弹簧类问题
- 格式:pdf
- 大小:348.96 KB
- 文档页数:11
弹簧问题(动力学)知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。
数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。
说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。
2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。
(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。
(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。
弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。
如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。
由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
如图1和2中相同的轻弹簧,其端点受到相同大小的力时,无论弹簧是处于静止、匀速还是加速运动状态,各个弹簧的伸长量都是相同的。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间变化——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
如在图1、2、3、4、中撤出任何一个力的瞬间,弹簧的长度不会变化,弹力的大小也不会变化;但是在图5中撤出力F的瞬时,弹簧恢复原长,弹力变为零。
A Bv 0 AB 1如下图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①弹簧的左端固定在左墙上;②弹簧的左端受大小也为F 的拉力作用;③弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④弹簧左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有( )A .l 2 > l 1B .l 4 > l 3C .l 1 > l 3D .l 2 = l 42如图天花板上用细绳吊起两个用轻弹簧相连的两个质量相同的小球。
两小球均保持静止,突然剪断细绳时,上面小球A 与下面小球B 的加速度为A .a1=g a2=gB .a1=2g a2=gC .a1=2g a2=0D .a1=0 a2=g3两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态。
现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为()A 、m 1g/k 1B 、m 2g/k 1C 、m 1g/k 2D 、m 2g/k 24.两块质量分别为m 1和m 2的木块,用一根劲度系数为k 的轻弹簧连在一起,现在m 1上施加压力F ,.为了使撤去F 后m 1跳起时能带起m 2, 则所加压力F 应多大?g m m F )(21+>5一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。
当N=0时,物体与平板分离6在足够大的光滑水平面上放有两物块A 和B ,已知m A >m B ,A 物块连接一个轻弹簧并处于静止状态,B 物体以初速度v 0向着A 物块运动。
弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。
高三物理第二轮专题复习(一)弹簧类问题轻弹簧是一理想模型,涉及它的知识点有①形变和弹力,胡克定律②弹性势能弹簧振子等。
问题类型:1、弹簧的瞬时问题弹簧的两端若有其他物体或力的约束,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
弹簧的弹力不能突变是由弹簧形变的改变要逐渐进行决定的。
2、弹簧的平衡问题这类题常以单一的问题出现,通常用胡克定律F=Kx和平衡条件来求解,列方程时注意研究对象的选取,注意整体法和隔离法的运用。
3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的合外力加速度速度动能和其它物理量发生变化的情况。
弹簧的弹力与形变量成正比例变化,而它引起的物体的加速度速度动量动能等变化不是简单的单调关系,往往有临界值或极值。
有些问题要结合简谐运动的特点求解。
