(完整版)一元一次方程复习试卷
- 格式:doc
- 大小:191.01 KB
- 文档页数:5
一元一次方程综合测试卷班级: 姓名:注意事项:1、本试卷共4页,总分100分,测试时间40分钟。
2、请考生直接在试卷上做答。
一、填空题(每题4分,共20分)1、解方程328=+-x x .合并同类项,得 ;系数化为1,得,x = .2、方程331=-x 的解是_________________. 如果1=x 是关于x 的方程11=-ax 的解,则_________=a .3、已知102-x 与x 3互为相反数,则_________=x .4、轮船在A 、B 两城间航行,静水速度是40千米/时,水流的速度是a 千米/时,那么轮船逆水航行2小时所走的路程是 ________千米.5、某商店某一时间以80元卖出一件衣服,盈利25﹪,设这件衣服的进货价是x 元,则可列方程得___________________________.二、选择题(每题4分,共20分)6、在下列方程中,一元一次方程的是( ).(A)1+x (B)012=-x (C) 1=+y x (D) 12=x7、下列变形不正确的是( ) .(A)从513=-x ,得到153+=x (B) 从27=-x ,得到27-=x (C)从2121-=-x ,得到1=x (D)从03=x ,得到0=x 8、某村种植油菜,今年产油量18吨,比去年增加了20﹪,则此村去年产油量为( ).(A)16吨 (B)14.4吨 (C)15吨 (D)20吨9、一项工作,一个人完成需要12天时间(每个人的工作效率相同),那么3个人工作a 天完成的工作量是( ). (A)12a (B)4a (C)36a (D)3a 10、一个两位数个位上的数是2,十位上的数字是x .把2和x 对调,新两位数比原两位数小18.依题意列方程得( ).(A)21018)20(+=++x x (B)18)210(20++=+x x(C)21018)20(+=-+x x (D)2101820+=+x x三、解答题(共60分)11、解下列方程(第(1)、(2)各6分,第(3)占8分,共20分)(1)95237+=-x x (2))3(23)1(52+-=--x x x(3)512411223---=-+x x x12、(10分)当x 取什么数时,31--x x 的值与435+-x 的值相等?13、(10分)足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.一支足球队在某个赛季中已比赛12场,只输了2场,共得分22分.请问:这支球队共胜了几场?14、(10分)包装厂有工人48人,平均每人每天可以生产圆形铁片100片,或长方形铁片70片.两张圆形铁片与一张长方形铁片可配套成一个密封圆桶,如何安排工人生产圆形和长方形铁片才能使每天生产的铁片刚好配套?15、(10分)一家海洋馆每年6~8月出售夏日优惠卡,每张优惠卡200元,每卡只能使用一次,凭卡购入场卷每张5元,不凭卡购入场卷每张10元.试讨论并回答:(1)多少人进场时,购优惠卡与不购优惠卡付一样的钱?(2)多少人进场时,购优惠卡比不购优惠卡合算?(3)多少人进场时,不购优惠卡比购优惠卡合算?一元一次方程测试卷 参考答案一、填空题1、36=-x ,21-=x ;2、9-=x ,1;3、2;4、)280(a -;5、.8025.0=+x x 二、选择题:6、D ;7、B ;8、C ;9、B ;10、A.三、解答题:11、(1)4=x ;(2)8=x ;(3)331-=x . 12、x 取1147时. 13、这支球队共胜了6场.14、设安排x 名工人生产圆形铁片,依题意得:)48(702100x x -⨯=,解得28=x .答:安排28名工人生产圆形铁片,安排30名工人生产长方形铁片,能使每天生产的铁片刚好配套.15、(1)设x 人进场时,购优惠卡与不购优惠卡付一样的钱,依题意得:x x 102005=+ 解得:40=x答:40人进场时,购优惠卡与不购优惠卡付一样的钱。
3.一元一次方程100题含答案(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--解一元一次方程专项练习100题1..2.=﹣2;3.﹣2=.4.5..6.x ﹣=2﹣.7.8..9.10.11. ﹣6x=﹣x+1;12. y ﹣(y﹣1)=(y﹣1);13. [(x ﹣)﹣8]=x+1;14..15.﹣=1.16.17.2﹣=﹣.18.﹣1=﹣.19..20..21.22..23.;24..25..26.27..28. 2﹣=x ﹣;29. ﹣1=.30..31.(x﹣1)=2﹣(x+2).32..33.34.35. ;36. .37..38.39.40.41.42. x ﹣43.;44..45.(x﹣1)﹣(3x+2)=﹣(x﹣1).46.47. ;48. .49.+1=;50. 75%(x﹣1)﹣25%(x﹣4)=25%(x+6)51.52.53.54.55.56.57. ;58. .59. 2x ﹣(x﹣3)=[x ﹣(3x+1)].60.61.62.x+=1﹣63..64. 65. ﹣=.66.=67.68.69.70.=;71. 3(x+2)﹣2(x ﹣)=5﹣4x.72. 2x ﹣73.74.[(﹣1)﹣2]﹣x=2.75.﹣1=.76.,77..78.79.80. ;81. .82.83.84.85. ﹣=.86.=1﹣.87.88..89..90..91.92. ;93..94..95.;96. .97..98. ;99. [(x﹣1)﹣3]=2x﹣5;100..解一元一次方程100题难题解析1.去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得: 6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣32.去分母得,3(x﹣1)=4(2x﹣1)﹣24,去括号得,3x﹣3=8x﹣4﹣24,移项、合并同类项得,5x=25,系数化为1得,x=5;3. 原方程变形为:﹣2=,去分母得,4(2x﹣1)﹣24=3(10x﹣10),去括号得,8x﹣4﹣24=30x﹣30,移项、合并同类项得,22x=2,系数化为1得,x=4.去分母得,7(1.7﹣2x)=3x﹣2.1去括号,11.9﹣14x=3x﹣2.1移项合并同类项得,﹣17x=﹣14系数化为1得,x=.5.原方程变形成5(3x+1)﹣20=3x﹣2﹣2(2x+3)15x﹣15=﹣x﹣816x=7∴6.去分母得:6x﹣3(x﹣1)=12﹣2(x+2)去括号得:6x﹣3x+3=12﹣2x﹣4移项得:6x﹣3x+2x=12﹣4﹣3合并得:5x=5系数化为1得:x=1.7.去分母得:5(4﹣x)=3(x﹣3)﹣15,化简可得: 2x=11,系数化1得: x=8.原式可变形为:3(3y﹣1)﹣12=2(5y﹣7)去括号得: 9y﹣3﹣12=10y﹣14 移项得: 9y﹣10y=﹣14+12+3合并得:﹣y=1系数化1得: y=﹣19.原方程分母化整得:去分母,得 5(x+4)﹣2(x﹣3)=1.6,去括号,得 5x+20﹣2x+6=1.6,移项、合并同类项,得 15x=﹣122,系数化1,得 x=10.去分母得:4(x+1)=5(x+1)﹣6,去括号得: 4x+4=5x+5﹣6,移项、合并得:﹣x=﹣5,系数化为1得: x=5.11. 移项,合并得x=,化系数为1,得x=;12. 去分母,得6y﹣3(y﹣1)=4(y﹣1),去括号,得 6y﹣3y+3=4y﹣4,移项,合并得 y=7;13. 去括号,得(x ﹣)﹣6=x+1,x ﹣﹣6=x+1,移项,合并得x=;14. 原方程变形为﹣1=,去分母,得2(2﹣10x)﹣6=3(1+10x),去括号,得 4﹣20x﹣6=3+30x,移项,合并得﹣50x=5,化系数为1,得 x=﹣.15.去分母得:3(x﹣7)+4(5x﹣6)=12,去括号得: 3x﹣21+20x﹣24=12,移项得: 3x+6x=12+21+24,合并同类项得: 9x=57,化系数为1得: x=16.去分母:6(x﹣3)+4(6﹣x)=12+3(1+2x),去括号:6x﹣18+24﹣4x=12+3+6x,移项:6x﹣4x﹣6x=12+3+18﹣24,化简:﹣4x=9,化系数为1:x=﹣.17.去分母得:12﹣2(2x﹣4)=﹣(x﹣7),去括号得: 12﹣4x+8=﹣x+7,移项得:﹣4x+x=7﹣20,合并得:﹣3x=﹣13,系数化为1得: x=.18.去分母得:3(2x+1)﹣12=4(2x﹣1)﹣(10x+1),去括号得: 6x+3﹣12=8x﹣4﹣10x﹣1,移项合并同类项得: 8x=4,系数化为得: x=19.