行程问题之相遇问题
- 格式:ppt
- 大小:334.00 KB
- 文档页数:14
行程问题之相遇问题
方法解析:有关行程问题,总的思路是路程=速度×时间
相关变式:速度=路程÷时间
时间=路程÷速度
路程之差=速度差×共同时间
路程之和=速度和×共同时间
另外,要学会通过画线段图来分析路程、速度、时间的关系
例题一:(相遇问题)A、B两地相距700千米,慢车行完全程需要10小时,快车行完全程需要8小时,慢车从A地出发1小时后,快车才从B地开出,快车开出几小时后与慢车相遇?
练习1、客货两车同时从A、B两地相对开出,4.5小时相遇,相遇时
4,求A、B两地相客车比货车多行了27千米,货车的速度是客车的
5
距多少千米?
练习2、甲、乙两人同时从A、B两地相向而行,第一次在离A地75米处相遇,相遇后继续前进到达目的地后又立刻返回,第二次相遇在离B地55米处,求A、B两地相距多远?
练习3、兄妹二人同时离家去学校,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时发现忘记带课本,立即沿原路回家去取,行至离学校180米处与妹妹相遇,那么他们家离学校有多少米?
9,两车分别从甲、乙两地同时相向而行,练习4、货车速度是客车的
10
在离两地中点3千米处相遇,相遇后,两车分别用原速继续前进,问当客车到达甲站时,货车还离乙站多远?
练习5、甲、乙两车同时从A、B两站相对开出,5小时后甲到达中点,
2,求A、B两站乙车离中点还有60千米,已知乙车速度是甲车的
3
的距离。
练习6、客车由甲地到乙地需行10小时,货车从乙地到甲地需15小时,两车同时相向开出,相遇时客车距乙地还有192千米,两地的距离是多少千米?。
相遇问题的三种情况
行程问题是专门研究物体运动的速度、时间和路程三者之间关系的应
用题,主要的数量关系是:路程=速度×时间.
行程问题大致可以分成以下三种情况:
1.相向而行:速度和×相遇时间=路程;2.相背而行:速度和×时
间=相背路程;
3.同向而行:速度差×追击时间=追击路程.
【例题精讲】
例1有两列火车,一列长102米,每秒行20米;另一列长83米,每
秒行17米。
两列火呈在双轨线上相向而行,从两车相遇到车尾离开共要
用多少秒?
例2一列客车通过860米长的大桥需要45秒,用同样的速度穿过
610米的隧道需要35秒。
求这列客车行驶的速度及车身的长度。
例3甲、乙两车分别从A、B两地同时开出,相向而行,经过6小时,甲车行了全程的75%,乙车超过中点16千米。
已知甲车比乙车每小时多行
4千米。
求A、B两地相距多少千米?
例4一辆汽车从甲地开往乙地,如果把车速提高20%,可以比原定时
间提前一小时到达,如果以原速行驶120千米后,再将速度提高25%,则
可提前40分钟到达,则甲、乙两地相距多少千米?。
行程问题(一)行程问题的主要数量关系:●速度×时间=路程路程÷速度=时间路程÷时间=速度相遇问题数量关系:甲走的路程+乙走的路程=总路程●速度和×相遇时间=总路程总路程÷相遇时间=速度和总路程÷速度和=相遇时间一、例题:例1、一辆汽车每分钟行1200米,这辆汽车从苏州到南京用了4小时,苏州到南京大约有多少千米?例2、甲乙两城相距360千米,一辆汽车原定用9小时从甲城开到乙城。
汽车行驶了一半路程,在途中停留30分,如果汽车按原定时间到达乙城,那么,在行驶后半段路程时,应该比原来的时速加快多少?例3、甲乙两辆客车同时从两地相对开出,甲车的速度是54千米/小时,乙车速度是53千米/小时,经过5小时相遇,,两地间公路全长是多少千米?例4、一辆客车和一辆货车分别从相距525千米的甲乙两地相对开出,客车每小时行60千米,货车每小时行45千米,经过多少小时两车相遇?例5、甲乙两列火车同时由相距792千米的两地相向而行,9小时相遇,甲车速度是45千米/小时,乙车速度是多少?例6、一列火车于下午1时30分从甲站开出,每小时行60千米。
半小时后,另一列火车以同样的速度从乙站开出,当天下午6时两车相遇。
甲乙两站相距多少千米?例7、苏步青教授是我国著名的数学家,一次出国访问时,他在电车上碰到一位外国数学家,这位外国数学家出了一道题目让苏步青做,题目是:甲乙两人同时从两地出发,相向而行。
距离是100千米吗,甲每小时行6千米,乙每小时行4千米,甲带着一只狗,狗每小时行10千米,这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇,这只狗一共走了多少千米?例8、快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车乙驶过中点25千米,这时快车和慢车还相距7千米,慢车每小时行多少千米?例9、甲乙两辆汽车同时从东西两地出发,甲车每小时行56千米,乙车每小时行48千米,两辆汽车在距中点32千米处相遇。
行程问题(二)知识要点:相遇问题两个物体由于相向运动而相遇。
解答此类问题的关键是求出两个运动物体的速度和。
基本关系式有:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间=速度和相遇路程:两个运动物体从两地同时相向运动所行的路程。