4、弹力做功与动量能量的综合问题弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。
如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。
在弹力做功的过程中弹力是个变力,并与动量能量联系,一般以综合题出现。
它有机地将动量守恒机械能守恒功能关系和能量转化结合在一起,以考察综合应用能力。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理动量定理和功能关系等知识解题。
规律:在弹簧-物体系统中,当弹簧处于自然长度时,系统具有最大动能;系统运动中弹簧从自然长度开始到再次恢复自然长度的过程相当于弹性碰撞过程。
当弹簧具有最大形变量时,两端物体具有相同的速度,系统具有最大的弹性势能。
系统运动中,从任意状态到弹簧形变量最大的状态的过程相当于完全非弹性碰撞的过程。
(实际上应为机械能守恒)典型试题1、如图所示,轻弹簧下端固定在水平地面上,弹簧位于竖直方向,另一端静止于B点。
在B点正上方A点处,有一质量为m的物块,物块从静止开始自由下落。
物块落在弹簧上,压缩弹簧,到达C点时,物块的速度为零。
弹簧类问题考点规律分析1.弹簧类问题特点(1)对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒。
(2)整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题。
由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒。
2.弹簧类问题的注意事项光滑水平面上的两物块通过弹簧作用时,弹簧伸长到最长或压缩到最短时,两物体的速度一定相等,弹簧具有最大的弹性势能;当弹簧恢复原长时,两物体的速度相差最大,弹簧对两物体的作用力为零。
典型例题两物块A 、B 用轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m/s 的速度在光滑的水平地面上运动,质量为4 kg 的物块C 静止在前方,如图所示。
B 与C 碰撞后二者会粘在一起运动。
则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大?(2)系统中弹性势能的最大值是多少?[规范解答] (1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大。
由A 、B 、C 三者组成的系统动量守恒得(m A +m B )v =(m A +m B +m C )v 1解得v 1=(2+2)×62+2+4m/s =3 m/s 。
(2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为v 2,则m B v =(m B +m C )v 2,解得v 2=2×62+4m/s =2 m/s , 物块A 、B 、C 速度相同时弹簧的弹性势能最大,设为E p ,根据机械能守恒定律有E p =12(m B +m C )v 22+12m A v 2-12(m A +m B +m C )v 21 解得E p =12 J 。
[完美答案] (1)3 m/s (2)12 J弹簧类问题的解题思路(1)对系统应用动量守恒定律。
高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
弹簧问题类型轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。
无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零。
弹簧读数始终等于任意一端的弹力大小。
弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。
一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断vSaF变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。
(灵活运用整体法隔离法);通过弹簧形变量的变化来确定物体位置。
(高度,水平位置)的变化弹簧长度的改变,取决于初末状态改变。
(压缩——拉伸变化)参考点,F=kx指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。
抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零的特点求解。
注:如果a相同,先整体后隔离。
隔离法求内力,优先对受力少的物体进行隔离分析。
