力的正交分解
- 格式:ppt
- 大小:467.50 KB
- 文档页数:23
力的正交分解导读:(1)概念:把力沿着两个经选定的互相垂直的方向分解叫力的正交分解。
(2)目的:在多个共点力作用下,运用正交分解法的目的是用代数运算公式来解决矢量的运算。
分解的目的是为了求合力,尤其适用于物体受多个力的情况。
(3)应用:当物体受到不在同一直线上的多个共点力时,正交分解法可以把物体受到的所有力分解到两个互相垂直的坐标轴上,分别求出两个不同方向上的合力x F 和y F ,然后就可以求出物体所受的合力F 。
(4)应用正交分解法求合力的步骤: ① 确定研究对象,进行受力分析。
② 建立直角坐标系(让尽可能多的力落在坐标轴上)。
③ 将不在坐标轴上的各力分解在坐标轴上。
④ 分别求出x 轴和y 轴上各力的合力x F 和y F F x = F 1x + F 2x + F 3x + … F y = F 2y + F 3y + F 3y +…⑤ 求出x F 和y F 的合力,即为多个力的合力。
合力的大小:22y x F F F +=合力的方向:xy F F =θtan (合力与x 轴的夹角为θ)例1.大小均为F 的三个力共同作用在O 点,如图1所示,F 1、F 2与F 3之间的夹角均为600,求这三个力的合力。
例2. 如图2所示,物体放在粗糙的水平地面上,物体重50N ,受到斜向上与水平面成300角的力F 作用,F = 50N ,物体仍然静止在地面上,求:物体受到的摩擦力和地面的支持力分别是多少?例3:如图3所示,重为G 的物体放在水平面上,推力F 与水平面夹角为α,物体做匀速直线运动,已知物体与地面间的动摩擦因数为μ,则物体所受摩擦力的大小为( )A.G μB.)sin αμF G +(C.F αcos D αμsin F例4.如图4所示,斜面上质量为m 的物体在水平力F 的作用下保持静止,已知斜面的倾角为θ,试分析摩擦力的大小和方向。
图2图1F 1F 2F 3图3 图4。
正交分解法——把力沿着两个经选定的互相垂直的方向分解,其目的是便于运用普通代数运算公式来解决矢量运算。
利用力的正交分解法求合力:这是一种比较简便的求合力的方法,它实际上是利用了力的分解的原理把力都分解到两个互相垂直的方向上,然后就变成了在同一直线上的力的合成问题了.这样计算起来就简单多了。
力的正交分解法步骤如下:1、正确选定直角坐标系:通常选共点力的作用点为坐标原点,坐标轴的方向的选择则应根据实际问题来确定。
原则是使坐标轴与尽可能多的力重合,即是使需要向两坐标轴投影分解的力尽可能少,在处理静力学问题时,通常选用水平方向和竖直方向上的直角坐标,当然在其它方向较简便时,也可选用。
一般选水平和竖直方向上的直角坐标;也可以选沿运动方向和垂直运动方向上的直角坐标.在力学计算上,这两种选择可以使力的计算最简单,只要计算到互相垂直的两个方向就可以了,不必求总合力.2、分别将各个力投影到坐标轴上:分别求x轴和y轴上各力的投影的合力和其中:(式中的轴上的两个分量,其余类推。
)这样,共点力的合力大小可由公式:求出。
设力的方向与轴正方向之间夹角是。
∴通过数学用表可知数值。
注意:如果这是处理多个力作用下物体平衡问题的好办法。
计算方法举例:例:如图所示,物体A在倾角为θ的斜面上匀速下滑,求物体受到的摩擦力及动摩擦因数。
分析:选A为研究对象分析A受力作受力图如图,选坐标如图:将不在坐标轴上的重力在x,y坐标上分解:Gx=GžsinθGy=Gžcosθf在x轴(反向),N在y轴上(正向)∵物体匀速下滑则有则一、合力与分力:在实际问题中,一个物体往往同时受到几个力的作用。
如果一个力产生的效果与原来几个力产生的效果相同,这个力就叫那几个力的合力,而那几个力就叫这个力的分力。