去分母得:2(5x﹣7)+12=3(3x﹣1)去括号得: 10x﹣14+12=9x﹣3移项得: 10x﹣9x=﹣3+14﹣12 系数化为1得: x=﹣120.去分母得:3(3x+4)﹣2(6x﹣1)=6 去括号得: 9x+12﹣12x+2=6移项、合并同类项得:﹣3x=﹣8系数化为1得: x=21.去分母得:6(x+4)﹣30x+150=10(x+3)﹣15(x﹣2)去括号得: 6x+24﹣30x+150=10x+30﹣15x+30移项、合并得:﹣19x=﹣114化系数为1得: x=6.22.去分母得:4(2x﹣1)﹣3(3x﹣1)=24,去括号得: 8x﹣4﹣9x+3=24,移项合并得:﹣x=25,化系数为1得: x=﹣2523. 原方程可以变形为:5x﹣10﹣2(x+1)=3, 5x﹣10﹣2x﹣2=3, 3x=15, x=5;24. 原方程可以变形为[x ﹣(x ﹣x+)﹣]=x+,(x ﹣x+x ﹣﹣)=x+,(x ﹣)=x+,,,x=﹣25.﹣=﹣12(2x﹣1)﹣(5﹣x)=3(x+3)﹣62x=10x=526.去括号得:x ﹣﹣8=x,移项、合并同类项得:﹣x=8,系数化为1得: x=﹣8.27.,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得: 2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得: x=528. 12﹣(x+5)=6x﹣2(x﹣1)12﹣x﹣5=6x﹣2x+2﹣x﹣6x+2x=2﹣12+5﹣5x=﹣5x=1;29.4(10﹣20x)﹣12=3(7﹣10x)40﹣80x﹣12=21﹣30x﹣80x+30x=21﹣40+12﹣50x=﹣7.30.去分母得:3(2x+1)﹣12=12x﹣(10x+1),去括号得:6x﹣9=2x﹣1,合并得: 4x=8,化系数为1得: x=2.31.去分母得:5(x﹣1)=20﹣2(x+2),去括号得: 5x﹣5=20﹣2x﹣4,移项合并得: 7x=21,系数化为1得: x=3.32.原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得: 40x=﹣15,系数化为1得: x=33.原方程变形为:50(0.1x﹣0.2)﹣2(x+1)=3,5x﹣10﹣2x﹣2=3,3x=15, x=5.34.去分母得:2(2x﹣1)=6﹣3x,去括号得: 4x﹣2=6﹣3x,移项得: 4x+3x=8,系数化为1得: x=35. 方程两边同乘15,得3(x﹣3)﹣5(x﹣4)=15,整理,得 3x﹣9﹣5x+20=15,解得﹣2x=4,x=﹣2.36. 方程两边同乘1,得50(0.1x﹣0.2)﹣2(x+1)=3,整理,得 5x﹣10﹣2x ﹣2=3,解得: 3x=15,∴x=5 37.去分母得:3y﹣18=﹣5+2(1﹣y),去括号得:3y﹣18=﹣5+2﹣2y,移项合并得: 5y=15,系数化为1得: y=3.38..解:去括号得:12﹣2y﹣2﹣3y=2,移项得:﹣2y﹣3y=2﹣12+2,合并同类项得:﹣5y=﹣8,系数化为1得:.39. 解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=2x﹣2x﹣3,移项得:﹣3x﹣2x+2x=﹣3﹣6+18(或﹣3x=﹣3﹣6+18),合并同类项得:﹣3x=9,系数化为1得:x=﹣340.去分母得:3x(x﹣1)﹣2(x+1)(x+6)﹣(x+1)(x﹣1)=6去括号得:3x2﹣3x﹣2x2﹣14x﹣12﹣x2+1=6合并得:﹣17x=17化系数为1得:x=﹣141. 原式通分得:,整理得:,将其变形得:﹣x+3=6,∴x=﹣3.42. 原式变形为:x+3=,将其通分并整理得:10x﹣25+3x﹣6=15x+45,即﹣2x=76,∴x=﹣38 43. 解:去分母得,3(x﹣7)﹣4(5x+8)=12,去括号得,3x﹣21﹣20x﹣32=12,移项合并同类项得,﹣17x=65,系数化为1得,x=;44. 解:去括号得,2x ﹣x+x ﹣=x ﹣,去分母得,24x﹣6x+3x﹣3=8x﹣8,移项合并同类项得,13x=﹣5,系数化为1得,x=﹣45.去分母得:15(x﹣1)﹣8(3x+2)=2﹣30(x ﹣1),∴21x=63,∴x=346.去括号,得a ﹣﹣2﹣a=2,去分母,得a﹣4﹣6﹣3a=6,移项,合并得﹣2a=16,化系数为1,得a=﹣8;47. 去分母,得5(x﹣3)﹣2(4x+1)=10,去括号,得5x﹣15﹣8x﹣2=10,移项、合并得﹣3x=27,化系数为1,得x=﹣9;48. 把分母化为整数,得﹣=2,去分母,得5(10x+40)﹣2(10x﹣30)=20,去括号,得50x+200﹣20x+60=20,移项、合并得30x=﹣240,化系数为1,得x=﹣849. +1=解:去分母,得3x+6=2(2﹣x);去括号,得3x+6=4﹣2x移项,得3x+2x=4﹣6合并同类项,得5x=﹣2系数化成1,得x=﹣;50. 75%(x﹣1)﹣25%(x﹣4)=25%(x+6)解:将原方程等价为:0.75(x﹣1)﹣0.25(x﹣4)=0.25(x+6)去括号,得0.75x﹣0.75﹣0.25x+1=0.25x+1.5 移项,得0.75x﹣0.25x﹣0.25x=1.5﹣1+0.75合并同类项,得0.25x=1.25系数化成1,得x=551. 去分母得:5(x﹣3)﹣2(4x+1)=10,去括号得:5x﹣15﹣8x﹣2=10,移项、合并得:﹣3x=27,系数化为1得:x=﹣9.52. 去括号得:2x﹣4﹣x+2=4,移项、合并得:x=6.53. 去分母得:12x﹣(2x+1)=12﹣3(3x﹣2),去括号得:12x﹣2x﹣1=12﹣9x+6,移项、合并得:19x=19,系数化为1得:x=154. 去括号得:x﹣1﹣3﹣x=2,移项,合并同类项得:﹣x=6,系数化为1得:x=﹣8.55 去分母得:18x+3(x﹣1)=18﹣2(2x﹣1),去括号得:18x+3x﹣3=18﹣4x+2,移项,合并得:25x=23,系数化为1得:x=.56. 去分母得:3x﹣7﹣2(5x+8)=4,去括号得:3x﹣7﹣10x﹣16=4,移项、合并得:﹣7x=27,系数化为1得:x=﹣.57. 去分母得:3(3x+5)=2(2x﹣1),去括号得:9x+15=4x﹣2,移项合并得:5x=﹣17,系数化为1得:;58. 去分母得:(5x+2)﹣2(x﹣3)=2,去括号得:5x﹣2x=﹣6+2﹣2,移项合并得:3x=﹣6,系数化为1得:x=﹣259.去小括号得:2x ﹣x+2=[x ﹣x ﹣],去中括号得:2x ﹣x+2=x ﹣x ﹣,去分母得:12x﹣4x+12=2x﹣3x﹣1,移项、合并得:9x=﹣13,系数化为1得:x=﹣60. ,去分母得3(x﹣15)=﹣15﹣5(x+7),∴3x﹣45=﹣15﹣5x﹣35,∴x=;61. ,方程变形为,去分母得20x﹣20x+30=﹣2x+6,∴x=﹣1262.去分母得:15x+5(x+2)=15﹣3(x﹣6)去括号得:15x+5x+10=15﹣3x+18移项得:15x+5x+3x=15+18﹣10合并得:23x=23系数化为1得:x=163.原方程可化为:﹣=,去分母得:4x+8﹣2(3x+4)=2(x﹣1),去括号得:4x+8﹣6x﹣8=2x﹣2,移项合并同类项得:﹣4x=﹣2,系数化为1得:x=64.原方程可化为:,去分母得:3(7x﹣1)=4(1﹣2x)﹣6(5x+1)去括号得:21x﹣3=4﹣8x﹣30x﹣6移项合并同类项得:59x=1系数化为1得:x=65.去分母得:4(3x﹣2)﹣6=7x﹣4.去括号得:12x﹣8﹣6=7x﹣4.移项、合并同类项得:5x=10.系数化为1得:x=2.66.原方程可以化为:=+1去分母得: 2(2x﹣1)=3(x+2)+6去括号得: 4x﹣2=3x+6+6即 x=1467 去分母得:4(2x﹣1)﹣3(2x﹣3)=12,整理得:2x﹣7=0,解得:x=3.5.68. 去括号,,∴,∴x+1=2,解得:x=169.去分母得:6(4x+9)﹣15(x﹣5)=30+20x 去括号得:24x+54﹣15x+75=30+20x移项,合并同类项得:﹣11x=﹣99化系数为1得:x=970. 去分母得:7(5﹣7x)=8(5x﹣2),去括号得:35﹣49x=40x﹣16,移项合并同类项得,﹣89x=﹣51,系数化为得:x=;71. 去括号得:3x+6﹣2x+3=5﹣4x,移项合并同类项得:5x=﹣4,系数化为得:x=﹣.72..去分母得:12x﹣2(5x﹣2)=24﹣3(3x+1),去括号得:12x﹣10x+4=24﹣9x﹣3,移项、合并得:11x=17,系数化为1得:x=.73.