八年级数学优质课教案
- 格式:doc
- 大小:44.50 KB
- 文档页数:1
八年级数学公开课获奖教案设计优秀3篇作为一名优秀的教育工作者,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。
写教案需要注意哪些格式呢?这次帅气的小编为您整理了八年级数学教案优秀3篇,如果对您有一些参考与帮助,请分享给最好的朋友。
八年级数学教案篇一一、教学目标1、使学生理解并掌握分式的概念,了解有理式的概念;2、使学生能够求出分式有意义的条件;3、通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;4、通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识。
二、重点、难点、疑点及解决办法1、教学重点和难点明确分式的分母不为零。
2、疑点及解决办法通过类比分数的意义,加强对分式意义的理解。
三、教学过程【新课引入】前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)【新课】1、分式的定义(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:用、表示两个整式,就可以表示成的形式。
如果中含有字母,式子就叫做分式。
其中叫做分式的分子,叫做分式的分母。
(2)由学生举几个分式的例子。
(3)学生小结分式的概念中应注意的问题。
①分母中含有字母。
②如同分数一样,分式的分母不能为零。
(4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]2、有理式的分类请学生类比有理数的分类为有理式分类:例1 当取何值时,下列分式有意义?(1);解:由分母得。
∴当时,原分式有意义。
(2);解:由分母得。
∴当时,原分式有意义。
(3);解:∴恒成立,∴取一切实数时,原分式都有意义。
(4)。
解:由分母得。
∴当且时,原分式有意义。
思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?例2 当取何值时,下列分式的值为零?(1);解:由分子得。
初二数学教案模板一、教学背景与目标教学背景:初二数学是学生进入中学后的重要学科之一。
在初二数学教学中,学生需要巩固和拓展初一数学的基础知识,学习更复杂的数学概念和解题方法,为高中数学的学习奠定坚实的基础。
教学目标:1. 知识目标:掌握初二数学相关知识,包括代数、几何、概率与统计等内容。
2. 能力目标:培养学生的逻辑思维能力、问题解决能力和数学建模能力。
3. 情感目标:调动学生学习数学的积极性和兴趣,培养学生对数学的喜爱和好奇心。
二、教学内容与重点教学内容:初二数学的教学内容主要包括代数、几何、概率与统计等方面的知识。
教学重点:初二数学的教学重点主要包括以下几个方面:1. 代数方面的知识重点:如整式的加减、等式与方程、因式分解等。
2. 几何方面的知识重点:如三角形的性质、平行线与角的性质等。
3. 概率与统计方面的知识重点:如概率的计算、统计图表的分析等。
三、教学方法与手段教学方法:1. 示范法:通过具体例题的演示和解答,引导学生掌握相关知识和解题方法。
2. 讨论法:组织学生进行小组或全班讨论,培养学生的团队合作和交流能力。
3. 案例法:引入实际生活和相关应用领域的案例,帮助学生将数学知识与实际问题联系起来。
4. 练习法:进行大量的练习和习题训练,巩固学生的知识和技能。
教学手段:1. 板书:将重点知识和步骤进行清晰的图示和说明,帮助学生理解和记忆。
2. 教具:使用教学工具,如几何模型、计算器等,辅助教学和学习。
3. 多媒体:利用多媒体资源,如投影仪、电子课件等,直观呈现知识内容,增加学习趣味性。
四、学习活动与过程设计学习活动:1. 教师引入新知识,通过示范和解答例题,帮助学生理解和掌握相关知识。
2. 学生个人或小组合作完成习题训练,巩固和拓展所学知识。
3. 学生进行课堂讨论和探究,解决实际问题和数学应用。
4. 学生展示和分享自己的解题思路和方法,互相学习和交流。
过程设计:1. 热身活动:通过解决有趣的数学谜题或游戏,激发学生对数学的兴趣和好奇心。
第1篇教学设计作为一位杰出的老师,很有必要精心设计一份教案,教案是备课向课堂教学转化的关节点。
那要怎么写好教案呢?下面是小编帮大家整理的菱形人教版数学八年级上册教案,仅供参考,希望能够帮助到大家。
一、教学目的:1、掌握菱形概念,知道菱形与平行四边形的关系;2、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积;3、通过运用菱形知识解决具体问题,提高分析能力和观察能力;4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想;二、重点、难点1、教学重点:菱形的性质1、2;2、教学难点:菱形的性质及菱形知识的综合应用;三、例题的意图分析本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材P108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题、此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识;四、课堂引入1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2、(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念;《18、2、2菱形》课时练习含答案;5、在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是( )A、矩形B、菱形C、正方形D、梯形答案:B知识点:等边三角形的性质;菱形的判定解析:解答:用两个边长为a的等边三角形拼成的四边形,它的四条边长都为a,根据菱形的定义四边相等的四边形是菱形、根据题意得,拼成的四边形四边相等,则是菱