共赚了360元钱.。
数轴、相反数和绝对值的综合练习一、选择题(每小题3分, 共24分)1.如图, 数轴上点A表示数a, 则-a表示的数是( )A. -1B. 0C. 1D. 22. 在0, 1, -, -1四个数中, 最小的数是( )A. 0B. 1C. -D. -13. 如图, 若|a|=|b|, 则该数轴的原点可能为( )A. A点B. B点C. C点D. D点4. 下列各对数中, 相等的是( )A. -(-)和-0.75B. +(-0.2)和-(+)C. -(+)和-(-0.01)D. -(-)和-(+)5. 一个数的相反数比它的本身小, 则这个数是( )A. 正数B. 负数C. 正数和零D. 负数和零6. 下列说法正确的是( )A. 绝对值等于3的数是-3B. 绝对值小于2的数有±2, ±1, 0C.若|a|=-a, 则a≤0D. 一个数的绝对值一定大于这个数的相反数7. 有理数m, n在数轴上的对应点如图所示, 则下列各式子正确的是( )A. m>nB. -n>|m|C. -m>|n|D. |m|<|n|8. 若a, b是两个有理数, 则下列结论: ①如果a=b, 那么|a|=|b|;②如果|a|=|b|, 那么a=b;③如果a≠b, 那么|a|≠|b|;④如果|a|≠|b|, 那么a≠b.其中一定正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(每小题4分, 共32分)9. 计算: |-20|=.10. 若a+=0, 则a=.11. 数轴上点A表示-1, 点B表示2, 则A.B两点间的距离是.12. 将-3, -|+2|, -, -1按从小到大的顺序, 用“<”连接应当是.13. 一只小虫在数轴上先向右爬3个单位, 再向左爬7个单位, 正好停在-2的位置, 则小虫的起始位置所表示的数是.14.如图, 在数轴上点B表示的数是, 那么点A表示的数是.15. 当a=时, |a-1|+5的值最小, 最小值为.16.在数轴上点A对应的数为-2, 点B是数轴上的一个动点, 当动点B到原点的距离与到点A的距离之和为6时, 则点B对应的数为.三、解答题(共44分)17. (6分)根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数A: ,B: ;(2分)(2)观察数轴, 与点A的距离为4的点表示的数是;(4分)(3)若将数轴折叠, 使得A点与-3对应的点重合, 则B点与数对应的点重合.(6分)18. (8分)把下列各数表示在数轴上, 并用“<”连接起来:, -(-5), -0.5, 0, -|-3|, , -(+2).19. (8分)如图, 图中数轴的单位长度为1.请回答下列问题:(1)如果点A.B表示的数是互为相反数, 那么点C.D表示的数是多少?(2)如果点D.B表示的数是互为相反数, 那么点C.D表示的数分别是多少?20. (10分)(1)已知|a|=8, |b|=5, 且a<b, 试求a, b的值;(2)已知|a-3|+|2b-6|=0, 试求a-b的值.21. (12分)随着网购的快速发展, 相关的快递送达范围也越来越广泛, 惠及乡村. 某快递公司快递员骑摩托车从某快递点出发, 先向东骑行2 km到达A村, 继续向东骑行3 km到达B村, 然后向西骑行9 km到C村, 最后回到快递点.(1)以该快递点为原点, 以向东方向为正方向, 用1个单位长度表示1 km画数轴, 并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)已知摩托车行驶100 km耗油2.5升, 完成此次任务, 摩托车耗油多少升?数轴、相反数和绝对值的六种常见题型1. 在-1, , 0.618, 0, -5%, 2 021, 0.5中, 整数有________个, 分数有________个.2.有五个有理数(不能重复), 同时满足下列三个条件:(1)其中三个数是非正数;(2)其中三个数是非负数;(3)必须有质数和分数.请写出这五个数.3. 下列说法正确的是()A. 有理数是指整数、分数、正有理数、零、负有理数这五类数B. 有理数不是正数就是负数C. 有理数不是整数就是分数D. 有理数不是正数就是分数4. 把下列各数填在相应的大括号里:15, -, 0.81, -3, , -3.1, -2 022, 171, 0, 3.14.正数: { …};负数: { …};正整数: { …};负整数: { …};有理数: {…}.5. 下列说法正确的是()A. 所有的有理数都可以用数轴上的点来表示B. 数轴上的点都用来表示有理数C.正数可用原点右边的点表示, 负数可用原点左边的点表示, 零不能在数轴上表示D. 数轴上一个点可以表示不止一个有理数6. 根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数: ____________;(2)观察数轴, 写出与点A的距离为4的点表示的数:______________;(3)若将数轴折叠, 使得点A与数-3对应的点重合, 则点B与数________对应的点重合;(4)若数轴上M, N两点间的距离为2 022(M在N的左侧), 且M, N两点经过(3)中折叠后互相重合, 求M, N两点表示的数.7. 如图, 已知A, B, C, D四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数, 则原点为点________;(2)若点B和点D表示的数互为相反数, 则原点为点________;(3)若点A和点D表示的数互为相反数, 请在数轴上标出原点O的位置.8. 如图, 一个单位长度表示2, 观察图形, 回答问题:(1)若B与D所表示的数互为相反数, 则点D所表示的数为多少?(2)若A与D所表示的数互为相反数, 则点D所表示的数为多少?(3)若B与F所表示的数互为相反数, 则点D所表示的数的相反数为多少?9. 下列说法不正确的有()①互为相反数的两个数一定不相等;②如果两个数的绝对值相等, 那么这两个数必定相等;③有理数的绝对值一定大于0;④有理数的绝对值不是负数.A. 1个B. 2个C. 3个D. 4个10. 如图, 数轴的单位长度为1, 请回答下列问题:(1)如果点A, B表示的数互为相反数, 那么点C表示的数是多少?(2)如果点D, B表示的数互为相反数, 那么点C表示的数是正数还是负数?图中所示的5个点中, 哪一个点表示的数的绝对值最小, 最小的绝对值是多少?11. 如图, A, B为数轴上的两个点, A点表示的数为-10, B点表示的数为90.(1)请写出与A, B两点距离相等的M点表示的数;(2)电子蚂蚁P从B点出发, 以3个单位长度/s的速度向左运动, 同时另一只电子蚂蚁Q从A点出发, 以2个单位长度/s的速度向右运动, 经过多长时间这两只电子蚂蚁在数轴上相距35个单位长度?12. 情境问题某工厂负责生产一批螺帽, 根据产品质量要求, 螺帽的内径可以有0.02 mm的误差.抽查5个螺帽, 超过规定内径的毫米数记作正数, 不足规定内径的毫米数记作负数, 检查结果如下表:螺帽编号①②③④⑤内径/mm +0.030 -0.018 +0.026 -0.025 +0.015(1)指出哪些产品是合乎要求的(即在误差范围内);(2)指出合乎要求的产品中哪个质量好一些(即最接近标准);拓展延伸:(3)如果对两个螺帽进行上述检查, 检查的结果分别为a和b, 请利用学过的绝对值知识指出哪个螺帽的质量好一些.。
第1章 有理数练习题及答案1.1 正数和负数第1课时 正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.飞机在飞行过程中,如果上升23米记作“+23米”,那么下降15米应记作( ) A.-8米 B.+8米 C.-15米 D.+15米3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元说明收入增加了300元C.向东骑行-500米说明向北骑行500米D.增长率为-20%等同于增长率为20%4.“牛牛”饮料公司的一种饮料包装上有“500±30mL ”字样,其中500表示标准容量是500mL.如果+30mL 表示超出标准容量30mL ,那么-30mL 表示 .5.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.3·,-259,480.正数有: ; 负数有: ; 既不是正数也不是负数的有: .6.每袋精盐的标准质量为200g ,现有5袋精盐的质量如下:203g,198g,200g,202g,196g.如果超重部分用正数表示,请表示出这5袋精盐的超重数或不足数.第2课时 有理数及其分类1.下列各数中是负分数的是( ) A.-12 B.17C.-0.4·D.1.52.在0,14,-3,+10.2,15中,整数的个数是( )A.1个B.2个C.3个D.4个 3.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数 4.下列说法正确的是( ) A.整数可分为正整数和负整数 B.分数可分为正分数和负分数 C.0不属于整数也不属于分数 D.所有的整数都是正数5.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .6.把下列有理数填入相应的括号内:+4,-7,-54,0,3.85,-49%,-80,13,-4.95.正整数:{ …}; 负整数:{ …}; 正分数:{ …}; 负分数:{ …}; 负有理数:{ …}; 正有理数:{ …}.数轴、相反数和绝对值第1课时 数 轴1.