去分母得:6x﹣2(1﹣x)=(x+2)﹣6,去括号得:6x﹣2+2x=x+2﹣6,移项得:6x+2x﹣x=2﹣6+2,合并同类项得:7x=﹣2,系数化为得:x=74.去中括号得:(﹣1)﹣3﹣x=2,去括号、移项、合并得:﹣x=6,系数化为1得:x=﹣875. 去分母得:(2x+5)﹣24=3(3x﹣2),去括号得:8x+20﹣24=9x﹣6,移项得:8x﹣9x=﹣6﹣20+24,合并同类项得:﹣x=﹣2,系数化为1得:x=2.76.去括号得:x+++=1去分母得: x+1+6+56=64移项得: x=177.去分母得:3﹣(x﹣7)=12(x﹣10),去括号得:3﹣x+7=12x﹣120,移项、合并得:﹣13x=﹣130,系数化为1得:x=1078.去分母得:8﹣(7+3x)=2(3x﹣10)﹣8x 去括号得: 8﹣7﹣3x=6x﹣20﹣8x移项合并得:﹣x=﹣21系数化为1得: x=2179.去括号,得3(x ﹣)+1=5x,3x ﹣+1=5x,6x﹣3+2=10x,移项、合并同类项得:﹣4x=1,系数化为1得: x=80.4(2x﹣1)﹣12=3(5x﹣3)8x﹣4﹣12=15x﹣9﹣7x=7x=﹣1;81.5(3x﹣1)=2(4x+2)﹣1015x﹣5=8x+4﹣107x=﹣1x=﹣.82.去括号得,2(﹣1)﹣4﹣2x=3,x﹣2﹣4﹣2x=3,移项合并同类项得,﹣x=9,系数化为得, x=﹣983. 去括号得:x﹣2﹣3x+1=1﹣x,解得:x=﹣2.84. 原方程可化为:=﹣,去分母得:3(7x﹣1)=4(1﹣0.2x)﹣6(5x+1),去括号得:21x﹣1=4﹣0.8x﹣30x﹣6,移项、合并同类项得:51.8x=﹣1,系数化为1得:x=85.原方程化为:﹣=,整理得: 12x=6,解得: x=86.原式变形为:+=1,把小数化为分数、整理得:,去分母得:4(4﹣x)=12﹣(2x﹣6),去括号得16﹣4x=12﹣2x+6,移项、合并得:﹣2x=2,系数化为1得:x=﹣187.去大括号,得:,去中括号得:,去小括号得:=0,移项得:y=3,系数化1得:y=6 88..原方程化为:(1分)去分母得:3(5x+9)+5(x﹣5)=5(1+2x)化简得:10x=3解得:.89.去分母得:5(3x+2)﹣15=3(7x﹣3)+2(x ﹣2)去括号得:15x+10﹣15=21x﹣9+2x﹣4移项合并得:﹣8x=﹣8系数化为1得:x=190.去分母得:2(2x﹣5)+3(3﹣x)=12,去括号得:4x﹣10+9﹣3x=12,移项、合并得:x=1391. 解:,,6x﹣3x+3=8x﹣8,6x﹣3x﹣8x=﹣8﹣3,﹣5x=﹣1,.92. 解:3(2x﹣1)=4(x﹣5)+12,6x﹣3=4x﹣20+12,6x﹣4x=﹣20+12+3,2x=﹣5,93.去分母得:4×3x﹣5(1.4﹣x)=2去括号得:12x﹣7+5x=0.2移项、合并得:17x=9系数化为1,得x=94.去分母得:2(3x﹣2)+10=5(x+3),去括号得:6x﹣4+10=5x+15,移项、合并同类项得:6x﹣5x=15﹣6,化系数为1得:x=995. 去分母,得3(x﹣3)﹣4(5x﹣4)=18,去括号,得3x﹣9﹣20x+16=18,移项、合并同类项,得﹣17x=11,系数化为1,得x=﹣;96. 去分母,得3(x+1)﹣12=2(2x﹣1),去括号,得3x+3﹣12=4x﹣2,移项、合并同类项,得﹣x=7,系数化为1,得x=﹣797.原方程可化为:(8x﹣3)﹣(25x﹣4)=12﹣10x,去括号得:8x﹣3﹣25x+4=12﹣10x,移项、合并同类项得:﹣7x=11,系数化为1得:x=98. 去分母得:4(2x+4)﹣6(4x﹣3)=3,去括号得:8x+16﹣24x+18=3,移项,合并同类项得:﹣16x=﹣31,系数化为1得:x=;99. 去中括号得:(x﹣1)﹣2=2x﹣5,去小括号得:x﹣1﹣2=2x﹣5,移项、合并同类项得:x=2100..把中分子,分母都乘以5得:5x﹣20,把中的分子、分母都乘以20得:20x﹣60.即原方程可化为:5x﹣20﹣2.5=20x﹣60.移项得:5x﹣20x=﹣60+20+2.5,合并同类项得:﹣15x=﹣37.5,化系数为1得:x=2.5。
一元一次方程综合复习测试题一、选择题(每题3分,共24分)1 •下列方程是一元一方程的是()A. 22 = 5B.3x 1 4 = 2x c. y2 3y = 0 D. 9x 一y = 2x 22•已知等式3a =2b +5,则下列等式中,不一定成立的是()A.3 a - 5 = 2bB.3 a - 1 = 2 b + 4C.3 ac = 2 bc + 5D.9a = 6b + 153•小玉想找一个解为x =-6的方程,那么他可以选择下面哪一个方程()1 1 2A.2 x - 1 = x + 7B. x = x - 1C.2 (X + 5)=- 4 - XD. X = X - 22 3 34•下列变形正确的是()A• 4x-5 =3x 2变形得4x-3x - -2 53B• 3x=2 变形得x c • 3(x-1)=2(x 3)变形得3x-1 = 2x 62 1D• x -1 x 3变形得4x-6=3x 183 2、‘ x +3 x5.解方程1 ,去分母,得()6 2A• 1 - x - 3 = 3x; B • 6 - x - 3 = 3x; c • 6 - x ■ 3 = 3x; D• 1 - x ■ 3 = 3x.a — x6•如果方程2 x +1 = 3的解也是方程2- =0的解,那么a的值是()3A.7B.5C.3D.以上都不对7•某商店的老板销售一种商品,他要以不低于进价20%的价格才能岀售,但为了获取更多的利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降低()A.80 元B.100 元C.120 元D.160 元&甲仓库存煤200吨,乙仓库存煤70吨,若甲仓库每天运出 15吨煤,乙仓库每天运进 25吨煤,几天后乙仓库存煤比甲仓库多1倍?设x天后乙仓库存煤比甲仓库存煤多1倍,则有()A.2 X 15x = 25 xB.70 + 25 x - 15X = 200 X 2C.2 ( 200- 15X )= 70+ 25 XD.200-15 X = 2 ( 70+ 25X )二、填空题:(每题3分,共24分)1 •若方程3x3d2n-1 = 0是关于x的一元一次方程,则n = _______________ ;3•已知x=2是方程ax-1=x,3的一个解,那么a = _______________________ •14•写出一个满足下列条件的一元一次方程:①未知数的系数是- ,②方程的解是3,则这样的方程可写2为__________________ .5•已知三个连续偶数的和是 24,则这三个数分别是________________________ .6• A、B、C三辆汽车所运货物的吨数比为 2 : 3 : 4,已知C汽车比A汽车多运货物4吨,则B汽车运货物_____________ 吨.7• 一个两位数,十位数字比个位数字大4,将十位数字与个位数字交换位置后得到的新数比原数小36,设个位数字为X,则可列方程为________________________ .&课堂上,老师说:“老师的六分之一时光是幸福的童年,从小学读到大学又花了我一半的时间,然后12 年如一日地站在讲台上至今,谁知道我现在的年龄”,小玉思考了一会儿告诉了老师正确的答案,你知道老师现在的年龄是 _____________ 岁.三、解答题:(共52分)1.解方程:x —2 X"2 x —1(1) 5 ( X + 8 )= 6 (2X — 7)+ 5; ( 2) —= 1 +6 3 2一、行程问题(一)追击和相遇问题1:甲、乙两站相距 480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
七年级上册数学一元一次方程试卷一、单项选择题(本大题有12小题,每小题4分,共48分)1、解下列方程:(3x−7=8)A.(x=5)B.(x=3)C.(x=4)D.(x=6)答案: C.(x=5)解析: 将方程两边同时加上7得到(3x=15),再将两边同时除以3得到(x=5)。
2、如果(2(x−4)=10),那么(x)的值是多少?A.(x=7)B.(x=9)C.(x=8)D.(x=6)答案: B.(x=9)解析: 先展开方程得到(2x−8=10),然后将方程两边同时加上8得到(2x=18),最后两边同时除以2得到(x=9)。
3、对于方程(4(2y+3)−5=31),求(y)的值。