形、故选B、分析:此题主要考查了等边三角形的性质,菱形的定义、6、用两个边长为a的等边三角形纸片拼成的四边形是( )A、等腰梯形B、正方形C、矩形D、菱形答案:D知识点:等边三角形的性质;菱形的`判定解析:解答:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形、由题意可得:得到的四边形的四条边相等,即是菱形、故选D、分析:本题利用了菱形的概念:四边相等的四边形是菱形、《菱形的性质与判定》练习题一选择题:1、下列四边形中不一定为菱形的是( )A、对角线相等的平行四边形B、每条对角线平分一组对角的四边形C、对角线互相垂直的平行四边形D、用两个全等的等边三角形拼成的四边形2、下列说法中正确的是( )A、四边相等的四边形是菱形B、一组对边相等,另一组对边平行的四边形是菱形C、对角线互相垂直的四边形是菱形D、对角线互相平分的四边形是菱形3、若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )A、菱形B、对角线互相垂直的四边形C、矩形D、对角线相等的四边形第2篇教学设计1、教材分析(1)知识结构(2)重点、难点分析本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.本节内容的.难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.2、教法建议本节课教学模式主要采用“学生主体性学习”的教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人. 具体说明如下:(1)参与探索发现,领略知识形成过程学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”. 然后学生完成证明,找一名学生的证明过程,进行投影总结. 最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理. 这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.(2)采用“类比”的学习方法,获取逆定理线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.(3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.第3篇教学设计一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。
八年级数学教案(最新6篇)八年级数学教案篇一一、教学目标①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。
②理解整式除法的算理,发展有条理的思考及表达能力。
二、教学重点与难点重点:整式除法的运算法则及其运用。
难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。
三、教学准备卡片及多媒体课件。
四、教学设计(一)情境引入教科书第161页问题:木星的质量约为1。
90×1024吨,地球的质量约为5。
98×1021吨,你知道木星的质量约为地球质量的多少倍吗?重点研究算式(1。
90×1024)÷(5。
98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。
注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。
(二)探究新知(1)计算(1。
90×1024)÷(5。
98×1021),说说你计算的根据是什么?(2)你能利用(1)中的方法计算下列各式吗?8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。
(3)你能根据(2)说说单项式除以单项式的运算法则吗?注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。
单项式的。
除法法则的推导,应按从具体到一般的步骤进行。
探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。
在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。
重视算理算法的渗透是新课标所强调的。
(三)归纳法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
八年级上册数学优秀教案5篇八年级上册数学优秀教案篇1教学目标1.知识与技能能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.2.过程与方法经历探索一次函数的应用问题,发展抽象思维.3.情感、态度与价值观培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值. 重、难点与关键1.重点:一次函数的应用.2.难点:一次函数的应用.3.关键:从数形结合分析思路入手,提升应用思维.教学方法采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.教学过程一、范例点击,应用所学【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:•分)变化的函数关系式,并画出函数图象.y=【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D•两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,•怎样调运总运费最少解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=•20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200).