下列所画数轴正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度后表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点所表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数的个数是 个.6.在数轴上表示下列各数,并有“>”号连接起来.1.8,-1,52,3.1,-2.6,0,1.第2课时 相反数1.-3的相反数是( ) A.-3 B.3 D.-13 D.132.下列各组数互为相反数的是( )A.4和-(-4)B.-3和13C.-2和-12D.0和03.如图,数轴上有A ,B ,C ,D 四个点,其中表示2的相反数的点是( )A.点AB.点BC.点CD.点D4.化简:(1)+(-1)= ;(2)-(-3)= ; (3)+(+2)= .5.写出下列各数的相反数:(1)-3.5的相反数为 ; (2)35的相反数为 ;(3)0的相反数为 ; (4)28的相反数为 ; (5)-2018的相反数为 .第3课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )3.计算:(1)|7|= ; (2)|5.4|= ; (3)|-3.5|= ; (4)|0|= .4.已知|x -2017|+|y +2018|=0,则x = ,y = .1.3 有理数的大小1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.下列各数中,小于-2的是( ) A.-12 B.-3C.-1D.13.如图,有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 4.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.5.小明通过科普读物了解到:在同一天世界各地的气温差别很大.若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.6.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.有理数的加减有理数的加法1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝⎛⎭⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝⎛⎭⎫-212=-3 D.(-71)+0=71 5.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,低于标准的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2018)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝⎛⎭⎫-718+⎝⎛⎭⎫-16.有理数的减法1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝⎛⎭⎫-23-112.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?加、减混合运算1.把7-(-3)+(-5)-(+2)写成省略括号的和的形式为( ) A .7+3-5-2 B .7-3-5-2 C .7+3+5-2 D .7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A .3、5、7、2、9的和 B .减3正5负7加2减9C .负3,正5,减7,正2,减9的和D .负3,正5,负7,正2,负9的和 3.计算(-2)+(-3)-6的结果是( ) A .-1 B .-11 C .11 D .1 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝⎛⎭⎫-312-⎝⎛⎭⎫-523+713;(3)-0.5+⎝⎛⎭⎫-14-(-2.75)-12; (4)314+⎝⎛⎭⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚的温度为-2℃,求该地清晨的温度.有理数的乘除有理数的乘法第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A .-1 B .-5 C .-6 D .12.-74的倒数是( )A .-74B .74C .-47D .473.一种商品原价120元,按八折出售,则实际售价应为 元.4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)154×⎝⎛⎭⎫-1625; (4)(-2.5)×⎝⎛⎭⎫-73.第2课时 多个有理数相乘1.下列各式中积为负数的是( ) A .(+3)×(+4)×5 B .-13×(-6)×(-7)C .(-5)×0×2018D .(-2)×(-4)×8 2.计算-3×2×27的结果是( )A .127B .-127C .27D .-273.某件商品原价100元,先涨价20%,然后再降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5);(2)23×⎝⎛⎭⎫-97×(-24)×⎝⎛⎭⎫+134;(3)(-4)×499.7×57×0×(-1);(4)(-3)×⎝⎛⎭⎫-79×(-0.8).有理数的除法第1课时 有理数的除法法则1.下列计算结果为负数的是( )A .0÷3B .5÷2C .-1÷(-2)D .-4÷22计算(-18)÷6的结果是( )A .-3B .3C .-13D .133.下列说法不正确的是( )A .0可以作被除数B .0可以作除数C .0的相反数是它本身D .两数的商为1,则这两数相等4.计算:(1)0÷(-3.4); (2)15÷(-3);(3)(-0.1)÷(-10); (4)-125÷35.5.列式计算:(1)两数的积是1,已知一个数是-0.5,求另一个数;(2)两数的商是-3,已知被除数是-157,求除数.第2课时 除法转化为乘法的运算1.计算(-8)÷⎝⎛⎭⎫-18的结果是( )A .-64B .64C .1D .-12.下列运算错误的是( )A .13÷(-3)=3×(-3)B .-5÷⎝⎛⎭⎫-12=-5×(-2)C .8÷(-2)=-8×12D .0÷3=03.如果▽×⎝⎛⎭⎫-45=2,则“▽”表示的有理数应是() A .-52 B .-58 C .52 D .584.若长方形的面积为112,长为338,则宽为 .5.计算:(1)(-6)÷14; (2)⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52;(3)+56÷⎝⎛⎭⎫-13; (4)-34÷⎝⎛⎭⎫+76.乘、除混合运算1.简便计算2.25×(-7)×4×⎝⎛⎭⎫-37时,应运用的运算律是( ) A .加法交换律 B .加法结合律C .乘法交换律和结合律D .乘法分配律2.计算(-2)×3÷(-2)的结果是( )A .12B .3C .-3D .-123.计算3×⎝⎛⎭⎫13-12的结果是 . 4.计算:(1)36÷(-3)×⎝⎛⎭⎫-16; (2)27÷(-9)×527;(3)2-7×(-3)+10÷(-2); (4)916÷⎝⎛⎭⎫12-2×524;(5)5÷⎝⎛⎭⎫-87-5×98; (6)1011×1213×1112-1÷⎝⎛⎭⎫-132.有理数的乘方第1课时 有理数的乘方及混合运算1.-24表示( )A .4个-2相乘B .4个2相乘的相反数C .2个-4相乘D .2个4的相反数2.计算(-3)2的结果是( )A .-6B .6C .-9D .93.计算(-8)×3÷(-2)2的结果是( )A .-6B .6C .-12D .124.计算:(1)(-2)3; (2)-452; (3)-⎝⎛⎭⎫-372; (4)⎝⎛⎭⎫-233.5.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝⎛⎭⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝⎛⎭⎫-122+2×3-0÷2243.第2课时科学记数法1.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1072.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是()A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦3.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.近似数1.下面所列四个数据中,是准确数的是()A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是()A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到()A.个位B.十分位C.百分位D.以上都不对4.求下列各数的近似数.(1)23.45(精确到十分位);(2)0.2529(精确到百分位);(3)13.50505(精确到十分位);(4)5.36×105(精确到万位).正数和负数第1课时 正数和负数1.B2.C3.B4.低于标准容量30mL5.227,2.7183,2020,480 -18,-0.3·,-2590 6.解:这5袋精盐的超重数或不足数分别为+3g ,-2g,0g ,+2g ,-4g.