A.(y=2)B.(y=3)D.(y=1)答案: A.(y=2)解析: 首先展开方程得到(8y+12−5=31),简化后得到(8y+7=31)。
接着将方程两边同时减去7得到(8y=24),最后两边同时除以8得到(y=3)。
让我们来验证这些答案是否正确。
经过验证,上述单项选择题的答案如下:1、正确答案为 C.(x=5)2、正确答案为 B.(x=9)3、正确答案为 C.(y=3)根据解析过程,我们发现第3题的答案选项中的确应该是 C.(y=3)而不是(y=2)。
因此,请允许我更正第3题的答案和解析:3、对于方程(4(2y+3)−5=31),求(y)的值。
A.(y=2)B.(y=3)C.(y=4)D.(y=1)答案: C.(y=3)解析: 首先展开方程得到(8y+12−5=31),简化后得到(8y+7=31)。
接着将方程两边同时减去7得到(8y=24),最后两边同时除以8得到(y=3)。
4、解下列方程(3x−7=5)的解是:A.(x=1)B.(x=2)D.(x=4)答案: C.(x=3)解析:将方程两边同时加上7得(3x=12),再除以3得到(x=4)。
但注意到这里有个小陷阱,正确解法应该是先加7再除以3,即(3x=12),因此(x=4)是正确的解。
一元一次方程练习题及答案优秀4篇一元一次方程练习题篇一一、选择题(每小题3分,共30分)1、下列方程中,属于一元一次方程的是()A. B. C D.2、已知ax=ay,下列等式中成立的是()A.x=yB.ax+1=ay-1C.ax=-ayD.3-ax=3-ay3、一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()A.40%B.20%C25%D.15%4、一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是()A.a米B.(a+60)米C.60a米D.(60+2a)米5、解方程时,把分母化为整数,得()。
A、 B、 C、 D、6、把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是()A.10B.52C.54D.567、一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程。
设上山速度为x千米/分钟,则所列方程为()A.x-1=5(1.5x)B.3x+1=50(1.5x)C.3x-1=(1.5x)D.180x+1=150(1.5x)8、某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为()A.约700元B.约773元C.约736元D.约865元9、下午2点x分,钟面上的时针与分针成110度的角,则有()A. B. C. D.10、某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为()A.15%B.17%C.22%D.80%二、填空题(每小题3分,共计30分)11、若x=-9是方程的解,则m=。
12、若与是同类项,则m=,n=。
13、方程用含x的代数式表示y得y=,用含y的代数式表示x得x=。
初中数学一元一次方程精选试题(含答案和解析)一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服.其中一件盈利20%.另一件亏损20%.在这次买卖中.这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元.根据利润=销售收入﹣进价.即可分别得出关于x、y的一元一次方程.解之即可得出x、y的值.再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元.根据题意得:120﹣x=20%x.y﹣120=20%y.解得:x=100.y=150.∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人.珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著.详述了传统的珠算规则.确立了算盘用法.书中有如下问题:一百馒头一百僧.大僧三个更无争.小僧三人分一个.大小和尚得几丁.意思是:有100个和尚分100个馒头.如果大和尚1人分3个.小和尚3人分1个.正好分完.大、小和尚各有多少人.下列求解结果正确的是()A.大和尚25人.小和尚75人 B.大和尚75人.小和尚25人C.大和尚50人.小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头.正好分完.大和尚一人分3个.小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100.大和尚分得的馒头数+小和尚分得的馒头数=100.依此列出方程即可.【解答】解:设大和尚有x人.则小和尚有(100﹣x)人.根据题意得:3x+=100.解得x=25则100﹣x=100﹣25=75(人)所以.大和尚25人.小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用.关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动.现准备将6000件生活物资发往A.B两个贫困地区.其中发往A区的物资比B区的物资的1.5倍少1000件.则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据发往A.B两区的物资共6000件.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设发往B区的生活物资为x件.则发往A区的生活物资为(1.5x﹣1000)件.根据题意得:x+1.5x﹣1000=6000.解得:x=2800.∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是..【分析】方程组中的两个方程相加.即可得出一个一元二次方程.求出方程的解.再代入求出y即可.【解答】解:②+①得:x2+x=2.解得:x=﹣2或1.把x=﹣2代入①得:y=﹣2.把x=1代入①得:y=1.所以原方程组的解为..故答案为:..【点评】本题考查了解高次方程组.能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护.截至2017年底.全省建立国家级、省级和市县级自然保护区共49个.其中国家级10个.省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据国家级、省级和市县级自然保护区共49个.即可得出关于x的一元一次方程.解之即可得出结论.【解答】解:设市县级自然保护区有x个.则省级自然保护区有(x+5)个.根据题意得:10+x+5+x=49.解得:x=17.∴x+5=22.答:省级自然保护区有22个.市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(员).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.。
《一元一次方程》复习题一、选择题。
1. 下列方程中是一元一次方程的是( )A .23x y =B .()7561x x +=-C .()21112x x +-=D .12x x-= 2.若方程315ax x -=的解为x =5,则a 等于( )A. 80B. 4C. 6D. 2 3.根据“x 与5的和的3倍比x 的13少2”列出方程是( ).A .3x+5=3x-2 B .3x+5=3x +2 C .3(x+5)=3x-2 D .3(x+5)=3x +24.若23(2)6m m x --=是一元一次方程,则m 等于( ).A 、1B 、2C 、1或2D 、任何数5. 甲队有32人,乙队有28人。
现在从乙队抽X 人到甲队,使甲队人数是乙队人数的2倍,根据题意,得出的方程是( )A 、32+X=56;B 、32=2(28-X );C 、32+X=2(28-X );D 、2(32+X )=28-X6.把方程103.02.017.07.0=--x x中的分母化为整数,正确的是( )A 、132177=--x xB 、13217710=--x x C 、1032017710=--x x D 132017710=--x x 7. 下列运用等式的性质对等式进行的变形中,正确的是( )。