由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D•乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运二、随堂练习,巩固深化课本P119练习.三、课堂总结,发展潜能由学生自我评价本节课的表现.四、布置作业,专题突破课本P120习题14.2第9,10,11题.板书设计14.2.2一次函数(4)1、一次函数的应用例:八年级上册数学优秀教案篇2一、教学目标1.了解二次根式的意义;2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3. 掌握二次根式的性质和,并能灵活应用;4.通过二次根式的计算培养学生的逻辑思维能力;5. 通过二次根式性质和的介绍渗透对称性、规律性的数学美.二、教学重点和难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围.难点:确定二次根式中字母的取值范围.三、教学方法启发式、讲练结合.四、教学过程(一)复习提问1.什么叫平方根、算术平方根2.说出下列各式的意义,并计算(二)引入新课新课:二次根式定义:式子叫做二次根式.对于请同学们讨论论应注意的问题,引导学生总结:(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗呢若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.(2) 是二次根式,而,提问学生:2是二次根式吗显然不是,因此二次根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.例1 当a为实数时,下列各式中哪些是二次根式例2 x是怎样的实数时,式子在实数范围有意义解:略.说明:这个问题实质上是在x是什么数时,x-3是非负数,式子有意义. 例3 当字母取何值时,下列各式为二次根式:(1) (2) (3) (4)分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式.解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式.(2)-3x≥0,x≤0,即x≤0时,是二次根式.(3) ,且x≠0,∴x 0,当x 0时,是二次根式.(4) ,即,故x-2≥0且x-2≠0, ∴x 2.当x 2时,是二次根式.例4 下列各式是二次根式,求式子中的字母所满足的条件:分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.解:(1)由2a+3≥0,得 .(2)由,得3a-1 0,解得 .(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1 0,于是,式子是二次根式. 所以所求字母x的取值范围是全体实数.(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.八年级上册数学优秀教案篇3《矩形》教案教学目标:知识与技能目标:1.掌握矩形的概念、性质和判别条件。
八年级数学教案优秀八年级数学教案优秀5篇作为一位杰出的老师,就不得不需要编写教案,教案是教学蓝图,可以有效提高教学效率。
如何把教案做到重点突出呢?下面是小编帮大家整理的八年级数学教案优秀5篇,仅供参考,希望能够帮助到大家。
八年级数学教案优秀5篇1一、教学目标:1、理解极差的定义,知道极差是用来反映数据波动范围的一个量。
2、会求一组数据的极差。
二、重点、难点和难点的突破方法1、重点:会求一组数据的极差。
2、难点:本节课内容较容易接受,不存在难点.三、课堂引入:下表显示的是上海20xx年2月下旬和20xx年同期的每日最高气温,如何对这两段时间的气温进行比较呢?从表中你能得到哪些信息?比较两段时间气温的高低,求平均气温是一种常用的方法.经计算可以看出,对于2月下旬的这段时间而言,20xx年和20xx 年上海地区的平均气温相等,都是12度.这是不是说,两个时段的气温情况没有什么差异呢?根据两段时间的气温情况可绘成的折线图.观察一下,它们有区别吗?说说你观察得到的结果.用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range).四、例习题分析本节课在教材中没有相应的例题,教材P152习题分析问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。
八年级数学教案优秀5篇2一、课堂导入回顾平行四边的性质定理及定义1.什么叫平行四边形?平行四边形有什么性质?2.将以上的性质定理,分别用命题形式叙述出来。
(如果……那么……)根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?二、新课讲解平行四边形的判定:(定义法):两组对边分别平行的四边形的平边形。
几何语言表达定义法:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。
八年级数学教案八年级数学教案汇总五篇作为一名无私奉献的老师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
那么你有了解过教案吗?下面是小编整理的八年级数学教案5篇,希望能够帮助到大家。
八年级数学教案篇1教学目标1、知识与技能目标学会观察图形,勇于探索图形间的关系,培养学生的空间观念.2、过程与方法(1)经历一般规律的探索过程,发展学生的抽象思维能力.(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.3、情感态度与价值观(1)通过有趣的问题提高学习数学的兴趣.(2)在解决实际问题的过程中,体验数学学习的实用性.教学重点:探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.教学难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.教学准备:多媒体教学过程:第一环节:创设情境,引入新课(3分钟,学生观察、猜想)情景:如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B 处,你们想一想,蚂蚁怎么走最近?第二环节:合作探究(15分钟,学生分组合作探究)学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。