2、瞬时性问题题型:改变外部条件(突然剪断绳子,撤去支撑物)针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析3、动态过程分析三点分析法(接触点,平衡点,最大形变点)竖直型:水平型:明确有无推力,有无摩擦力。
动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最小值。
图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。
一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。
图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。
今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。
图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。
现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。
弹簧类问题1(2014丰台二模)如图,光滑水平面上存在水平向右、场强为的匀强电场,电场区域宽度为。
质量为、带电量为的物体从电场左边界由静止开始运动,离开电场后与质量为的物体碰撞并粘在一起,碰撞时间极短。
的右侧拴接一处于原长的轻弹簧,弹簧右端固定在竖直墙壁上(、均可视为质点)。
求(1)物体在电场中运动时的加速度大小;(2)物体与碰撞过程中损失的机械能;(3)弹簧的最大弹性势能。
2(2015北京高考)(18分)如图所示,弹簧的一端固定,另一端连接一个物块,弹簧质量不计。
物块(可视为质点)的质量为m,在水平桌面上沿x轴运动,与桌面间的动摩擦因数为μ。
以弹簧原长时物块的位置为坐标原点O,当弹簧的伸长量为x时,物块所受弹力大小,为常量。
(1)请画出F随x变化的示意图;并根据图像求物块沿x轴从O点运动到位置x的过程中弹力所做的功。
(2)物块由向右运动到,然后由返回到,在这个过程中,a.求弹力所做的功,并据此求弹性势能的变化量;b.求滑动摩擦力所做的功;并与弹力做比较,说明为什么不存在与摩擦力对应的“摩擦力势能”的概念。
3(2013北京高考)(18分)蹦床比赛分成预备运动和比赛动作。
最初,运动员静止站在蹦床上;在预备运动阶段,他经过若干次蹦跳,逐渐增加上升高度,最终达到完成比赛动作所需的高度;此后,进入比赛动作阶段。
把蹦床简化为一个竖直放置的轻弹簧,弹力大小F=kx (x为床面下沉的距离,k为常量)。
质量m=50kg的运动员静止站在蹦床上,床面下沉x0=0.10m;在预备运动中,假定运动员所做的总功W全部用于其机械能;在比赛动作中,把该运动员视作质点,其每次离开床面做竖直上抛运动的腾空时间均为Δt=2.0s,设运动员每次落下使床面压缩的最大深度均为x l。
取重力加速度g=I0m/s2,忽略空气阻力的影响。
⑴求常量k,并在图中画出弹力F随x变化的示意图;⑵求在比赛动作中,运动员离开床面后上升的最大高度h m;⑶借助F-x图像可以确定弹性做功的规律,在此基础上,求x1和W的值。
4( 14朝阳二模)(18分)如图所示,小滑块A和B(可视为质点)套在固定的水平光滑杆上。
一轻弹簧上端固定在P点,下端与滑块B相连接。
现使滑块B静止在P点正下方的O点,O、P间的距离为h。
某时刻,滑块A以初速度v0沿杆向右运动,与B碰撞后,粘在一起以O为中心位置做往复运动。
光滑杆上的M点与O点间的距离为。
已知滑块A的质量为2m,滑块B的质量为m,弹簧的原长为,劲度系数。
弹簧弹性势能的表达式为(式中k为弹簧的劲度系数,x为弹簧的形变量)。
求:(1)滑块A与滑块B碰后瞬间共同速度v的大小;(2)当滑块A、B运动到M点时,加速度a的大小;(3)滑块A、B在往复运动过程中,最大速度v m的大小。
5(2015朝阳一模)(18分)如图甲所示,倾角θ =37°的粗糙斜面固定在水平面上,斜面足够长。
一根轻弹簧一端固定在斜面的底端,另一端与质量m=1.0kg的小滑块(可视为质点)接触,滑块与弹簧不相连,弹簧处于压缩状态。
当t=0时释放滑块。
在0~0.24s时间内,滑块的加速度a随时间t变化的关系如图乙所示。
已知弹簧的劲度系数N/m,当t=0.14s时,滑块的速度v=2.0m/s。
g取l0m/s2,sin37°=0.6,cos37°=0.8。
弹1簧弹性势能的表达式为(式中k为弹簧的劲度系数,x为弹簧的形变量)。
求:(1)斜面对滑块摩擦力的大小f;(2)t=0.14s时滑块与出发点间的距离d;(3)在0~0.44s时间内,摩擦力做的功W。
图甲图乙6(2016东城一模)(18分)轻质弹簧一端固定,另一端与放置于水平面上的小物块(可视为质点)相连接。