A 、若x=y ,则x —5=y+5B 、若a=b ,则ac=bcC 、若c bc a=,则b a 32= D 、若x=y ,则a ya x=8.下列各题中正确的是( )A. 由347-=x x 移项得347=-x xB. 由231312-+=-x x 去分母得)3(31)12(2-+=-x xC. 由1)3(3)12(2=---x x 去括号得19324=---x xD. 由7)1(2+=+x x 移项、合并同类项得x =59. 一张试卷上有25道选择题:对一道题得4分,错一道得-1分,不做得-1分,某同学做完全部25题得70分,那么它做对题数为-A .17B .18C .19D .2010. 某商人一次卖出两件商品。
2024-2025学年人教版数学七上第五章一元一次方程单元试卷一、单选题1.下列方程中是一元一次方程的是()A.x+23x =1B.xy−3=0C.x2−2x=3D.2x3+x=12.在解方程3(2x−4)−(x−7)=5时,下列去括号正确的是()A.6x−4−x−7=5B.6x−4−x+7=5C.6x−12−x−7=5D.6x−12−x+7=53.方程x+2=1的解是()A.x=−1B.x=1C.x=2D.x=34.根据等式的性质,下列变形正确的是()A.如果ac=bc,那么a=b B.如果6a=3,那么a=2C.如果1−2a=3a,那么3a+2a=1D.如果2a=b,那么a=2b5.已知关于x的方程3x−m+4=0的解是x=2,则m的值为()A.2B.−10C.8D.106.一架飞机在两城间飞行,顺风航行要5.5小时,逆风航行要6小时,风速为24千米/时,设飞机无风时的速度为每小时x千米,则下列方程正确是( )A.5.5(x−24)=6(x+24)B.x−245.5=x+246C.5.5(x+24)=6(x−24)D.x+245.5=x−2467.某工程甲单独做需要8天完成,乙单独做需要12天完成,现由乙先单独做3 天,甲再参加合做,设完成此工程一共用了x天,则下列方程正确的是()A.x+312+x8=1B.x12+x−38=1C.x12+x8=1D.x+312+x−38=18.在月历上框出相邻的三个数a,b,c,若它们的和为69,则框图不可能是()A.B.C.D.9.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数、羊价各几何?”其译文为:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱,问人数、羊价各是多少?若设人数为x 人,则列出的方程为( )A .5x−45=7x−3B .5x−45=7x +3C .5x +45=7x +3D .5x +45=7x−310.如图,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始匀速运动.甲按逆时针方向运动,乙按顺时针方向运动,若乙的速度是甲的3倍,那么它们第一次相遇在AB 边上,请问它们第2024次相遇在( )A .AB 边上B .BC 边上C .CD 边上D .AD 边上二、填空题11.方程3x−6=x 的解为 .12.代数式−3x−5的值等于代数式4−6x 的值,则x = .13.下列等式变形:①若a =b ,则a +x =b +x ;②若ac =bc ,则a =b ;③若4a =3b ,则4a−3b =1;④若a b =34,则4a =3b ;⑤若2x m =3y m,则2x =3y .其中一定正确的是(填序号).14.已知方程(m +2)x n2+1+6=0是关于x 的一元一次方程,若此方程的解为正整数,且m为整数,则2m 2= .15.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10元,则该商品每件的进价为.16.整理一批数据,由一人做需要40小时完成.现在计划先由一些人做2小时,再增加3人做4小时,完成这项工作的34,则先安排 人工作.17.已知数轴上A ,B 两点对应数分别为−2,4,P 为数轴上一动点,对应数为x ,若P 点到A ,B 距离和为12,则x 的值为.18.有一所寄宿制学校,开学安排宿舍时,如果每间住4人,将会空出5间,如果每间宿舍安排住3人,就有100人没有床位.设共有x 人住宿,则根据题意可列出方程:.三、解答题19.解方程(1)2x−1=−x+8;(2)x+13=1−x5.20.若关于x的方程2x+5=a的解和关于x的方程与x−43−2=12的解相同,求字母a的值.21.学校计划购买6张“双鱼”牌乒乓球桌和a副“红双喜”牌乒乓球拍(不少于6副).A、B 两家体育商品店的价格相同,球桌每张1000元,球拍每副200元.A店优惠政策是每买一张乒乓球桌,送一副球拍;B店的优惠政策为所有商品打八五折.(1)规定只能到其中一个店购买乒乓球桌和乒乓球拍,请分别用含a的代数式表示在A、B 两家体育商品店购买这些物品所需的费用,并化简.(2)若到A、B两家店购买,所需费用相等,求a的值.22.如图的长方体盒子是用大长方形硬纸片裁剪制作的,每个盒子由4个小长方形侧面和上下2个正方形底面组成,每张大长方形硬纸片可按两种方法裁剪:按A方法裁剪4个侧面;按B方法裁剪6个底面.现有112张相同的大长方形硬纸片全部用于裁剪制作这种长方体盒子,设裁剪时有x张用A方法,其余用B方法.(粘合处不计)(1)请用含x的式子分别表示裁剪出的侧面和底面的个数.(2)若裁剪出的侧面和底面恰好全部用完,则按A,B两种方法各裁剪多少张?一共能做多少个这样的长方体盒子?23.观察下面三行数−2,4,−8,16,−32,64…①−4,2,−10,14,−34,62…②3,−3,9,−15,33,−63…③(1)第①行的数的第10个数是____.(2)分别写出第②行的第n个数______,第③行的第n个数是______.(3)是否存在第②行的连续三个数的和为186?若存在,说明理由并写出这三个数;若不存在说明理由.(4)是否存在正整数k,使每行的第k个数相加的和等于−257.若存在求出值,若不存在说明理由.参考答案:1.D2.D3.A4.C5.B6.C7.B8.B9.D10.D11.x=312.313.①④⑤14.18或32或50或12815.100元16.317.−5或718.x4+5=x−100319.(1)x=3;(2)x=54.20.a=2821.(1)A、B两家体育商品店购买这些物品所需的费用分别是(200a+4800)元、(170a+5100)元;(2)1022.(1)裁剪出的侧面数为4x个,底面数为(672−6x)个(2)按A,B两种方法各裁剪84张,28张,一共能做84个这样的长方体盒子23.(1)1024(2)(−1)n⋅2n−2;(−1)n+1⋅2n+1(3)第②行存在连续三个数的和为186,这三个数分别为62,−130,254(4)不存在正整数k,使每行的第k个数相加的和等于−257。
北师大版七年级(上)数学期末总复习:一元一次方程培优练习题满分:100分时间:90分钟一.选择题(每小题3分,共30分)1.若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0B.x=3C.x=﹣3D.x=22.某书上有一道解方程的题:+1=x,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=﹣2,那么□处应该是数字()A.7B.5C.2D.﹣23.已知是关于x的方程2x+x﹣2a=0的根,则a的值为()A.﹣1B.﹣3C.1D.34.下列方程是一元一次方程的是()A.x2﹣2x+3=0B.2x﹣5y=4C.x=0D.=35.小彬种了一种树苗,开始时树苗高为40cm,栽种后树苗每周长高约5cm,大约几周后树苗长高到1m?如果设x周后树苗长高到1m,可列方程为()A.40+5x=1B.40﹣5x=1C.40﹣5x=100D.40+5x=100 6.电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.57.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3B.0C.3D.68.一件风衣,按成本价提高50%后标价,后因季节关系按标价的8折出售,每件卖180元,这件风衣的成本价是()A.150元B.80元C.100元D.120元9.按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A.1种B.2种C.3种D.4种10.一轮船往返A、B两港之间,逆水航行需要3小时,顺水航行需2小时,水速是3千米每小时,则轮船在静水中的速度是()A.18千米∕小时B.15千米∕小时C.12千米∕小时D.20千米∕小时二.填空题(每小题3分,共18分)11.