让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.学生汇总了四种方案:(1)(2)(3)(4)学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短.学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.如图:(1)中A→B的路线长为:AA’+d;(2)中A→B的路线长为:AA’+A’B>AB;(3)中A→B的路线长为:AO+OB>AB;(4)中A→B的路线长为:AB.得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则.第三环节:做一做(7分钟,学生合作探究)教材23页李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,(1)你能替他想办法完成任务吗?(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?第四环节:巩固练习(10分钟,学生独立完成)1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00,甲、乙两人相距多远?2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?第五环节课堂小结(3分钟,师生问答)内容:1、如何利用勾股定理及逆定理解决最短路程问题?第六环节:布置作业(2分钟,学生分别记录)内容:作业:1.课本习题1.5第1,2,3题.要求:A组(学优生):1、2、3B组(中等生):1、2C组(后三分之一生):1板书设计:教学反思:八年级数学教案篇2数据的波动教学目标:1、经历数据离散程度的探索过程2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。
八年级数学教案(优秀6篇)作为一名老师,往往需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。
那么你有了解过教案吗?旧书不厌百回读,熟读精思子自知,以下是小编帮助大家收集整理的八年级数学教案(优秀6篇)。
八年级数学教案篇一一、教学内容:本节内容是人教版教材八年级上册,第十四章第2节乘法公式的第二课时——完全平方公式。
二、教材分析:完全平方公式是乘法公式的重要组成部分,也是乘法运算知识的升华,它是在学生学习整式乘法后,对多项式乘法中出现的一种特殊的算式的总结,体现了从一般到特殊的思想方法。
完全平方公式是学生后续学好因式分解、分式运算的必备知识,它还是配方法的基本模式,为以后学习一元二次方程、函数等知识奠定了基础,所以说完全平方公式属于代数学的基础地位。
本节课内容是在学生掌握了平方差公式的基础上,研究完全平方公式的推导和应用,公式的发现与验证为学生体验规律探索提供了一种较好的模式,培养学生逐步形成严密的逻辑推理能力。
完全平方公式的学习对简化某些代数式的运算,培养学生的求简意识很有帮助。
使学生了解到完全平方公式是有力的数学工具。
重点:掌握完全平方公式,会运用公式进行简单的计算。
难点:理解公式中的字母含义,即对公式中字母a、b的理解与正确应用。
三、教学目标(1)经历探索完全平方公式的推导过程,掌握完全平方公式,并能正确运用公式进行简单计算。
(2)进一步发展学生的符号感和推理能力,了解公式的几何背景,感受数与形之间的联系,学会独立思考。
(3)通过推导完全平方公式及分析结构特征,培养学生观察、分析、归纳的能力,学会与他人合作交流,体验解决问题的多样性。
(4)体验完全平方公式可以简化运算从而激发学生的学习兴趣;在自主探究、合作交流的学习过程中获得体验成功的喜悦,增强学习数学的自信心。
四、学情分析与教法学法学情分析:课程标准提出数学教学活动须建立在学生的认知发展水平和已有的知识经验基础之上,本节课就是在前面的学习中,学生已经掌握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的总结归纳能力。
初二数学教案初二数学教案(集合15篇)作为一位兢兢业业的人民教师,可能需要进行教案编写工作,教案有利于教学水平的提高,有助于教研活动的开展。
来参考自己需要的教案吧!以下是小编收集整理的初二数学教案,仅供参考,欢迎大家阅读。
初二数学教案1一、教学目标1.了解分式、有理式的概念。
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。
二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件。
2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件。
3。
认知难点与突破方法难点是能熟练地求出分式有意义的条件,分式的值为零的条件。
突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别。
三、例、习题的意图分析本章从实际问题引出分式方程=,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式。
不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程。
1.本节进一步提出P4[思考]让学生自己依次填出:。
为下面的[观察]提供具体的式子,就以上的式子,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是(即A÷B)的形式。