第2课时 有理数及其分类1.C2.C3.D4.B5.1,0 +13-0.3,0,-3.3 6.正整数:{+4,13,…}; 负整数:{ -7,-80,…};正分数:{3.85,…}; 负分数:⎩⎨⎧⎭⎬⎫-54,-49%,-4.95,…; 负有理数:⎩⎨⎧⎭⎬⎫-7,-54,-49%,-80,-4.95,…; 正有理数:{+4,3.85,13,…}.数轴、相反数和绝对值第1课时 数 轴1.C2.D3.B4.-2或05.46.解:在数轴上表示如下:由数轴可得3.1〉52〉1.8〉1〉0〉-1〉-2.6. 第2课时 相反数1.B2.D3.A4.(1)-1 (2)3 (3)25.(1)3.5 (2)-35(3)0 (4)-28 (5)2018 第3课时 绝对值1.C2.B3.(1)7 (2)5.4 (3)3.5 (4)04.2017 -20181.C2.B3.B4.(1)> (2)< (3)>5.-176.解:如图所示.-6<-514<-35<0<1.5<2. 有理数的加减有理数的加法1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2018.(4)原式=0.(5)原式=4.(6)原式=-59. 有理数的减法1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15.(2)原式=-5+(-2)=-7.(3)原式=0+(-9)=-9.(4)原式=-812+⎝⎛⎭⎫-112=-34. 5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.加、减混合运算1.A2.D3.B4.解:(1)原式=-3.5+1.7+2.8+(-5.3)=-4.3.(2)原式=⎝⎛⎭⎫-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=32.(4)原式=314+534+⎝⎛⎭⎫-718+718=9.5.解:-2+5-8=-5(℃).答:该地清晨的温度为-5℃.有理数的乘除有理数的乘法第1课时 有理数的乘法法则1.C2.C3.964.表中从左到右、从上到下依次填:- 48 -48 - 80 -80 + 36 36 +160 1605.解:(1)原式=-5.(2)原式=0.(3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.B2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140.(2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815.有理数的除法第1课时 有理数的除法法则1.D2.A3.B4.解:(1)原式=0.(2)原式=-5.(3)原式=0.01.(4)原式=-4.5.解:(1)1÷(-0.5)=-2,即另一个数为-2.(2)-157÷(-3)=57,即除数为57. 第2课时 除法转化为乘法的运算 1.B 2.A 3.A 4.435.解:(1)原式=(-6)×4=-24.(2)原式=53×25=23. (3)原式=-56×3=-52. (4)原式=-34×67=-914. 乘、除混合运算1.C2.B3.-124.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59. (3)原式=2+21-5=18.(4)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (5)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (6)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 有理数的乘方第1课时 有理数的乘方及混合运算1.B2.D3.A4.解:(1)原式=-8.(2)原式=-425. (3)原式=-949.(4)原式=-827. 5.解:(1)原式=9×1-8=1.(2)原式=-3+12×12-23×12+9=-3+6-8+9=4. (3)原式=8-2×9-(-6)2=8-18-36=-10-36=-46.(4)原式=-1÷14+6-0=-1×4+6=-4+6=2. 第2课时 科学记数法1.C2.C3.解:(1)6.4×106m.(2)4.0×107m.近似数1.D2.C3.B4.解:(1)23.45≈23.5.(2)0.2529≈0.25.(3)13.50505≈13.5.(4)5.36×105≈5.4×105(或540000).。
亲爱的朋友,很高兴能在此相遇!欢迎您阅读文档数轴练习题(含答案),这篇文档是由我们精心收集整理的新文档。
相信您通过阅读这篇文档,一定会有所收获。
假若亲能将此文档收藏或者转发,将是我们莫大的荣幸,更是我们继续前行的动力。
数轴练习题(含答案)篇一:《数轴、相反数、绝对值》专题练习(含答案)《数轴、相反数、绝对值》专题练习一、选择题(每小题3分,共30分)1.-5的绝对值为()A.-5B.5C.-15D.152.-的相反数是()A.-8B.1818C.0.8D.83.在下面所画的数轴中,你认为正确的数轴是()4.下列说法正确的是()A.正数与负数互为相反数B.符号不同的两个数互为相反数C.数轴上原点两旁的两个点所表示的数互为相反数D.任何一个有理数都有它的相反数5.数轴上的点A,B位置如图所示,则线段AB的长度为( )A.-3B.5C.6D.76.若a=7,b=5,则a-b的值为()A.2C.2或12B.12D.2或12或-12或-27.实数a,b在数轴上的位置如图所示,以下说法正确的是()8.下列式子不正确的是()A.44B.1122C.00D.1.51.59.如果有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,那么式子a-b+c2-d的值是()A.-2B.-1C.0D.110.如果abcd0,那么这四个数中的负因数至少有()A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-111的相反数是______;-2是______的相反数;_______与互为倒数.21013.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使x1=x-1成立,你写出的x的值是______.17.若x,y是两个负数,且xb>c,则该数轴的原点O的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-120.(5分)(1)如图,根据数轴上各点的位置,写出它们所表示的数:31,-(+6.3),+(-32),12,3.52(2)用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.-311,4,2.5,0,1,-(-7),-5,-1.2221.(6分)七(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并标上代表该队的字母;(3)从数轴上看A队与B队相差多少分C队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x的点与表示数1的点的距离等于1,其几何意义可表示为:x=1,这样的数x可以是0或2.(1)等式x2=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.(2)等式x3=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.(3)在数轴上,表示数x的点与表示数5的点的距离等于6,其中x的值可以是_______,其几何意义可以表示为_______.24.(8分)(1)5的相反数是-5,-5的相反数是5,那么-x的相反数是_______,m+的相反数是_______.(2)数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=1n21(2+6),那么2到点100和到点999距离相等的点表示的数是_______;到点m和点-n距离相等的点表示的数是_______.(3)数轴上点4和点9之间的距离为5个单位,有这样的关系5=9-4,那么点10和点-3之间的距离是_______;点m和点n之间的距离是_______.25.(6分)设abc0,abc0,求bccaab的值。
七年级数学上册数轴、相反数、绝对值基础题北
师版
一、单项选择题(共10道,每道10分)
1.若是60m表示“向北走60m”,那么“向南走40m”能够表示为()
答案:B
试题难度:三颗星知识点:正数和负数的意义
2.在:0、一、-二、这四个数中,是负整数的是()
答案:C
试题难度:三颗星知识点:有理数及其分类
3.以下图为数轴的是()
A. B.
C. D.
答案:C
试题难度:三颗星知识点:数轴的概念
4.如图,在数轴上点A表示的数是()
C.±2
答案:A
试题难度:三颗星知识点:用数轴表示数
,b为有理数,在数轴上的位置如下图,那么以下关于a,b,0三者之间的大小关系,表示
正确的选项是()
<a<b <0<b
<0<a <b<0
答案:B
试题难度:三颗星知识点:用数轴比较大小
6.到原点的距离等于3的数是()
或-3
答案:C
试题难度:三颗星知识点:用数轴表示任意点到原点距离
7.数轴上表示-2和-101的两个点别离为A、B,那么A、B两点间的距离等于()
答案:C
试题难度:三颗星知识点:用数轴表示任意两点之间距离
的相反数是()