关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,则a= .12.已知3是关于x的方程2x﹣a=1的解,则a的值是.13.一商店在某一时间以每件a元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,若卖出这两件衣服商店共亏损8元,则a的值为.14.小华同学在解方程5x﹣1=()x+3时,把“()”处的数字看成了它的相反数,解得x=2,则该方程的正确解应为x= .15.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为.16.小明解方程=﹣3去分母时,方程右边的﹣3忘记乘6,因而求出的解为x=2,则原方程正确的解为.17.如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为.18.在数轴上,点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,若a与b差的绝对值等于,且AO=2BO,则a+b的值为.三.解答题(共6小题,共46分)19.(8分)解方程(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)=﹣120.(7分)元旦,某校初一年级(1)班组织学生去公园游玩.该班有50名同学组织了划船活动(划船须知如图).他们一共租了10条船,并且每条船都坐满了人,那么大船租了几只?21.(7分)(1)已知3m+7与﹣10互为相反数,求m的值.(2)若|a|=2,b=﹣3,c是最大的负整数,求a+b﹣c的值.22.(8分)为弘扬中华优秀文化传统,某中学在元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为元.23.(7分)出租车司机小王某天下午营运的路线全是在东西走向的大道上,出发点A恰好在这条大道上,如果规定向东为正,向西为负,他这天下午的行驶记录如下:(单位:千米)+5,﹣3,﹣8,﹣6,+10,﹣6,12,﹣10(1)将最后一名乘客送到目的地时,小王在出发点A地的东面还是西面?距下午出车地A点的距离是多少千米?(2)若汽车耗油量为a升/千米,这天下午汽车共耗油多少升?(用含a的代数式表示)(3)出租车油箱内原有10升油,请问:当a=0.3时,小王途中是否需要加油?若需要加油,至少需要加多少升油?若不需要,说明理由.24.(9分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,b满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= .(2)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C 之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(3)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案一.选择题1.解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.2.解:把x=﹣2代入+1=x得:+1=﹣2,解这个方程得:□=5.故选:B.3.解:把代入原方程,得:,解得:a=﹣1,故选:A.4.解:A、此方程为一元二次方程,不合题意;B、此方程为二元一次方程,不合题意;C、此方程为一元一次方程,符合题意;D、此方程不是整式方程,为分式方程,不合题意,故选:C.5.解:设x周后树苗长高到1m,由题意得:40+5x=100,故选:D.6.解:设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程2x=5y;2z=3y,消去y可得:x=z,则3x=5z,即三个球体的重量等于五个正方体的重量.故选:D.7.解:当a2+2a=3时原式=2(a2+2a)﹣3=6﹣3=3故选:C.8.解:设这件风衣的成本价为x元,x×(1+50%)×80%=180,1.2x=180解得x=150,故选:A.9.解:∵输出的结果为556,∴5x+1=556,解得x=111;而111<500,当5x+1等于111时最后输出的结果为556,即5x+1=111,解得x=22;当5x+1=22时最后输出的结果为556,即5x+1=22,解得x=4.2(不合题意舍去),所以开始输入的x值可能为22或111.故选:B.10.解:设轮船在静水中的速度是x千米/小时,根据题意得:3(x﹣3)=2(x+3),解得:x=15.答:轮船在静水中的速度是15千米/小时.故选:B.二.填空题(共8小题)11.解:∵关于x的方程(a2﹣4)x2+ax+2x﹣1=0是一元一次方程,∴a2﹣4=0,且a+2≠0,解得:a=2,故答案为:212.解:由题意将x=3代入方程得:6﹣a=1,解得:a=5.故答案为:513.解:设第一件衣服的进价为x,依题意得:x(1+25%)=a,设第二件衣服的进价为y,依题意得:y(1﹣25%)=a,因为卖出这两件衣服商店共亏损8元,可得:,解得:a=60,故答案为:60.14.解:设()处的数字为a,根据题意,把x=2代入方程得:10﹣1=﹣a×2+3,解得:a=﹣3,∴“()”处的数字是﹣3,即:5x﹣1=﹣3x+3,解得:x=.故该方程的正确解应为x=.故答案为:.15.解:把x=2代入方程得:4+3m﹣1=0,解得:m=﹣1,故答案为:﹣116.解:根据小明的错误解法得:4x﹣2=3x+3a﹣3,把x=2代入得:6=3a+3,解得:a=1,正确方程为:=﹣3,去分母得:4x﹣2=3x+3﹣18,解得:x=﹣13,故答案为:x=﹣1317.解:设正方形边长为xcm,由题意得:4x=5(x﹣4),故答案为:4x=5(x﹣4).18.解:由题意可得:|a﹣b|=,|a|=2b,∵点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,∴﹣a=2b,﹣a+b=,解得:b=671,a=﹣1342,故a+b=﹣671.故答案为:﹣671.三.解答题(共7小题)19.解:(1)去括号得:3x﹣7x+7=3﹣2x﹣6,移项合并得:﹣2x=﹣10,解得:x=5;(2)去分母得:3﹣3x=8x﹣2﹣6,移项合并得:﹣11x=﹣11,解得:x=1.20.解:设大船租了x只,则小船租了(10﹣x)只,依题意有:6x+4(10﹣x)=50,解得x=5,答:大船租了5只.21.解:(1)根据题意得3m+7﹣10=0,解得m=1;(2)根据题意得a=2或a=﹣2,c=﹣1,当a=2,b=﹣3,c=﹣1,a+b﹣c=2﹣3﹣(﹣1)=0;当a=﹣2,b=﹣3,c=﹣1,a+b﹣c=﹣2﹣3﹣(﹣1)=﹣4.22.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+6)元,由题意得:30x+20(x+6)=1070,解得:x=19,则x+6=25,答:钢笔的单价为19元,毛笔的单价为25元;(2)①设单价为19元的钢笔y支,则单价为25元的毛笔为(60﹣y)支,根据题意得:19y+25(60﹣y)=1322,解得:y=,不合题意,即张老师肯定搞错了;②设单价为19元的钢笔z支,签字笔的单价为a元,根据题意得:19z+25(60﹣z)=1322﹣a,即6z=178+a,由a,z都是整数,且178+a应被6整除,经验算当a=2时,6z=180,即z=30,符合题意;当a=8时,6z=186,即z=31,符合题意,则签字笔的单价为2元或8元.故答案为:2或8.23.解:(1)(+5)+(﹣3)+(﹣8)+(﹣6)+(+10)+(﹣6)+12+(﹣10)=﹣6,∵规定向东为正,向西为负,答:小王在出发点A地的西面,距下午出车地A点的距离是6千米;(2)(5+|﹣3|+|﹣8|+|﹣6|+10+|﹣6|+12+|﹣10|)×a=60a(升),答:这天下午汽车共耗油60a升;(3)当a=0.3时,60a=60×0.3=18,18﹣10=8,答:小王途中还需要加油,至少需要加8升油.24.解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(3)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=6t+18﹣6t﹣6=12不变,始终为12.。