分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B 中都含有字母。
P5[归纳]顺理成章地给出了分式的定义。
分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别。
希望老师注意:分式比分数更具有一般性,例如分式可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数。
2.P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零。
注意只有满足了分式的分母不能为零这个条件,分式才有意义。
即当B≠0时,分式才有意义。
第4篇教学设计教学内容:人教版《义务教育课程标准实验教科书·数学(二年级上册)》第五单元“观察物体”第二课时(第68页内容)教学目标:1、知识目标:使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。
2、能力目标:发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美。
3、情感、态度、价值观:通过探究活动,激发学生学习的热情,培养主动探究的能力;让学生感受对称图形的美,学会欣赏数学美。
教学重点:理解对称图形的概念,能正确找、画对称轴。
教学难点:准确找对称轴。
教学具准备:1、教具:图片、剪刀、彩纸、课件2、学具:蝴蝶几何图片、剪刀、白纸教学过程:一创设情境、激趣感知课件出示动画呈现:在绿草如茵的草地上,对称的房子、蝴蝶、蜻蜓、树叶、花朵……,一片迷人的景色。
师:谁来说说蝴蝶和蜻蜓怎么说?蜻蜓说:“:蝴蝶姐姐,你为什么总是绕着我飞呀?”蝴蝶说:“你不知道吧!在图形王国里我们都是对称图形呢!”蜻蜓说:“我才不信呢!”师:你们想知道对称图形的那些知识?生1:什么样的图形是对称图形?生2:对称图形有什么特点?[设计理念:充分体现了“数学来源于生活,又服务于生活”的理念,让学生感受对称图形的美,提出问题。
]二师生互动、探究新知(一)教学对称图形现在请同学们认真观察这些图形(出示对称和不对称图形,如下图),看看有什么发现?生1:我发现蝴蝶的左右两边是一样的。
生2:我发现年年有鱼的纸花的左右两边是不一样的。
生3:我发现京剧脸谱的左右两边是一样的。
让学生动手折一折、比一比、画一画,蜻蜓、树叶、蝴蝶、京剧脸谱的实物图共同的特点。
[设计理念:教学对称图形,引导学生仔细观察、动手折一折、比一比、画一画,在观察发现的基础上进行分类。
当学生分出对称与不对称的两类图形后,再次引导观察发现。
使学生在探索中学习新知,亲历探索过程。
]小结:同学们观察得真仔细,图形左右两边的形状完全相同的,我们就说这些图形是对称图形。
八年级数学教案模板一、教学目标1. 知识目标:通过本节课的学习,学生能够掌握XXX概念和原理,能够熟练运用XXX解决数学问题。
2. 能力目标:培养学生的思维逻辑能力、分析解决问题的能力和团队合作意识。
3. 情感目标:通过数学的学习,培养学生对数学的兴趣和热爱,增强学生的自信心。
二、教学重点和难点1. 教学重点:重点讲解XXX的概念和运用方法。
2. 教学难点:解决实际问题时运用XXX的方法和策略。
三、教学准备1. 教学工具:板书、教具、实物道具等。
2. 教学资源:教材、课件等。
四、教学过程此处按照教学步骤展开教学过程的详细介绍。
步骤一:导入新知在导入部分,可以通过提问、出示问题或给出生活应用实例等方式,引发学生对本节课主题的兴趣,并回顾相关知识。
步骤二:知识讲解在知识讲解部分,结合教材内容和简单实例,讲解XXX的概念、性质、定理等,引导学生理解和掌握相关知识。
步骤三:示范演示通过具体的例题演示,让学生看到解决问题的过程和方法,培养学生的解题思路和方法。
步骤四:学生练习在学生练习环节,设计一定数量的练习题目,并提供适当的辅导和指导,帮助学生巩固和运用所学的知识。
步骤五:小组合作在小组合作环节,组织学生以小组为单位进行教学资源或问题的讨论、解答或实践操作,倡导学生间的交流合作。
步骤六:展示交流在展示交流环节,邀请学生或小组代表上台展示、演示或分享学习成果,并进行班级讨论和教师点评。
步骤七:作业布置在作业布置环节,布置合理的任务或问题以巩固学生的学习成果,同时激发学生对数学的深入思考和研究。
五、板书设计此处给出板书设计的图文描述,重点突出本节课的关键词、公式、定理等。
六、教学反思在教学反思环节,教师对本节课的教学效果进行总结和反思,对学生的学习情况进行评估和指导,为下一节课的教学做好准备。
通过以上的教案模板,可以帮助教师系统化地进行教学设计和准备,并更好地引导和指导学生的学习。
同时,教案中的每个环节都需要紧密结合教学内容和学生的实际情况来灵活进行调整和改进,以达到更好的教学效果。
初二上数学教案一、教学目标:1. 通过本节课的学习,学生能够掌握既约分数的概念,能够将分数化简为最简形式。
2. 能够理解和应用分数的加、减、乘、除运算,灵活运用在实际问题中解决计算问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
4. 培养学生的观察力和实际运用能力。
二、教学重难点:1. 教学重点:分数的化简;分数的加、减、乘、除运算。
2. 教学难点:将分数化简为最简形式;运用分数的加、减、乘、除解决实际问题。
三、教学准备:1. 教师准备:教案、教学课件、黑板、粉笔、教具(分数卡片、计算器)。
2. 学生准备:课本、笔记本、铅笔、橡皮、尺子、计算器。
四、教学过程:步骤一:导入(5分钟)1. 向学生介绍今天的学习内容:分数的化简和运算。
2. 提问:你们还记得什么是分数吗?以及分数的化简有什么作用?步骤二:概念讲解与例题演示(15分钟)1. 分数的化简:向学生解释什么是既约分数,并给出几个化简分数的例子。
2. 分数的加法和减法:通过具体的例子,引导学生理解分数的加法和减法运算规则。
3. 分数的乘法和除法:给学生介绍分数的乘法和除法运算,通过例题演示进行讲解。
步骤三:练习与巩固(20分钟)1. 给学生分发分数卡片,让他们用卡片上的分数进行加、减、乘、除运算练习。