二、力的合成与分解:求几个力的合力的过程叫力的合成,求一个力的分力的过程叫力的分解。
合力与分力有等效性与可替代性。
求力的合成的过程实际上就是寻找一个与几个力等效的力的过程;求力的分解的过程,实际上是寻找几个与这个力等效的力的过程。
三、正交分解法
1、正交分解法:在许多情况下,根据力的实际作用效果,我们可以把一个力分解为两个相互垂直的分力,把力沿着两个选定的两个互相垂直的方向分解,叫力的正交分解法。
2、原理:一条直线上的两个或两个以上的力,其合力可以由代数运算求得。
当物体受到多个力的作用,并且这几个力只共面不共线时,其合力用平行四边形定则求解很不方便,为此,我们可以建立一个直角坐标系,先将各力正交分解在两条互相垂直的坐标轴上 ,分别求出两个不同方向上的合力x F 和
y
F
,然后可以由
F =
思路:先分再合
3、正交分解法的步骤:
(1)以共点力的作用点为原点,建立直角坐标系; (2)将合力分解为沿x 轴方向分力1,
2,3x x x
F
F F …和沿y 轴方向分力
1,2,3y y y
F F F …(与坐标轴重合的力不分解),并求出各分力大小;
(3)分别求出x 轴方向合力123x
x x x
F F F F =+++…再将
,x y
F F 二力合成,合力
大小:
F =
(4)设合力F 与x 的夹角为θ,则:tan y x
F F θ=
查表知θ,即知分力F 的
方向 4、例题 如图所示,力
12,3,F F F 4
F 同一物体上的共面共点力,其
中
123420,20,,F N F N F F ====,各力之间的夹角已标出,求合
力F 的大小和方向。
答:F ,方向与3F一致。
G一、正交分解法的目的和原则把力沿着两个经选定的互相垂直的方向分解叫力的正交分解法,在多个共点力作用下,运用正交分解法的目的是用代数运算公式来解决矢量的运算。
在力的正交分解法中,分解的目的是为了求合力,尤其适用于物体受多个力的情况,物体受到F1、F2、F3…,求合力F 时,可把各力沿相互垂直的x 轴、y 轴分解,则在x 轴方向各力的分力分别为 F1x 、F2x 、F3x…,在y 轴方向各力的分力分别为F1y 、F2y 、F3y…。
那么在x 轴方向的合力Fx = F1x+ F2x+ F3x+ … ,在y 轴方向的合力Fy= F2y+ F3y+ F3y+…。
合力22y x F +=,设合力与x 轴的夹角为θ,则x yF F =θtan 。
在运用正交分解法解题时,关键是如何确定直角坐标系,在静力学中,以少分解力和容易分解力为原则;二、运用正交分解法解题步骤如图所示:求F1、F2在X 轴、Y 轴方向的合力2、求F1、F2、F3、F4的合力3、如图所示,求F1、F2、F3的合力步骤:①建坐标,原则少分解力②分解不在坐标轴上的力 ③表示分力 ④求X 轴上的合力 Y 轴上的合力 ⑤求合力1. 物体放在粗糙的水平地面上,物体重50N ,受到斜向上方向与水平面成300角的力F 作用,F = 50N ,物体仍然静止在地面上,如图1所示,求:物体受到的摩擦力和地面的支持力分别是多少?2如图所示,用绳AO 和BO 吊起一个重100N 的物体,两绳AO 、BO 与竖直方向的夹角分别为30o 和40o ,求绳AO 和BO 对物体的拉力的大小。
3. 如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60o 角时,物体静止,不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。
3. (8分)如图6所示,θ=370,sin370=0.6,cos370=0.8。
箱子重G =200N ,箱子与地面的动摩擦因数μ=0.30。