A. B.
答案:D
试题难度:三颗星知识点:相反数
9.假设|x|=-x,那么x的取值范围是()
=-1 =0
≥0 ≤0
答案:D
试题难度:三颗星知识点:绝对值及其法那么
的结果是()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:绝对值。
第1章 有理数1.1 正数和负数第1课时 正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.飞机在飞行过程中,如果上升23米记作“+23米”,那么下降15米应记作( ) A.-8米 B.+8米 C.-15米 D.+15米3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元说明收入增加了300元C.向东骑行-500米说明向北骑行500米D.增长率为-20%等同于增长率为20%4.“牛牛”饮料公司的一种饮料包装上有“500±30mL ”字样,其中500表示标准容量是500mL.如果+30mL 表示超出标准容量30mL ,那么-30mL 表示 .5.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.3·,-259,480.正数有: ; 负数有: ; 既不是正数也不是负数的有: .6.每袋精盐的标准质量为200g ,现有5袋精盐的质量如下:203g,198g,200g,202g,196g.如果超重部分用正数表示,请表示出这5袋精盐的超重数或不足数.第2课时 有理数及其分类1.下列各数中是负分数的是( ) A.-12 B.17C.-0.4·D.1.52.在0,14,-3,+10.2,15中,整数的个数是( )A.1个B.2个C.3个D.4个 3.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数 4.下列说法正确的是( ) A.整数可分为正整数和负整数 B.分数可分为正分数和负分数 C.0不属于整数也不属于分数 D.所有的整数都是正数5.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .6.把下列有理数填入相应的括号内:+4,-7,-54,0,3.85,-49%,-80,13,-4.95.正整数:{ …}; 负整数:{ …}; 正分数:{ …}; 负分数:{ …}; 负有理数:{ …}; 正有理数:{ …}.1.2 数轴、相反数和绝对值第1课时 数 轴1.下列所画数轴正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度后表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点所表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数的个数是 个.6.在数轴上表示下列各数,并有“>”号连接起来.1.8,-1,52,3.1,-2.6,0,1.第2课时 相反数1.-3的相反数是( ) A.-3 B.3 D.-13 D.132.下列各组数互为相反数的是( )A.4和-(-4)B.-3和13C.-2和-12D.0和03.如图,数轴上有A ,B ,C ,D 四个点,其中表示2的相反数的点是( )A.点AB.点BC.点CD.点D4.化简:(1)+(-1)= ;(2)-(-3)= ; (3)+(+2)= .5.写出下列各数的相反数:(1)-3.5的相反数为 ; (2)35的相反数为 ;(3)0的相反数为 ; (4)28的相反数为 ; (5)-2018的相反数为 .第3课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )3.计算:(1)|7|= ; (2)|5.4|= ; (3)|-3.5|= ; (4)|0|= .4.已知|x -2017|+|y +2018|=0,则x = ,y = .1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.下列各数中,小于-2的是( ) A.-12 B.-3C.-1D.13.如图,有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 4.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.5.小明通过科普读物了解到:在同一天世界各地的气温差别很大.若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.6.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.有理数的加法1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝⎛⎭⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝⎛⎭⎫-212=-3 D.(-71)+0=71 5.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,低于标准的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2018)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝⎛⎭⎫-718+⎝⎛⎭⎫-16.2.有理数的减法1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝⎛⎭⎫-23-112.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第一天 第二天 第三天 第四天 第五天 最高气温(℃) -1 5 6 8 11 最低气温(℃) -7-3-4-423.加、减混合运算1.把7-(-3)+(-5)-(+2)写成省略括号的和的形式为( ) A .7+3-5-2 B .7-3-5-2 C .7+3+5-2 D .7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A .3、5、7、2、9的和 B .减3正5负7加2减9C .负3,正5,减7,正2,减9的和D .负3,正5,负7,正2,负9的和 3.计算(-2)+(-3)-6的结果是( ) A .-1 B .-11 C .11 D .1 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝⎛⎭⎫-312-⎝⎛⎭⎫-523+713;(3)-0.5+⎝⎛⎭⎫-14-(-2.75)-12; (4)314+⎝⎛⎭⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚的温度为-2℃,求该地清晨的温度.1.5 有理数的乘除 1.有理数的乘法第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A .-1 B .-5 C .-6 D .12.-74的倒数是( )A .-74B .74C .-47D .473.一种商品原价120元,按八折出售,则实际售价应为 元.4.填表(想法则,写结果):因数 因数 积的符号积的绝对值积 +8 -6 -10 +8 -9 -4 2085.计算:(1)(-15)×13; (2)-218×0;(3)154×⎝⎛⎭⎫-1625; (4)(-2.5)×⎝⎛⎭⎫-73.第2课时 多个有理数相乘1.下列各式中积为负数的是( ) A .(+3)×(+4)×5 B .-13×(-6)×(-7)C .(-5)×0×2018D .(-2)×(-4)×8 2.计算-3×2×27的结果是( )A .127B .-127C .27D .-273.某件商品原价100元,先涨价20%,然后再降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5);(2)23×⎝⎛⎭⎫-97×(-24)×⎝⎛⎭⎫+134;(3)(-4)×499.7×57×0×(-1);(4)(-3)×⎝⎛⎭⎫-79×(-0.8).2.有理数的除法第1课时 有理数的除法法则1.下列计算结果为负数的是( )A .0÷3B .5÷2C .-1÷(-2)D .-4÷22计算(-18)÷6的结果是( )A .-3B .3C .-13D .133.下列说法不正确的是( )A .0可以作被除数B .0可以作除数C .0的相反数是它本身D .两数的商为1,则这两数相等4.计算:(1)0÷(-3.4); (2)15÷(-3);(3)(-0.1)÷(-10); (4)-125÷35.5.列式计算:(1)两数的积是1,已知一个数是-0.5,求另一个数;(2)两数的商是-3,已知被除数是-157,求除数.第2课时 除法转化为乘法的运算1.计算(-8)÷⎝⎛⎭⎫-18的结果是( )A .-64B .64C .1D .-12.下列运算错误的是( )A .13÷(-3)=3×(-3)B .-5÷⎝⎛⎭⎫-12=-5×(-2)C .8÷(-2)=-8×12D .0÷3=03.如果▽×⎝⎛⎭⎫-45=2,则“▽”表示的有理数应是() A .-52 B .-58 C .52 D .584.若长方形的面积为112,长为338,则宽为 .5.计算:(1)(-6)÷14; (2)⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52;(3)+56÷⎝⎛⎭⎫-13; (4)-34÷⎝⎛⎭⎫+76.3.乘、除混合运算1.简便计算2.25×(-7)×4×⎝⎛⎭⎫-37时,应运用的运算律是( ) A .加法交换律 B .加法结合律C .乘法交换律和结合律D .乘法分配律2.计算(-2)×3÷(-2)的结果是( )A .12B .3C .-3D .-123.计算3×⎝⎛⎭⎫13-12的结果是 . 4.计算:(1)36÷(-3)×⎝⎛⎭⎫-16; (2)27÷(-9)×527;(3)2-7×(-3)+10÷(-2); (4)916÷⎝⎛⎭⎫12-2×524;(5)5÷⎝⎛⎭⎫-87-5×98; (6)1011×1213×1112-1÷⎝⎛⎭⎫-132.1.6 有理数的乘方第1课时 有理数的乘方及混合运算1.-24表示( )A .4个-2相乘B .4个2相乘的相反数C .2个-4相乘D .2个4的相反数2.计算(-3)2的结果是( )A .-6B .6C .-9D .93.计算(-8)×3÷(-2)2的结果是( )A .-6B .6C .-12D .124.