2. 师生互动,解决学生在运算过程中遇到的问题,并给予指导。
3. 鼓励学生多动脑思考,积极参与。
步骤四:拓展与应用(15分钟)1. 给学生提供一些实际问题,让他们结合所学的知识解决问题。
2. 引导学生分析问题,找出问题的关键点,运用适当的方法进行计算。
3. 学生展示解题思路和答案,并进行讨论和评价。
步骤五:归纳总结(5分钟)1. 让学生复习所学的知识点,总结分数的化简和运算规则。
2. 整理学生的答案和解题思路,对学生的表现进行肯定和鼓励。
3. 提醒学生复习本节课的内容,做好笔记。
五、课堂作业:1. 完成课堂练习的剩余题目。
2. 预习下一节课的内容,做好预习笔记。
初二数学教案(实用17篇)初二数学教学教案教学目标:1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。
2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。
3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。
4、能利和计算器求一组数据的算术平均数。
教学重点:体会平均数、中位数、众数在具体情境中的意义和应用。
教学难点:对于平均数、中位数、众数在不同情境中的应用。
教学过程:一、知识回顾与思考。
1、平均数、中位数、众数的概念及举例。
一般地对于n个数x1……xn把(x1+x2+…xn)叫做这n个数的.算术平均数,简称平均数。
如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。
中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。
众数就是一组数据中出现次数最多的那个数据。
如3,2,3,5,3,4中3是众数。
2、平均数、中位数和众数的特征:(1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。
(2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。
(3)中位数的优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。
(4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。
3、算术平均数和加权平均数有什么区别和联系:算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。
4、利用计算器求一组数据的平均数。
利用科学计算器求平均数的方法计算平均数。
优秀的初二数学教案最新【七篇】优秀的初二数学教案篇1一、教学目标1.掌握矩形的定义,知道矩形与平行四边形的关系.2.掌握矩形的性质定理.3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.4.通过性质的学习,体会矩形的应用美.二、教法设计观察、启发、总结、提高,类比探讨,讨论分析,启发式.三、重点、难点及解决办法1.教学重点:矩形的性质及其推论.2.教学难点:矩形的本质属性及性质定理的综合应用.四、课时安排1课时五、教具学具准备教具(一个活动的平行四边形),投影仪及胶片,常用画图工具六、师生互动活动设计教具演示、创设情境,观察猜想,推理论证七、教学步骤【复习提问】什么叫平行四边形?它和四边形有什么区别?【引入新课】我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形,堂课我们就来研究一种特殊的平行四边形矩形(写出课题).【讲解新课】制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).矩形的性质:既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.继续演示教具,当它变成矩形时,学生容易看到它的四个角都是直角;它的对角线也相等(写出这两个结论),指出观察出来的结论不能做为定理,需要证明.引导学生利用平行四边形角的性质证明得出.矩形性质定理1:矩形的四个角都是直角.矩形性质定理2:矩形对角线相等.由矩形性质定理2我们可以得到推论:直角三角形斜边上的中线等于斜边的一半.(这实际上是△的一个重要性质,即△斜边中点到三顶点的距离相等,它在求线段长或线段部分关系时经常用到)例1 已知如图1 矩形的两条对角线相交于点,,,求矩形对角线的长.(按教材的格式)(强调这种计算题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算)【总结、扩展】1.小结:(用投影打出)(1)矩形、平行四边形、四边形从属关系如图.(2)矩形性质.1.具有平行四边形的所有性质.2.特有性质:四个角都是直角,对角线相等.3.思考题:已知如图,是矩形对角线交点,平分,,求的度数八、布置作业教材P158中2、5,P195中7.九、板书设计十、随堂练习教材P146中1、2、3、4优秀的初二数学教案篇2通过学生的讨论,使学生更清楚以下事实:(1)分解因式与整式的乘法是一种互逆关系;(2)分解因式的结果要以积的形式表示;(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;(4)必须分解到每个多项式不能再分解为止。
初二数学优秀教案5篇作为一位不辞辛劳的人民教师,总归要编写教案,借助教案可以让教学工作更科学化。
那么写教案需要注意哪些问题呢?以下是小编为大家整理的初二数学优秀教案,仅供参考,希望能够帮助到大家。
初二数学优秀教案1教学目标:1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。
2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。
教学重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。