例题精讲:【例1】一辆客车和一辆货车同时从A、B两城相对开出。
客车的速度是62每小时千米,货车的速度是50千米每小时,经过4小时相遇,A、B两城相距多远?【例2】解放军某部通讯兵在一次演习中,摩托车每小时行60千米,汽车每小时行40千米,汽车出发1.5小时后,摩托车沿同路去追赶汽车,需要几小时追上?【例3】运动场的跑道400米,王芳和陈月两名运动员从起跑线同时出发,王芳每分钟跑390米,陈月每分钟跑310米,求多少分钟后王芳超过陈月一周?基础巩固:1、小亚和小巧同时从自己家里走向学校。
小亚每分钟走65米,小巧每分钟走70米,经过4分钟两人在校门相遇,他们两家相距多少米?2、3、客车和货车同时从甲、乙两地相向开出,客车每小时行40千米,货车每小时行32千米,4小时后两车相遇,甲、乙两地相距多少千米?4、甲、乙两地相距288千米,客车和货车同时从甲、乙两地相向开出,客车每小时行40千米,货车每小时行32千米,几小时后两车相遇?5、一辆拖拉机要去拉货,每小时走30千米,出发30分钟后,家中有事派一辆小轿车50千米/小时的速度去追拖拉机,问小轿车用多少时间可以追上拖拉机?6、一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?7、客车和货车同时从丙地开出,向相反方向开出,客车每小时行40千米,货车每小时行32千米,开出4小时后,两车相距多少千米?8、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行,环形公路的一周是360米。
现在已知甲走一圈的时间是60分钟,乙走一圈的时间是30分钟,那么甲、乙两人何时相遇?9、两地的距离是1200千米,有两列火车同时相向开出。
三年级数学:路程解析-相遇问题(1)一般相遇问题:如果两个物体是同时出发,那么相遇路程就是两个物体原来相距的路程;如果两个物体不是同时出发,那么它们的相遇路程等于两个物体原来相距的路程减去其中一个物体先走的路程;
(2)中点相遇问题:相遇路程等于相遇地点与中点距离的两倍;
(3)往返相遇问题:同时出发,同时停止,则中间往返的时间就是相遇时间;
(4)环形相遇问题:同时、同地背向出发,相遇路程就是一周的长度。
一般行程问题中,路程=速度×时间,速度=路程÷时间,时间=路程÷速度。
相遇问题中,路程差=速度差×时间差;速度差=路程差÷时间;时间=路程差÷速度差。
中点相遇问题中,快的多走的路程就是距离中点路程的两倍。
相遇时间=路程差÷速度差。
往返相遇问题的关键是,往返行驶的时间与相遇时间相等。
环形跑道上同时背向行驶,相遇几次,则相遇路程就是几个全程,再根据相遇时间=路程÷速度和求解。
行程问题(一)基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间平均速度=总路程÷总时间相遇问题:速度和×相遇时间=相遇路程追及问题:追及时间=路程差÷速度差流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2例1 两地相距360千米,一艘汽艇顺水行全程需要10小时,已知这条河的水流速度为每小时6千米。
往返两地的平均速度是每小时多少千米?1.有一条山路,一辆汽车上山时每小时行30千米,从原路返回下山时每小时行50千米,求汽车上、下山的平均速度。
2.甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,已知汽船在静水中每小时行驶21千米。
求汽船从甲码头顺流行驶几小时到达乙码头?3,甲船逆水航行300千米,需要15小时,返回原地需要10小时;乙船逆水航行同样的一段水路需要20小时,返回原地需要多少小时?例2 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米?1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。
学校到少年宫有多少米?2,甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村。
东村到西村的路程是多少米?例3 快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?1,兄弟二人同时从学校和家中出发,相向而行。
行程问题:相遇问题应用题(小升初专项练习)六年级数学小考总复习(含答案)一、相遇问题常见公式。
1、两者相遇路程=两者速度和×相遇时间2、相遇时间=两者相遇路程÷两者速度和3、两者速度和=两者相遇路程÷相遇时间4、两者速度和=甲的速度+乙的速度5、两者相遇路程=甲走的路程+乙走的路程6、甲的速度=两者相遇路程÷相遇时间-乙的速度7、甲行走的路程=两者相遇路程-乙行走的路程二、解决实际问题的技巧。
1、解答相遇此类问题,首先要弄清题目的题意,按照题意画出路程、时间或速度的相关线段图;然后分析各数量之间的关系;最后选择最适合的解答方法。