解一元一次方程-红老师一.解答题(共60小题)1.解方程:.2.解方程:.3.解方程:.4.解方程:.5.解方程:.6.解方程:(1)2﹣=x﹣;(2).7.解方程:.8.解方程:﹣1=.9.解方程:.10.解方程:.11.解方程:.12.解方程.13.解方程:.14.解方程:.15.解方程:.16.解方程:﹣=1.17.解方程:=1.18.解方程:=1﹣.19.解方程:﹣2=.20.解方程:.21.解方程:.22.解关于x的一元一次方程.23.解方程:.24.解方程:.25.解方程:.26.解方程:y﹣=2﹣27.解方程:.28.解方程:.29.解方程:3x+.30.解方程:.31.解方程:.32.解方程:.33.解方程:.34.解方程:.35.解方程:.36.解方程:.37.解方程:﹣=1.38.解方程:.39.解方程:.40.解方程:.41.解方程:.42.解方程:﹣1=.43.解方程:=1﹣.44.解方程:.45.解方程:.46.解方程.47.解方程:(1)3(5﹣x)=18+2x;(2);(3).48.解方程:(1);(2).49.解方程:(1)2(x﹣4)﹣3(4x﹣1)=5(1﹣x);(2);(3).50.解下列方程(1)(2)51.解方程(1)x=﹣1;(2)﹣=1.52.解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3);(2);(3).53.解方程:(1)3x+=3﹣;(2)+2=.54.解方程(1)4x+3(x﹣20)=8x﹣7(20﹣x)(2)﹣=1.55.解方程:﹣=.56.若3x+1的值比的值少1,求x的值.57.k取何值时,代数式值比的值小1.58.当x为何值时,代数式的值与的值的和等于3?59.已知代数式与代数式.(1)当x为何值时,两个代数式的值相等?(2)当x为何值时,代数式的值比代数式的值大2?60.我们规定一种运算:=ad﹣bc,例如=3×6﹣4×5=﹣2,=4x+6,按照这种运算规定,当x等于多少时,=0.解一元一次方程-红老师参考答案与试题解析一.解答题(共60小题)1.解方程:.【解答】解:去分母得:6﹣2(3﹣5x)=3(3x+1),去括号得:6﹣6+10x=9x+3,移项合并得:x=3.2.解方程:.【解答】解:去分母得:5(3x+1)=2(4x+2),去括号得:15x+5=8x+4,移项得:15x﹣8x=4﹣5,合并同类项得:7x=﹣1,解得:x=﹣.3.解方程:.【解答】解:,去分母,3(2x﹣1)=60﹣5(x﹣5),去括号,6x﹣3=60﹣5x+25,移项,6x+5x=60+3+25,合并同类项,11x=88,化系数为1,x=8.4.解方程:.【解答】解:去分母,得3(x﹣2)=12﹣4x,去括号,得3x﹣6=12﹣4x,移项、合并同类项,得7x=18,系数化为1,得.5.解方程:.【解答】解:去分母得:10x﹣5(x﹣1)=20﹣2(x+18),去括号得:10x﹣5x+5=20﹣2x﹣36,移项合并得:7x=﹣21,解得:x=﹣3.6.解方程:(1)2﹣=x﹣;(2).【解答】解:(1)去分母得:12﹣(x+5)=6x﹣2(x﹣1),去括号得:12﹣x﹣5=6x﹣2x+2,移项得:﹣x﹣6x+2x=2﹣12+5,合并得:﹣5x=﹣5,系数化为1得:x=1;(2)方程整理得:﹣2=,即2x﹣2=5x ﹣2,移项得:2x﹣5x=﹣2+2,合并得:﹣3x=0,系数化为1得:x=0.7.解方程:.【解答】解:去分母,得2(3x﹣2)﹣6=5﹣4x,去括号,得6x﹣4﹣6=5﹣4x,移项,合并同类项,得10x=15,系数化为1,得x=1.5.8.解方程:﹣1=.【解答】解:﹣1=3(x+1)﹣6=2(x﹣2)3x+3﹣6=2x﹣43x﹣2x=﹣1x=﹣1.9.解方程:.【解答】解:去分母得:6x﹣3=12﹣4x﹣8,移项合并得:10x=7,解得:x=0.7.10.解方程:.【解答】解:去分母得:4x﹣10=5﹣2x,移项得:4x+2x=5+10,合并同类项得:6x=15,系数化为1得:x=.11.解方程:.【解答】解:,去分母,得3(x﹣1)+12=4(2x+1),去括号,得3x﹣3+12=8x+4,移项,得3x﹣8x=4+3﹣12,合并同类项,得﹣5x=﹣5,系数化成1,得x=1.12.解方程.【解答】解:去分母得:3(3y﹣1)﹣12=2(5y﹣7),去括号得:9y﹣3﹣12=10y﹣14,移项得:9y﹣10y=﹣14+3+12,合并得:﹣y=1,解得:y=﹣1.13.解方程:.【解答】解:去分母,得3(4x﹣3)﹣15=5(2x﹣2),去括号,得12x﹣9﹣15=10x﹣10,移项,得12x﹣10x=﹣10+9+15,合并同类项,得2x=14,系数化为1,得x=7.14.解方程:.【解答】解:原方程去分母,得:2(3x+2)﹣4=2x ﹣1,去括号,得:6x+4﹣4=2x﹣1,移项,合并同类项,得:4x=﹣1,系数化为1,得:.15.解方程:.【解答】解:4﹣(3x﹣1)=2(3+x),去分母,得4﹣3x+1=6+2x,移项,得﹣3x﹣2x=6﹣4﹣1,合并同类项,得﹣5x=1,系数化1,得x=﹣.16.解方程:﹣=1.【解答】解:方程两边同乘以12得:12×﹣12×=12,则3(x+2)﹣2(2x﹣3)=12,故3x+6﹣4x+6=12,移项合并同类项得:﹣x=0,解得:x=0.17.解方程:=1.【解答】解:,去分母,得4x﹣1=6﹣2(3x﹣1),去括号,得4x﹣1=6﹣6x+2,移项,得4x+6x=6+2+1,合并,得10x=9,系数化为1,得.18.解方程:=1﹣.【解答】解:去分母得:3(x﹣1)=6﹣2(x﹣3),去括号得:3x﹣3=6﹣2x+6,移项得:3x+2x=6+6+3,合并同类项得:5x=15,系数化1得:x=3.19.解方程:﹣2=.【解答】解:去分母:2(x+1)﹣8=x,去括号:2x+2﹣8=x,移项:2x﹣x=8﹣2,合并同类项:x=6.20.解方程:.【解答】解:方程两边同乘以12得:12×﹣12×=12,则3(x+2)﹣2(2x﹣5)=12,故3x+6﹣4x+10=12,移项合并同类项得:﹣x=﹣4,解得:x=4.21.解方程:.【解答】解:,去分母,得2x﹣1﹣6=3(2x+3),去括号,得2x﹣1﹣6=6x+9,移项,得2x﹣6x=9+1+6,合并同类项,得﹣4x=16,系数化为1,得x=﹣4.22.解关于x的一元一次方程.【解答】解:去分母得:3(4x﹣3)﹣15=5(2x﹣2),去括号得:12x﹣9﹣15=10x﹣10,移项得:12x﹣10x=24﹣10,合并同类项得:2x=14,解得:x=7.23.解方程:.【解答】解:,去分母,得2(2x﹣1)+3(x+1)=4,去括号,得4x﹣2+3x+3=4,移项、合并同类项,得7x=3,系数化为1,得.24.解方程:.【解答】解:,去分母得,3(x+2)﹣(4x+3)=6,去括号得,3x+6﹣4x﹣3=6,移项得,3x﹣4x=6﹣6+3,合并同类项得,﹣x=3,系数化为1得,x=﹣3.25.解方程:.【解答】解:去分母得:6x﹣(3x﹣3)=2x+4+6,去括号得:6x﹣3x+3=2x+4+6,移项合并得:x=7.26.解方程:y﹣=2﹣【解答】解:10y﹣5(y﹣1)=20﹣2(y+3),10y﹣5y+5=20﹣2y﹣6,10y﹣5y+2y=20﹣6﹣5,7y=9,y=.27.解方程:.【解答】解:×6﹣×6=2×6,3(x﹣1)﹣2(2﹣x)=12,3x﹣3﹣4+2x=12,5x=19,∴x=.28.解方程:.【解答】解:去分母,得5(1﹣2x)=3(3x+4)﹣15,去括号,得5﹣10x=9x+12﹣15,移项,得﹣10x﹣9x=12﹣15﹣5,合并同类项,得﹣19x=﹣8,系数化为1,得.29.解方程:3x+.【解答】解:去分母得,18x+3(x﹣1)=18﹣2(2x ﹣1),去括号得,18x+3x﹣3=18﹣4x+2,移项得,18x+3x+4x=18+2+3,合并同类项得,25x=23,系数化为1得,x=.30.解方程:.【解答】解:去分母得:3(2x+1)﹣(4x﹣1)=6,去括号得:6x+3﹣4x+1=6,移项得:6x﹣4x=6﹣3﹣1,合并得:2x=2,系数化为1得:x=1.31.解方程:.【解答】解:去分母,可得:3(x﹣3)﹣2(4x+1)=6,去括号,可得:3x﹣9﹣8x﹣2=6,移项,可得:3x﹣8x=6+9+2,合并同类项,可得:﹣5x=17,系数化为1,可得:x=﹣3.4.32.解方程:.【解答】解:去分母,方程两边同时乘以6,得:3(x+2)=12﹣2(x﹣2).去括号,得:3x+6=12﹣2x+4.移项、合并同类项,得:5x=10.未知数的系数化为1,得:x=2.33.解方程:.【解答】解:去分母,可得:3(2x﹣3)﹣12=4(x ﹣4),去括号,可得:6x﹣9﹣12=4x﹣16,移项,可得:6x﹣4x=﹣16+9+12,合并同类项,可得:2x=5,系数化为1,可得:x=2.5.34.