计算:(1)(-2)3; (2)-452; (3)-⎝⎛⎭⎫-372; (4)⎝⎛⎭⎫-233.5.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝⎛⎭⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝⎛⎭⎫-122+2×3-0÷2243.第2课时科学记数法1.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1072.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是()A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦3.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.7近似数1.下面所列四个数据中,是准确数的是()A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是()A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到()A.个位B.十分位C.百分位D.以上都不对4.求下列各数的近似数.(1)23.45(精确到十分位);(2)0.2529(精确到百分位);(3)13.50505(精确到十分位);(4)5.36×105(精确到万位).第2章 整式加减2.1 代数式1.用字母表示数1.已知甲数比乙数的2倍少1,设乙数为x ,则甲数可表示为( )A .2x -1B .2x +1C .2(x -1)D .2(x +1)2.填空:(1)某商店运来一批苹果,共6箱,每箱n 个,则共有 个苹果;(2)某三角形的一边长为a cm ,这条边上的高为b cm ,则该三角形的面积为 cm 2;(3)某校去年七年级招收新生x 人,今年比去年增加10%,则今年该校七年级学生的人数是 人;(4)若某三位数的个位上的数字为a ,十位上的数字为b ,百位上的数字为c ,则这个三位数可表示为 .2.代数式第1课时 代数式1.下列书写格式正确的是( )A .x5B .4m÷nC .x(x +1)34D .-12ab 2.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )A .(4m +7n)元B .28mn 元C .(7m +4n)元D .11mn 元3.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .4.如图,在一个长方形休闲广场的中央设计一个圆形的音乐喷泉,若圆形音乐喷泉的半径为r 米,广场的长为a 米,宽为b 米,求广场空地的面积.第2课时 整 式1.单项式-2x 2y 3的系数和次数分别是( ) A .-2,3 B .-2,2 C .-23,3 D .-23,2 2.多项式3x 2-2x -1的各项分别是( )A .3x 2,2x,1B .3x 2,-2x,1C .-3x 2,2x ,-1D .3x 2,-2x ,-13.在下列代数式中,整式的个数是( )x 3,2x +y 3,5,-mn ,4yA .5个B .4个C .3个D .2个4.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b,3x -y 2中,单项式的个数是 个. 5.多项式3x 3y +2x 2y -4xy 2+2y -1是 次 项式,它的最高次项的系数是 .6.下列代数式中,哪些是单项式?哪些是多项式?xy 3,-34xy 2z ,a ,x -y ,1x,3.14,-m ,-m 2+2m -1.7.若关于a ,b 的单项式-58a 2b m 与-117x 3y 4是次数相同的单项式,求m 的值.3.代数式的值1.当x =1时,代数式4-3x 的值是( )A .1B .2C .3D .42.当x =3,y =2时,代数式2x -y 3的值是( ) A .43B .2C .0D .3 3.若m -n =-1,则(m -n)2-2(m -n)= .4.已知a 是-2的相反数,b 是-2的倒数,则(1)a = ,b = ;(2)求代数式a 2b +ab 的值.5.邮购一种书,每册定价m 元,另加10%的邮费,购书x 册.(1)用含x 的代数式表示总金额;(2)当m =2.5,x =100时,总金额是多少?2.2整式加减1.合并同类项1.在下列单项式中与2xy是同类项的是()A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是()A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和m 23.计算2m2n-3nm2的结果为()A.-1B.-5m2nC.-m2nD.不能合并4.笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记本和6支圆珠笔,小明买6本笔记本和3支圆珠笔,小红和小明买这些笔记本和圆珠笔一共花费元.5.合并同类项:(1)3a-5a+6a;(2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.2.去括号、添括号1.化简-2(m -n)的结果为( )A .-2m -nB .-2m +nC .-2m -2nD .-2m +2n2.-(2x -y)+(-y +3)去括号后的结果为( )A .-2x -y +3B .-2x +3C .2x +3D .-2x -2y +33.下列去括号与添括号变形中,正确的是( )A .2a -(3b -c)=2a -3b -cB .3a +2(2b -1)=3a +4b -1C .a +2b -3c =a +(2b -3c)D .m -n +a -b =m -(n +a -b)4.去掉下列各式中的括号:(1)(a +b)-(c +d)= ; (2)(a -b)-(c -d)= ;(3)(a +b)-(-c +d)= ; (4)-[a -(b -c)]= .5.在括号内填上恰当的项:(1)a -2b +3c =-( );(2)x 2-y 2+8y -4=x 2-( ).6.化简下列各式:(1)3a -(5a -6); (2)(3x 4+2x -3)+(-5x 4+7x +2);(3)(2x -7y)-3(3x -10y); (4)6a 2-4ab -4⎝⎛⎭⎫2a 2+12ab .3.整式加减1.整式4-m +3m 2n 3-5m 3是( )A .按m 的升幂排列B .按n 的升幂排列C .按m 的降幂排列D .按n 的降幂排列2.化简x +y -(x -y)的结果是( )A .2x +2yB .2yC .2xD .03.已知A =5a -3b ,B =-6a +4b ,则A -B 等于( )A .-a +bB .11a +bC .11a -7bD .-a -7b4.已知多项式x 3-4x 2+1与关于x 的多项式2x 3+mx 2+2相加后不含x 的二次项,则m 的值是( )A .-4B .4C .12D .-125.若某个长方形的周长为4a ,一边长为(a -b),则另一边长为( )A .3a +bB .2a +2bC .a +bD .a +3b6.化简:(1)(-x 2+5x +4)+(5x -4+2x 2);(2)-2(3y 2-5x 2)+(-4y 2+7xy).7.先化简,再求值:3a 2-ab +7-(5ab -4a 2+7),其中a =2,b =13.第3章 一次方程与方程组3.1 一元一次方程及其解法第1课时 一次方程的概念及等式的基本性质1.下列是一元一次方程的是( )A .x 2-x =4B .2x -y =0C .2x =1D .1x=2 2.若a =b ,则下列式子一定正确的是( )A .3a =3+bB .-a 2=-b 2C .5-a =5+bD .a +b =03.解方程-34x =12时,应在方程两边( ) A .同时乘-34B .同时乘4C .同时除以34D .同时除以-344.由2x -16=5得2x =5+16,在此变形中,是在原方程的两边同时加上了 .5.若关于x 的方程2x +a -4=0的解是x =-2,则a 的值是 .6.利用等式的基本性质解下列方程:(1)x +1=6; (2)3-x =7; (3)-3x =21.1.下列变形属于移项且正确的是( )A .由3x =5+2得到3x +2=5B .由-x =2x -1得到-1=2x +xC .由5x =15得到x =155D .由1-7x =-6x 得到1=7x -6x2.解方程-3x +4=x -8时,移项正确的是( )A .-3x -x =-8-4B .-3x -x =-8+4C .-3x +x =-8-4D .-3x +x =-8+43.一元一次方程3x -1=5的解为( )A .x =1B .x =2C .x =3D .x =44.解下列方程:(1)13x +1=12; (2)3x +2=5x -7.5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,而且唐诗的数目是宋词数目的3倍,则这本《唐诗宋词选读》中唐诗有多少首?1.方程3-(x+2)=1去括号正确的是()A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是()A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10;(2)8y-6(y-2)=0;(3)4x-3(20-x)=-4;(4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个,那么他一共投进了多少个2分球,多少个3分球?1.对于方程5x -13-2=1+2x 2,去分母后得到的方程是( ) A .5x -1-2=1+2x B .5x -1-6=3(1+2x)C .2(5x -1)-6=3(1+2x)D .2(5x -1)-12=3(1+2x)2.方程x 4=x -15的解为( ) A .x =4 B .x =1 C .x =-1 D .x =-43.(1)若式子x -83与14x +5的值相等,则x = ; (2)若x 3+1与2x -73互为相反数,则x = . 4.解方程:(1)3x -52=2x 3; (2)2y -13=y +24-1.(3)15(x +15)=12-13(x -7); (4)4x +95-3+2x 3=1;5.某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组,则这个班共有多少名学生?3.2 一元一次方程的应用第1课时 等积变形与行程问题1.甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米.设x 秒后甲可追上乙,则下列所列方程中正确的是( )A .6.5+x =7.5B .7x =6.5x +5C .7x +5=6.5xD .6.5+5x =7.52.用一根长12cm 的铁丝围成一个长方形,使得长方形的宽是长的12,则这个长方形的面积是( )A .4cm 2B .6cm 2C .8cm 2D .12cm 23.小明和爸爸在一长400米的环形跑道上,小明跑步每秒跑5米,爸爸骑车每秒骑15米,两人同时同地反向而行,经过 秒两人相遇.4.一般轮船从甲码头到乙码头顺流而行用了3h ,从乙码头返回甲码头用了5h .已知轮船在静水中的平均速度为32km /h ,求水流的速度.5.将一个底面半径为5cm ,高为10cm 的圆柱体冰淇淋盒改造成一个直径为20cm 的圆柱体.若体积不变,则改造后圆柱体的高为多少?第2课时储蓄与销售问题1.如图是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元2.小华的妈妈去年存了一个期限为1年的存款,年利率为3.50%,今年到期后得到利息700元,则小华的妈妈去年存款的本金为()A.1000元B.2000元C.10000元D.20000元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打()A.7折B.8折C.9折D.6折4.五年前李老师把一笔钱存入银行,存期为5年,年利率为4.75%.今年到期时李老师共取回74250元,则本金是多少元?5.一件商品在进价的基础上提价20%后,又以9折销售,获利20元,则进价是多少元?第3课时比例与产品配套问题1.一个数比它的相反数大-4,若设这数是x,则可列出关于x的方程为()A.x=-x+4B.x=-x+(-4)C.x=x-(-4)D.x×(-x)=42.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了()A.3场B.4场C.5场D.6场3.李敏家8月份共缴水、电和煤气费140元,已知水、电和煤气费用的比是3∶16∶9,则李敏家8月份三种费用各是多少元?4.在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.某车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?3.3二元一次方程组及其解法第1课时二元一次方程组1.下列方程组中是二元一次方程组的是()2.小刚用41元钱买了甲、乙两种笔记本,甲种笔记本每本5元,乙种笔记本每本8元,且甲种笔记本比乙种笔记本多买了3本,则甲、乙两种笔记本各买了多少本?设小刚买了甲种笔记本x本,乙种笔记本y本,则可列方程组为()3.已知方程3x m-2y n=7是关于x、y的二元一次方程,则m+n=.4.根据题意,列出二元一次方程组:(1)某校七年级二班组织全班40名同学去参加义务植树活动,男生每人植树4棵,女生每人植树3棵,全班共植树123棵.问男生和女生各有多少人?(2)某人从学校出发骑自行车去县城,中途因为道路施工步行一段路,1.5小时后到达县城.他骑车的平均速度是15千米/时,步行的平均速度是5千米/时,路程全长20千米,他骑车与步行各用了多少时间?(3)加工某种产品需要两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成产品的件数相等?第2课时用代入法解二元一次方程组1.下列二元一次方程组的解为的是()2.用代入法解方程组时,下列代入变形正确的是()A.3x-4x-1=1B.3x-4x+1=1C.3x-4x-2=1D.3x-4x+2=13.若是关于x、y的方程x-ny=3的一组解,则n的值为.4.用代入法解下列方程组:第3课时用加减法解二元一次方程组1.用加减消元法解方程组适合的方法是()A.①-②B.②+①C.①×2+②D.②×1+①2.用加减法解方程组时,①×2-②,得()A.3x=-1B.-2x=13C.17x=-1D.3x=173.已知方程组则x-y的值为.4.用加减法解下列方程组:第4课时较复杂方程组的解法1.解以下两个方程组:较为简便的方法是()A.①②均用代入法B.①②均用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法2.已知二元一次方程组如果用加减法消去n,那么下列方法可行的是()A.4×①+5×②B.5×①+4×②C.5×①-4×②D.4×①-5×②3.解下列方程组:3.4二元一次方程组的应用第1课时简单实际问题与行程问题1.甲、乙两人在相距18千米的两地,若同时出发相向而行,2小时后相遇;若同向而行,且甲比乙先出发1小时追击乙,则在乙出发后4小时两人相遇.求甲、乙两人的速度.设甲的速度为x千米/时,乙的速度为y千米/时,则可列方程组为()2.若买2支圆珠笔,1本笔记本需14元;买1支圆珠笔,2本笔记本需16元,则1支圆珠笔元,1本笔记本元.3.某市火车站北广场将于2018年底投入使用,计划在广场内种植A,B两种花木共6600棵.若A花木的数量是B花木的数量的2倍少600棵,则A,B两种花木的数量分别是多少棵?4.一条船顺水航行45千米需要3小时,逆水航行65千米需要5小时,求该船在静水中的速度和水流速度.第2课时物质配比与变化率问题1.已知A种盐水含盐15%,B种盐水含盐40%,现在要配制500克含盐25%的盐水,需要A、B两种盐水各多少克?若设需要A种盐水x克,B种盐水y克,根据题意可列方程组为()2.某工厂去年的利润(总产值-总支出)为200万元,今年的总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,则去年的总产值为万元,总支出是万元.3.甲种矿石含铁50%,乙种矿石含铁36%,取两种矿石各若干吨,混合后得到含铁48%的矿石140吨,问混合时,两种矿石各取了多少吨?4.某农场去年计划生产玉米和小麦共200吨,采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%,则该农场今年实际生产玉米、小麦各多少吨?第3课时调配与配套问题1.某车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若1个甲种玩具零件与2个乙种玩具零件能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具?设生产甲种玩具零件x天,乙种玩具零件y天,则有()2.用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,一个盒身可以和两个盒底制成一个罐头盒.现有36张白铁皮,则用张制盒身,张制盒底,恰好配套制成罐头盒.3.有一个运输队承包了一家公司运送货物的业务,第一次运送18吨,派了1辆大卡车和5辆小卡车;第二次运送38吨,派了2辆大卡车和11辆小卡车,并且两次派的车都刚好装满.请问两种车型的载重量各是多少?4.小敏和小强假期到某厂参加社会实践,该工厂用白板纸做包装盒,设计每张白板纸做盒身2个或盒盖3个,且1个盒身和2个盒盖恰好做成一个包装盒.为了充分利用材料,要求做成的盒身和盒盖正好配套.现有14张白板纸,问最多可做几个包装盒?*3.5三元一次方程组及其解法1.下列方程组中,是三元一次方程组的是()2.解方程组若要使运算简便,消元的方法应选择()A.先消去xB.先消去yC.先消去zD.以上说法都不对3.把方程组消去未知数z,转化为只含x,y的方程组为.4.由方程组可以得到x+y+z的值是.5.解下列方程组:第4章直线与角4.1几何图形1.从下列物体抽象出来的几何图形可以看成圆柱的是()2.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆3.下列图形属于多面体的有()A.2个B.3个C.4个D.5个4.围成圆柱的面有()A.1个B.2个C.3个D.4个5.如图,用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.一个长方体一共有条棱,有个面;如果长方体的底面边长都是2cm,高是4cm,那么它的所有棱长的和是.7.把下列图形与对应的名称用线连起来.圆柱四棱锥正方体三角形圆4.2线段、射线、直线1.向两边延伸的笔直铁轨可看作()A.直线B.射线C.线段D.以上都不对2.给出下列图形,其表示方法不正确的是()3.如图,下列说法错误的是()A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O第3题图第5题图4.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.5.根据图形填空:点B在直线上,图中有条线段,以点B为端点的射线有条.6.已知平面上的四点A、B、C、D如图所示.(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于点E;(4)连接AC、BD相交于点F.4.3线段的长短比较1.如图所示的两条线段的关系是()A.AB=CDB.AB<CDC.AB>CDD.无法确定2.如图,已知线段AB=6cm,C是AB的中点,则AC的长为()A.6cmB.5cmC.4cmD.3cm3.如图,已知D是线段AB延长线上的一点,C为线段BD的中点,则下列等式一定成立的是()A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如把弯路改直可以缩短路程,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD的长.4.4角1.图中∠AOC还可表示为()A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(小于180°)的个数是()A.1个B.2个C.3个D.4个3.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′24″4.如图,能用一个字母表示的角是,用三个大写字母表示∠1为,∠2为.第4题图第5题图第6题图5.如图,点Q位于点O的方向上.6.某钟面上午4时整时针和分针的位置如图所示,则此时时针和分针所成角的度数是.7.计算:(1)33°52′+21°50′;(2)108°8′-36°56′.4.5角的比较与补(余)角1.如图,其中最大的角是()A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第4题图第5题图2.