教学方法:动手实践、讨论。
教学工具:课件教学过程:一、先复习轴对称图形的定义,以及轴对称的相关的性质:1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________。
2.轴对称的三个重要性质_______________________________________________________。
二、提出问题:二、探索练习:1. 提出问题:如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。
你能画出这个图案的另一半吗?吸引学生让学生有一种解决难点的想法。
2.分析问题:分析图案:这个图案是由重要六个点构成的,要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可问题转化成:已知对称轴和一个点A,要画出点A关于L的对应点,可采用如下方法:`在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。
三、对所学内容进行巩固练习:1. 如图,直线L是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。
八年级上册数学教案优秀11篇八年级数学上册教案篇一教学目标知识与技能:会推导平方差公式,并且懂得运用平方差公式进行简单计算。
过程与方法:经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。
情感、态度与价值观:通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。
教学重难点重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。
难点:平方差公式的应用。
关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。
教学过程一、创设情境,故事引入情境设置教师请一位学生讲一讲《狗熊掰棒子》的故事学生活动1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。
教师归纳听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?学生回答多项式乘以多项式。
教师激发大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的。
错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。
问题牵引计算:(1)(x+2)(x—2);(2)(1+3a)(1—3a);(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。
做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。
学生活动分四人小组,合作学习,获得以下结果:(1)(x+2)(x—2)=x2—4;(2)(1+3a)(1—3a)=1—9a2;(3)(x+5y)(x—5y)=x2—25y2;(4)(y+3z)(y—3z)=y2—9z2。
教师活动请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。
学生活动讨论教师引导刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?学生回答可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。
八年级下册数学优秀教案5篇八年级下册数学优秀教案篇1理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x2=4 (2)(x-2)2=7提问1 这种解法的(理论)依据是什么提问2 这种解法的局限性是什么(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程 2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q 0,方程无实根.二、探索新知用配方法解方程:(1)ax2-7x+3=0 (2)ax2+bx+3=0如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗什么情况下有解)分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax2+bx=-c二次项系数化为1,得x2+bax=-ca配方,得:x2+bax+(b2a)2=-ca+(b2a)2即(x+b2a)2=b2-4ac4a2∵4a2 0,当b2-4ac≥0时,b2-4ac4a2≥0∴(x+b2a)2=(b2-4ac2a)2直接开平方,得:x+b2a=±b2-4ac2a即x=-b±b2-4ac2a∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.例1 用公式法解下列方程:(1)2x2-x-1=0 (2)x2+1.5=-3x(3)x2-2x+12=0 (4)4x2-3x+2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x-2)(3x-5)=0三、巩固练习教材第12页练习1.(1)(3)(5)或(2)(4)(6).四、课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a 2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况.五、作业布置教材第17页习题4八年级下册数学优秀教案篇2《正弦和余弦(二)》一、素质教育目标(一)知识教学点使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系。