弹簧处于原长时物块位于O 点。
现将小物块向右拉至A点后由静止释放,小物块将沿水平桌面运动。
已知弹簧劲度系数为k,小物块质量为m,OA间距离为L,弹簧弹性势能的表达式为,式中x为弹簧形变量的大小。
(1)若小物块与水平桌面间的动摩擦因数,且最大静摩擦力等于滑动摩擦力。
求:①小物块第一次经过O点时的速度大小;②小物块向左运动过程中距离O点的最远距离以及最终静止时的位置。
(2)在我们的生活中常常用到弹簧,有的弹簧很“硬”,有的弹簧很“软”,弹簧的“软硬”程度其实是由弹簧的劲度系数决定的。
请你自行选择实验器材设计一个测量弹簧劲度系数的实验,简要说明实验方案及实验原理。
7(2014东城一模)(20分)一同学利用手边的两个完全相同的质量为m的物块和两个完全相同、劲度系数未知的轻质弹簧,做了如下的探究活动。
已知重力加速度为g,不计空气阻力。
(1)取一个轻质弹簧,弹簧的下端固定在地面上,弹簧的上端与物块A连接,物块B叠放在A上,A、B处于静止状态,如图所示。
若A、B粘连在一起,用一竖直向上的拉力缓慢提升B,当拉力的大小为时,A物块上升的高度为L;若A、B不粘连,用一竖直向上的恒力作用在B上,当A物块上升的高度也为L时,A、B恰好分离。
求:a.弹簧的劲度系数;b.恒力的大小;(2)如图所示,将弹簧1上端与物块A拴接,下端压在桌面上(不拴接),弹簧2两端分别与物块A、B拴接,整个系统处于平衡状态。
现施力将物块B缓缓地竖直上提,直到弹簧1的下端刚好脱离桌面。
求在此过程中该拉力所做的功?(已知弹簧具有的弹性势能为,k为弹簧的劲度系数,Δx为弹簧的形变量)8(2013丰台二模)(18分)有一个竖直固定在地面的透气圆筒,筒中有一劲度为k的轻弹簧,其下端固定,上端连接一质量为m的薄滑块,圆筒内壁涂有一层新型智能材料——ER流体,它对滑块的阻力可调。
起初,滑块静止,ER流体对其阻力为0,弹簧的长度为L。
现有一质量也为m的物体从距地面2L处自由落下,与滑块碰撞后粘在一起向下运动。
为保证滑块做匀减速运动,且下移距离为时速度减为0,ER流体对滑块的阻力须随滑块下移而变。
试求(忽略空气阻力):(1)下落物体与滑块碰撞过程中系统损失的机械能;(2)滑块下移距离d时ER流体对滑块阻力的大小。
(3)已知弹簧的弹性势能的表达式为(式中k为弹簧劲度系数,x为弹簧的伸长或压缩量),试求:两物体碰撞后粘在一起向下运动距离,速度减为零的过程中,ER流体对滑块的阻力所做的功。
9(2015海淀零模)24.(20分)如图甲所示,BCD为竖直放置的半径R=0.20m的半圆形轨道,在半圆形轨道的最低位置B和最高位置D均安装了压力传感器,可测定小物块通过这两处时对轨道的压力F B和F D。
半圆形轨道在B位置与水平直轨道AB平滑连接,在D位置与另一水平直轨道EF相对,其间留有可让小物块通过的缝隙。
一质量m=0.20kg的小物块P(可视为质点),以不同的初速度从M点沿水平直轨道AB滑行一段距离,进入半圆形轨道BCD经过D位置后平滑进入水平直轨道EF。
一质量为2m的小物块Q(可视为质点)被锁定在水平直轨道EF上,其右侧固定一个劲度系数为k=500N/m 的轻弹簧。
如果对小物块Q施加的水平力F≥30N,则它会瞬间解除锁定沿水平直轨道EF滑行,且在解除锁定的过程中无能量损失。
已知弹簧的弹性势能公式,其中k为弹簧的劲度系数,x为弹簧的形变量。
g取10m/s2。
FECBRODMPQ甲AF D/NF B/N218乙FECBRODMPQ甲AF D/NF B/N218乙(1)通过传感器测得的F B和F D的关系图线如图乙所示。
若轨道各处均不光滑,且已知轨道与小物块P之间的动摩擦因数μ=0.10,MB之间的距离x MB=0.50m。
当F B=18N时,求:小物块P通过B位置时的速度v B的大小;小物块P从M点运动到轨道最高位置D的过程中损失的总机械能;(2)若轨道各处均光滑,在某次实验中,测得P经过B位置时的速度大小为m/s。
求在弹簧被压缩的过程中,弹簧的最大弹性势能。
10 (2014海淀零模)(20分)如图所示,质量均为m的物体B、C分别与轻质弹簧的两端相栓接,将它们放在倾角为θ = 30o 的光滑斜面上,静止时弹簧的形变量为x0。
斜面底端有固定挡板D,物体C靠在挡板D上。
将质量也为m的物体A从斜面上的某点由静止释放,A与B相碰。
已知重力加速度为g,弹簧始终处于弹性限度内,不计空气阻力。
求:(1)弹簧的劲度系数k;(2)若A与B相碰后粘连在一起开始做简谐运动,当A与B第一次运动到最高点时,C对挡板D的压力恰好为零,求C对挡板D压力的最大值;(3)若将A从另一位置由静止释放,A与B相碰后不粘连,但仍立即一起运动,且当B第一次运动到最高点时,C对挡板D的压力也恰好为零。
已知A与B相碰后弹簧第一次恢复原长时B的速度大小为,求相碰后A第一次运动达到的最高点与开始静止释放点之间的距离。