若∠A=50°,则∠A的余角的度数为()A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为()A.100°B.10°C.20°D.90°4.如图,∠1和∠2都是∠α的余角,则下列关系不正确的是()A.∠1+∠α=90°B.∠2+∠α=90°C.∠1=∠2D.∠1+∠2=90°5.如图,OC为∠AOB内的一条射线.若∠AOB=70°,∠BOC=30°,则∠AOC的度数为.6.如图,已知OC为∠AOB内的一条射线,OM、ON分别平分∠AOC、∠BOC.若∠AOM =30°,∠NOB=35°,求∠AOB的度数.4.6用尺规作线段与角1.下列尺规作图的语句正确的是()A.延长射线AB到DB.以点D为圆心,任意长为半径画弧C.作直线AB=3cmD.延长线段AB至C,使AC=BC2.如图,已知∠α,∠β,求作∠AOC=∠α+∠β(不写作法,保留作图痕迹).3.如图,已知线段AB.(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=AB;②延长线段BA到D,使AD=AC(不写画法,但要保留画图痕迹);(2)观察(1)中所作的图,直接写出线段BD与线段AC长度之间的大小关系;(3)若AB=2cm,求线段BD和CD的长度.第5章数据的收集与整理5.1数据的收集1.下列调查适合普查的是()A.调查2017年2月份利辛市场上某品牌饮料的质量B.调查某月长江安徽段水域的水质情况C.光明节能厂检测一批新型节能灯的使用寿命D.了解某班50名学生的年龄情况2.下列调查中,调查方式选择合理的是()A.为了解淮河安徽段的水质情况,选择抽样调查B.为了解一批袋装食品是否有防腐剂,选择全面调查C.为了解一架Y-8GX7新型战斗机各零部件的质量,选择抽样调查D.为了解一批药品是否合格,选择全面调查3.要了解一批投影仪的使用寿命,从中任意抽取40台投影仪进行实验,在这个问题中,样本是()A.每台投影仪的使用寿命B.一批投影仪的使用寿命C.40台投影仪的使用寿命D.404.为了解某校学生每日的运动量,下列收集数据合理的是()A.调查该校舞蹈队学生每日的运动量B.调查该校书法小组学生每日的运动量C.调查该校田径队学生每日的运动量D.调查该校某一班级的学生每日的运动量5.每年4月23日是“世界读书日”,为了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查.(1)采用的是哪种调查方式?(2)总体、个体、样本、样本容量分别是什么?5.2数据的整理1.为了解家里的用水情况,以便能更好的节约用水,小方把自己家1至6月的用水量绘制成如图所示的折线统计图,则小方家这6个月中用水量最多是()A.1月B.4月C.5月D.6月第1题图第2题图2.在一次慈善基金捐款活动中,某单位对捐款金额分别是人民币100元、200元、300元、400元和500元的人数进行了统计,制成如图所示的统计图.小明从该统计图获得以下四条信息,其中正确的是()A.捐款金额越高,捐款的人数越少B.捐款金额为500元的人数最多C.捐款金额为400元的人数比捐款金额为200元的人数要少D.捐款金额为100元的人数最少3.某校八年级(5)班60名学生在一次英语测试中优秀的占45%,在扇形统计图中,表示这部分同学的扇形圆心角的度数是度.4.某校根据该校700名学生上学方式的调查结果,制作了下表:上学的方式步行骑车乘车其他人数m n 105 70百分比40% 35% a b(1)表格中m=,n=,a=,b=;(2)根据抽样调查的结果,将所有学生上学方式的情况绘制成扇形统计图.5.3用统计图描述数据1.要反映我区12月11日至17日这一周每天最高气温的变化趋势,宜采用()A.条形统计图B.折线统计图C.扇形统计图D.频数直方图2.需要清楚地表示每个项目的具体数目应选择()A.折线统计图B.扇形统计图C.条形统计图D.以上三者均可3.想表示某种品牌奶粉中蛋白质、钙、维生素、糖、其他物质的含量的百分比,应选择的统计图是.4.如图是某校初中三个年级男、女生人数的条形统计图,则学生数最多的年级是.5.小颖的母亲开了一家服装店,专门卖羽绒服,去年一年各月的销售情况如下表:月份 1 2 3 4 5 6 7 8 9 10 11 12 销量(件) 100 90 50 11 8 6 4 6 5 30 80 110 根据上表,回答下列问题:(1)计算去年各季度销售量在全年销售总量中所占的百分比,并用适当的统计图表示;(2)从这些统计图表中,你能得出什么结论?请你为小颖的母亲今后的决策提出好的建议.。
正数、负数、数轴、相反数测试题姓名1.温度升高200C,再升高-200C,,结果是()成绩A.温度升高了400CB.温度下降了200CC.温度不变D.温度升高了200C2.甲比乙小-2岁表示的意义是():A. 甲比乙小2岁B. 甲比乙大-2岁C. 乙比甲大2岁D. 乙比甲小2岁3.下列四个语句,其中正确的有():○1不带“-”号的数都是正数;○2正数前加上“-”号表示的数是负数;○3不存在既不是正数也不是负数的数;○400C表示没有温度A.0个B. 1个C. 2个D. 3个4.下列说法,其中正确的是()。
○1在+3和+4之间没有正数;○2在0和-1之间没有负数;○3在+1和+2之间有无数个正分数;○4在+0.1和+0.2之间没有正分数A. ○3B. ○4C.○1○2○3D. ○3○45.如果一个数的相反数是非正数,则这个数是():A.正数B. 负数C. 正数和零D. 负数和零6.下列说法正确的是()。
A.-a的相反数一定是正数B.π的相反数是-3.14C.a+b与b+a互为相反数D.相反数等于本身的数只有07.一个数的相反数小于它本身,这个数是()。
A.非负数B. 负数C. 正数D. 非正数8.若一个数的相反数是最小的正整数,那么这个数是()。
A. 1B. -1C. 0D. 0或-19.点A表示-2,从点A出发沿数轴移动6个单位长度到达点B,则点B表示的数是():A.4B.-8C.4或-8D.6-或610.数轴上的原点及原点右边的点表示的数是()。
A.正数B.非正数C.负数D.非负数11.已知下列各数:-3.14159,4325+,3,293-,-12.6,7.05,0,π,-2009其中正数有个(),负数有()个。
12.某食品包装袋上写有“(805)±g”的字样,这表示每袋食品的标准重量是(),每袋的重量不低于(),不超过()。
13.一个数既不是正数也不是负数,这个数是()。
14.把下列各数填在相应的大括号内。
《数轴、相反数、绝对值》专题练习一、选择题(每小题3分,共30分)1.-5的绝对值为 ( )A .-5B .5C .-15D .152.-18的相反数是 ( )A .-8B .18 C .0。
8 D .83.在下面所画的数轴中,你认为正确的数轴是 ( )4.下列说法正确的是 ( )A .正数与负数互为相反数B .符号不同的两个数互为相反数C .数轴上原点两旁的两个点所表示的数互为相反数D .任何一个有理数都有它的相反数5.数轴上的点A ,B 位置如图所示,则线段AB 的长度为 ( )A .-3B .5C .6D .76.若a =7,b =5,则a -b 的值为 ( )A .2B .12C .2或12D .2或12或-12或-27.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A . a +b =0B . b <aC . a b >0D . |b |<|a |8.下列式子不正确的是 ( )A .44-=B .1122= C .00= D . 1.5 1.5-=-9.如果有理数a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是倒数等于它本身的数,那么式子a-b+c2-d的值是()A.-2 B.-1 C.0 D.110.如果abcd<0,a+b=0,cd〉0,那么这四个数中的负因数至少有() A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-112的相反数是______;-2是______的相反数;_______与110互为倒数.13.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使1x =x-1成立,你写出的x的值是______.17.若x,y是两个负数,且x〈y,那么x_______y.18.如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB=BC,若a〉b>c,则该数轴的原点O的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-135,-(+6。
数轴练习题(含答案)篇一:《数轴、相反数、绝对值》专题练习《数轴、相反数、绝对值》专题练习一、选择题(每小题3分,共30分)1.5的绝对值为A.5B.5c.15D.152.的相反数是A.8B.1818c..83.在下面所画的数轴中,你认为正确的数轴是4.下列说法正确的是A.正数与负数互为相反数B.符号不同的两个数互为相反数c.数轴上原点两旁的两个点所表示的数互为相反数D.任何一个有理数都有它的相反数5.数轴上的点A,B位置如图所示,则线段AB的长度为A.3B.5c.6D.76.若a=7,b=5,则ab的值为A.2c.2或12B.12D.2或12或12或27.实数a,b在数轴上的位置如图所示,以下说法正确的是()8.下列式子不正确的是A.?4?4B.11?22c.0?0D.???9.如果有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,那么式子ab+c2d的值是A.2B.1c.0D.110.如果abcd0,那么这四个数中的负因数至少有A.4个B.3个c.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近2且比2大的负整数是______.12.111的相反数是______;2是______的相反数;_______与互为倒数.21013.数轴上表示2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使x?1=x1成立,你写出的x的值是______.17.若x,y是两个负数,且xb>c,则该数轴的原点o的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:120.(5分)如图,根据数轴上各点的位置,写出它们所表示的数:31,,+(32),12,3.52用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.311,?4,,0,1,,5,1.2221.