2、相遇问题除了要弄清路程、速度与两者相遇时间之外,须注意一些其他重要的细节:(1)两者是否是同一起点、同时出发。
如果有谁先出发了,先行走了路程,要考虑先出发者所走的路程值对题目的影响,该加还是该减掉。
(2)两者所行走的方向是否一致:梳理清楚两者是相向、同向,还是背向的。
方向不一样,处理问题就会不一样。
(3)所行走的路线是环形的,还是直线型的。
如果是环形的,要考虑再次相遇的可能。
【典型例题】1、小恬骑车从家出发去距离3.5千米远的图书馆,同一时间小琳从图书馆出来朝小恬家的方向骑来,14分钟后两人刚好相遇。
小恬每分钟骑车130米,那么小琳每分钟骑车多少米?【例题分析】这道题目是典型的路程相遇问题,已知相遇路程和相遇时间,只需要运用公式:甲的速度=相遇路程÷相遇时间-乙的速度代入相关的数量,求出答案即可。
【解答】3.5千米=3500米3500÷14-130=250-130=120(米)答:小琳每分钟骑车120米。
【培优练习】1、小客车从长泾镇到杨梅镇要行驶3小时,大货车从杨梅镇到长泾镇要行驶6小时。
两车分别从长泾镇和杨梅镇同时出发,多久后两车会相遇?2、两列高铁同时从两地相对开出,经过 32 个小时后,两列高铁在途中相遇。
相遇问题【知识要点】1.相遇问题是行程问题中的一种情况。
这类应用题的特点是:两个运动的物体,同时从两地相对而行,越行越接近,到一定时候二者可以相遇2.相遇问题的数量关系式:速度和×相遇时间=两地路程两地路程÷速度和=相遇时间 两地路程÷相遇时间=速度和3.解题时,除掌握数量关系时,还要根据题意想象实际情景,画线段图来帮助分析和理解题意,突破题目的难点【典型题解】例1.兔妈妈在距离森林300米远的地方安了家,一天它到森林里采了一篮蘑菇,当它以每秒3米的速度返回时,小兔乖乖正以每秒2米的速度跑来接妈妈。
问两只兔子多少秒后相遇?分析:因为家离森林有300米远,所以开始时两只兔子相距300米。
每过1秒,两只兔子距离缩短()32+米,300米里有多少个()32+,就是多少秒相遇 解:()()3003260÷+=秒答:两只兔子60秒后相遇例2.一列客车以每小时72千米的速度行驶,客车司机发现对面来了一列货车,速度是每小时54千米,这列货车从他身边驶过,共用了12秒,求这列货车的长度分析:这题实际上是货车的车尾与客车的车头的相遇问题,它们的速度和乘以相遇时共用的时间,就是货车的车身长度解:客车的速度:72千米/小时=20米/秒 货车的速度:54千米/小时=15米/秒 ()()201512420+⨯=米答:这列货车的长是420米例3.AB 两地相距460千米,甲、乙两列车分别从A B 、两地相向而行,甲列车从A地开出2小时后,乙列车从B 地开出,经过4小时与甲列车相遇,已知甲车比乙车每小时快10千米,乙车每小时行多少千米?分析:仔细读题后发现,甲车共行驶()24+小时,甲车比乙车一共多行驶()24+个10千米,再根据“差倍问题”的解题思路,就可求出乙车的速度解:()()()46010242444001040-⨯+÷++=÷=⎡⎤⎣⎦千米答:乙车每小时行40千米例4.甲、乙两辆汽车分别由A B 、两地同时相对开出,甲车在离A 地40千米处与乙车相遇。
6相遇问题特别提示相遇问题是行程问题的一种,也是我们要学习的一种主要题型,相遇问题是指两个运动物体,以不同的速度同时从两地沿同一路线相向而行,二者一定会相遇,相遇时所用的时间为相遇时间。
两个运动物体单位时间内一共走的路程叫速度和。
解决这类问题要明确数量关系和学会画线段图。
相遇问题的基本数量关系式:路程=速度和×时间相遇时间=路程÷速度和快的速度=路程÷相遇时间-慢的速度基本题点击例1、甲乙两车从相距180千米的两地相向而行,甲车每小时50千米,乙车每小时40千米,几小时后两车相遇?解析:这是一道最基本得求相遇时间的问题,要想求出相遇时间,就要知道1小时两车共行驶了多少千米,即两人的速度和,再用路程除以速度和就是相遇时间。
180÷(40+50)=180÷90=2(小时)答:2小时后两车相遇。
例2、甲乙两地相距450千米,A B两车从两地同时出发,经5小时候相遇已知A车每小时比B车快10千米,A B两车的速度各是多少?解析:要求两车的速度各是多少,就要先求出两车的速度和,又知道两车的速度差,用和差公式去求两车的速度各是多少。
450÷5=90(千米/时)……速度和(90+10)÷2=100÷2=50(千米)A车50-10=40(千米)B车答:A车的速度是50千米每小时,B车的速度是40千米每小时。
例3、甲乙两车从两地同时相向而行,甲车每小时行50千米,乙车每小时行40千米,两车经过5小时还相差60千米相遇,求两地一共相距多少千米?甲50千米/小时60 乙40千米/小时解析:从图中可以看出要求总路程就要用甲乙5小时一共走的路程加上60千米相遇,或者求出甲乙5小时各行驶的路程,再加上60千米也得总路程。
(50+40)×5+60 或50×5+40×5+60=90×5+60 =250+200+60=450+60 =450+60=510(千米)=510(千米)答:两地相距510千米。