(6分)七班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:50分;B队:150分;c队:300分;D队:0分;E队:100分.将5个队按由低分到高分的顺序排序;把每个队的得分标在数轴上,并标上代表该队的字母;从数轴上看A队与B队相差多少分?c队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把5,3,5,1,3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x的点与表示数1的点的距离等于1,其几何意义可表示为:x?=1,这样的数x可以是0或2.等式x?2=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.等式x?3=2的几何意义可仿上解释为:在数轴上____________________________,其中x的值可以是______________.在数轴上,表示数x的点与表示数5的点的距离等于6,其中x 的值可以是_______,其几何意义可以表示为_______.24.(8分)5的相反数是5,5的相反数是5,那么x的相反数是_______,m+的相反数是_______.数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=1n21,那么2到点100和到点999距离相等的点表示的数是_______;到点m 和点n距离相等的点表示的数是_______.数轴上点4和点9之间的距离为5个单位,有这样的关系5=94,那么点10和点3之间的距离是_______;点m和点n之间的距离是_______.25.(6分)设a?b?c?0,abc?0,求b?cc?aa?b的值。
正数与负数 数轴 相反数 绝对值练习题知识点一:数的认识1、下列各数:-2,5,31-,0.63,0,7,-O.05,-6,9,45,511,1.其中正数有____个,负数有___个,正分数有___个,负分数有___个,自然数有___个,整数有___个. 2、最小的正整数是 ,最大的负整数是 3、把下列各数填在相应的大括号中:5,41-,-3,213-,0,2010,-35,6.2,-1正数集合:{ …… } 负数集合:{ ……} 整数集合:{ ……} 分数集合:{ ……} 4、下列说法中,正确的是( )A 、零不是自然数B 、零是正数C 、零是负数D 、零是整数 5、观察下列各数⋯⋯--7665 54 43- 32 21 1,,,,,,其中第100个数是 ,第1003个数是 ,第2000个数是 6、下列说法中,正确的是( )A 、有最小的负整数,有最大的正整数B 、有最小的负数,没有最大的正数C 、有最大的负数,没有最小的正数D 、没有最大的有理数和最小的有理数 7、在下表适当的空格里画上“√”号8、数学成绩85分以上为优秀,以85分为标准,一小组5名同学的成绩简记为:+5,-4,+12,-5,0,这5名同学的实际成绩最高的是( )分知识点二:数轴1、数轴的三要素是 , ,2、在数轴上表示的数, 边的总比 边的大。
3、数轴上原点及原点右边的点表示的数是( )A 、正数B 、负数C 、非负数D 、非正数 4、数轴上点M 到原点的距离是5,则这个点表示的是( ) A 、5 B 、-5 C 、5或-5, D 、不能确定 5、小于3的非负整数有6、大于-2且小于4的整数有 个,分别是7、在数轴上表示下列各数,并用“<”连接起来21245023,,,,--.8、数轴上表示整数的点称为整点。
某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB ,则线段AB 盖住的整点的个数是( )A. 2002或2003B. 2003或2004C. 2004或2005D. 2005或20069、下列说法中,错误的是( )A 、所有有理数都可以用数轴上的点表示B 、数轴上原点表示0C 、在数轴上表示-3和+1的两点的距离是2D 、数轴上表示514-的点,在原点左边514个单位10、下列说法正确的是( )A 、数轴上的每一点都表示有理数B 、每一个有理数都可以用数轴上的点来表示C 、在一条数轴上可能会有一个点表示不同的有理数D 、在一条数轴上可能会有两个不同的点表示同一个数 11、判断:数轴是规定了原点、正方向和长度单位的直线( ) 在数轴上,位于-3与3之间的点有5个( ) 知识点三:相反数1、-2的相反数是 ,0.5的相反数是 ,0的相反数是 。
2、一个数的相反数等于它本身,这个数是 2、如果a 的相反数是-3,那么a= .3、如a=+2.5,那么,-a = .如-a= -4,则a=4、如果 a,b 互为相反数,那么a+b= ,2a+2b = .5、―(―2)= . 与―[―(―8)]互为相反数.6、如果a 的相反数是最大的负整数,b 的相反数是最小的正整数,则a+b= .7、a-b的相反数是,a-2的相反数是3,那么, a= .8、一个数的相反数大于它本身,那么,这个数是.一个数的相反数等于它本身,这个数是,一个数的相反数小于它本身,这个数是.9.、若果a 和b是符号相反的两个数,在数轴上a所对应的数和b所对应的点相距6个单位长度,如果a=-2,则b的值为.10、下列几组数中是互为相反数的是( )A―17和0.7 B13和―0.333 C ―(―6)和6 D ―14和0.2511、一个数在数轴上所对应的点向左移6个单位后,得到它的相反数的点,则这个数是( )A 3B -3C 6D -612、一个数是7,另一个数比它的相反数大3.则这两个数的和是( )A -3B 3C -10D 1113、如果2(x+3) 与3(1-x)互为相反数,那么x的值是( )A -8 B8 C -9 D 914、计算.1 + 2 + 3 + …+ 2004 + (-1) + (-2)+ (-3) + …+(-2004)15、如图是一个正方形纸盒的展开图,在其中的四个正方形内标有数字1,2,3和-3,要在其余的正方形内分别填上―1,―2,使得按虚线折成的正方体后,相对面上的两个数互为相反数,则A处应填,B处应填.16、如果a 的相反数是-2,且2x+3a=4.求x的值.17、已知a、b在数轴上的对点如图所示:(1)在数轴上表示-a,-b(2)试把a、b、0、-a、-b这五个数从小到大用“<”号连接起来。
18、下列说法中,正确的是()A、符号相反的两个数是相反数B、任何一个负数都小于它的相反数C、任何一个负数都大于它的相反数D、0没有相反数知识点四:绝对值:1.______7.3=-; ______0=; ______3.3=--; ______75.0=+-.______31=+; ______45=--; ______32=-+. ______510=-+-; ______36=-÷-; ______5.55.6=--- ______5=-; ______312=-; ______31.2=-; ______=+π 2、绝对值等于它本身的数是_______________或_____________。
绝对值等于它的相反数的是_____________。
任何数的绝对值一定__________________0。
绝对值最小的数是_________________互为相反数的两个数的绝对值__________________ 3、判断(1)有理数的绝对值一定大于0。
( )(2)如果两个数的绝对值相等,那么这两个数必然是互为相反数。
( ) (3)如果一个数的绝对值等于它本身,那么这个数必然大于任何负数。
( )(4)一个数的绝对值一定不小于它本身。
( )(5) 任何有理数的绝对值都是正数。
( ) (6) 绝对值等于它本身的数只有零。
( )(7) 绝对值大于2且小于5的整数只有两个。
( ) (8) 绝对值不大于3的整数有3,2,1,0。
( )(9) -13的倒数的绝对值是-3.( ) (10) -001.的相反数的绝对值是1100。
( )(11) 大于-4的整数有3个。
( ) (12) 小于-4的正整数有无穷多个。
( ) (13) -<-24。
( ) (14) ->-1101100。
( ) (15) 01>-。
( ) (16) 没有绝对值小于1的整数。
( ) (17) 绝对值大于3并且小于5的整数有2个。
( ) (18) 大于-1并且小于0的有理数有无穷多个。
( ) (19) 在数轴上,到原点的距离等于2的数是2。
( )(20) 绝对值不大于2的自然数是0,1,2。
( ) (21) 绝对值等于本身的数只有0。
( ) (22) 两个数的相反数相等,那么这两个数一定相等。
( )(23) 两个数的绝对值相等,那么这两个数一定相等。
( ) (24) --⎛⎝ ⎫⎭⎪>--⎛⎝ ⎫⎭⎪227237。
( )4、下列说法中正确的是( )A .a -一定是负数B .只有两个数相等时它们的绝对值才相等C .若b a =则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数 5、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有( ) A .0个B .1个C .2个D .3个6、如果a 表示一个有理数,那么下面说法正确的是( )A. -a 是负数B. ||a 一定是正数C. ||a 一定不是负数D. ||-a 一定是负数 7、下列说法中,正确的是( )A 、一个数的绝对值一定是正数B 、绝对值等于本身的数是正数C 、互为相反数的两个数的绝对值相等D 、绝对值相等的两个数一定相等 8、下列说法中,正确的是( )A 、绝对值等于3的数是-3B 、绝对值小于311的整数是1和-1C 、绝对值最小的有理数是1D 、3的绝对值是3 9、计算:(1) 7.27.27.2---+ (2) 13616--++-(3) 5327-⨯-÷- (4) ⎪⎪⎭⎫⎝⎛-+÷+-3292212110、在横线上填上适当的“>”,“<”或“=”。
(1)--3553; (2)--1111.;(3)--02525..;(4)---+||||33 (5)2323-; (6)--2323; (7)--+2323; (8)--⎛⎝ ⎫⎭⎪+232311、某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L 误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数.检查结果如下表:请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)? (2)哪一瓶净含量最接近规定的净含量?12、在数轴上表示下列各数 (1)212- (2)0 (3)绝对值是2.5的负数 (4)绝对值是3的正数。