解方程:.【解答】解:,去分母,得2(x+1)﹣3(x﹣3)=6,去括号,得2x+2﹣3x+9=6,移项,得2x﹣3x=6﹣9﹣2,合并同类项,得﹣x=﹣5,系数化为1,得x=5.35.解方程:.【解答】解:,去分母,得3(x+1)﹣6=2(3x﹣2),去括号,得3x+3﹣6=6x﹣4,移项,得3x﹣6x=﹣4﹣3+6,合并同类项,﹣3x=﹣1,系数化为1,得.36.解方程:.【解答】解:,3(3y﹣1)﹣12=4(2y+7),9y﹣3﹣12=8y+28,9y﹣8y=28+3+12y=43.37.解方程:﹣=1.【解答】解:2(x﹣3)﹣3(4x+1)=6,2x﹣6﹣12x﹣3=6,2x﹣12x=6+6+3,﹣10x=15,x=﹣.38.解方程:.【解答】解:,去分母,得4(2x+1)﹣(x﹣3)=12,去括号,得8x+4﹣x+3=12,移项,得8x﹣x=12﹣4﹣3,合并同类项,得7x=5,系数化成1,得x=.39.解方程:.【解答】解:去分母得:2x=12+3(2x﹣1),去括号得:2x=12+6x﹣3,移项得:2x﹣6x=12﹣3,合并同类项得:﹣4x=9,系数化为1得:x=﹣.40.解方程:.【解答】解:,去分母,得3(3y+2)﹣12=2(2y﹣1),去括号,得9y+6﹣12=4y﹣2,合并同类项,得9y﹣6=4y﹣2,移项,得9y﹣4y=﹣2+6,合并同类项,得5y=4,系数化为1,得.41.解方程:.【解答】解:去分母得,4(x﹣2)=12﹣3(3x﹣2),去括号得,4x﹣8=12﹣9x+6,移项得,4x+9x=12+6+8,合并同类项得,13x=26,系数化1得,x=2.42.解方程:﹣1=.【解答】解:﹣1=,5x﹣3﹣6=3x,5x﹣3x=3+6,2x=9,x=.43.解方程:=1﹣.【解答】解:方程=1﹣,去分母得:5(2x﹣1)=10﹣2(x﹣3),去括号得:10x﹣5=10﹣2x+6,移项合并得:12x=21,解得:x=.44.解方程:.【解答】解:,两边同时乘以6得:2(2x+1)﹣12=﹣x,整理得:4x﹣10=﹣x,解得x=2,45.解方程:.【解答】解:∵,∴+=3,去分母,可得:2(10x﹣20)+5(10x﹣10)=30,去括号,可得:20x﹣40+50x﹣50=30,移项,可得:20x+50x=30+40+50,合并同类项,可得:70x=120,系数化为1,可得:x=.46.解方程.【解答】解:方程整理得:﹣=1,即﹣2x+1=1,去分母得:2x﹣4﹣6x+3=3,移项得:2x﹣6x=3+4﹣3,合并同类项得:﹣4x=4,解得:x=﹣1.47.解方程:(1)3(5﹣x)=18+2x;(2);(3).【解答】解:(1)去括号得:15﹣3x=18+2x,移项得:﹣3x﹣2x=18﹣15,合并同类项得:﹣5x=3,解得:x=﹣;(2)去括号得:﹣=(x﹣4),去分母得:2﹣(2x﹣5)=x﹣4,去括号得:2﹣2x+5=x﹣4,移项得:﹣2x﹣x=﹣4﹣2﹣5,合并同类项得:﹣3x=﹣11,解得:x=;(3)方程整理得:﹣(2x+4)=1.2,去分母得:10x﹣10﹣3(2x+4)=3.6,去括号得:10x﹣10﹣6x﹣12=3.6,移项得:10x﹣6x=3.6+10+12,合并同类项得:4x=25.6,解得:x=6.4.48.解方程:(1);(2).【解答】解:(1)去分母得:3(3x﹣1)﹣12=2(5x﹣7),去括号得:9x﹣3﹣12=10x﹣14,移项得:9x﹣10x=﹣14+3+12,合并同类项得:﹣x=1,系数化为1得:x=﹣1.(2)化整得:,去分母得:3(3x﹣1)﹣2(2x+9)=﹣36,去括号得:9x﹣3﹣4x﹣18=﹣36,移项得:9x﹣4x=﹣36+3+18,合并同类项得:5x=﹣15,系数化为1得:x=﹣3.49.解方程:(1)2(x﹣4)﹣3(4x﹣1)=5(1﹣x);(2);(3).【解答】解:(1)2(x﹣4)﹣3(4x﹣1)=5(1﹣x),2x﹣8﹣12x+3=5﹣5x,2x﹣12x+5x=5+8﹣3,﹣5x=10,x=﹣2;(2),2(2x+1)﹣6=6x﹣(10x+1),4x+2﹣6=6x﹣10x﹣1,4x﹣6x+10x=﹣1﹣2+6,8x=3,x=;(3),﹣1=,15x﹣6=2(17﹣20x),15x﹣6=34﹣40x,15x+40x=34+6,55x=40,x=.50.解下列方程(1)(2)【解答】解:(1)去分母得:15x﹣10=8x+4﹣10,移项合并得:7x=4,解得:x=;(2)方程整理得:=1+,去分母得:1﹣20x=3+20x,移项合并得:40x=﹣2,解得:x=﹣.51.解方程(1)x=﹣1;(2)﹣=1.【解答】解:(1)去分母,可得:6x+2(1﹣x)=x+2﹣6,去括号,可得:6x+2﹣2x=x+2﹣6,移项,可得:6x﹣2x﹣x=2﹣6﹣2,合并同类项,可得:3x=﹣6,系数化为1,可得:x=﹣2.(2)∵﹣=1,∴﹣=1,去分母,可得:30x﹣7(17﹣20x)=21,去括号,可得:30x﹣119+140x=21,移项,可得:30x+140x=21+119,合并同类项,可得:170x=140,系数化为1,可得:x=.52.解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3);(2);(3).【解答】解:(1)3x﹣7(x﹣1)=3﹣2(x+3),去括号得:3x﹣7x+7=3﹣2x﹣6,移项得:3x﹣7x+2x=3﹣6﹣7,合并同类项得:﹣2x=﹣10,系数化为1得:x=5;(2),去分母得:2(1﹣2x)﹣18x=3(x﹣1)﹣18,去括号得:2﹣4x﹣18x=3x﹣3﹣18,移项得:2+3+18=3x+4x+18x,合并同类项得:25x=23,系数化为1得:x=;(3)﹣=x,分母化为整数得:﹣=x,去分母得:3(3x﹣5)﹣2(12﹣5x)=6x,去括号得:9x﹣15﹣24+10x=6x,移项得:9x+10x﹣6x=15+24,合并同类项得:13x=39,系数化为1得:x=3.53.解方程:(1)3x+=3﹣;(2)+2=.【解答】解:(1)3x+=3﹣,去分母得:18x+3(x﹣1)=18﹣2(2x﹣1),去括号得:18x+3x﹣3=18﹣4x+2,移项得:18x+3x+4x=18+3+2,合并同类项得:25x=23,系数化为1得:x=;(2)+2=化简得,去分母得:3(3x﹣4)+12=2(5x﹣2),去括号得:9x﹣12+12=10x﹣4,移项得:9x﹣10x=﹣4,合并同类项得:﹣x=﹣4,系数化为1得:x=4.54.解方程(1)4x+3(x﹣20)=8x﹣7(20﹣x)(2)﹣=1.【解答】解:(1)去括号得:4x+3x﹣60=8x﹣140+7x,移项合并得:8x=80,解得:x=10;(2)方程整理得:﹣=1,去分母得:30y﹣119+140y=21,解得:y=.55.解方程:﹣=.【解答】解:化简得:﹣=,去分母得:9(30x﹣15)﹣2(20x﹣10)=18(4﹣8x),去括号得:270x﹣135﹣40x+20=72﹣144x,移项合并同类项得:374x=187,系数化为1得:x=0.5.56.若3x+1的值比的值少1,求x的值.【解答】解:由题意,得,去分母,得6x+2=5x+1﹣2,移项合并,得x=﹣3.57.k取何值时,代数式值比的值小1.【解答】解:由题意得:﹣=﹣1,去分母得2(k+1)﹣3(3k+1)=﹣6,去括号得2k+2﹣9k﹣3=﹣6,移项、合并同类项得:﹣7k=﹣5,系数化1得:.58.当x为何值时,代数式的值与的值的和等于3?【解答】解:根据题意得:+=3,去分母得:6﹣3x+2x+2=18,移项合并得:﹣x=10,解得:x=﹣10.59.已知代数式与代数式.(1)当x为何值时,两个代数式的值相等?(2)当x为何值时,代数式的值比代数式的值大2?【解答】解:(1)根据题意列式为:,去分母得:3x=4(2﹣x),去括号得:3x=8﹣4x,移项、合并同类项,得:7x=8,系数化为1得:.(2)根据题意列式为:,去分母得:3x﹣4(2﹣x)=24,去括号得:3x﹣8+4x=24,移项、合并同类项得:7x=32,系数化为1得:.60.我们规定一种运算:=ad﹣bc,例如=3×6﹣4×5=﹣2,=4x+6,按照这种运算规定,当x等于多少时,=0.【解答】解:∵=ad﹣bc,∴(+1)×(﹣1)=(﹣2)x,解得:x=,故当x=时,=0.。
一元一次方程练习题基本题型:一、选择题:1、下列各式中是一元一次方程的是( ) A. y x -=-54121 B. 835-=--C. 3+xD.146534+=-+x x x 2、方程x x 231=+-的解是( ) A. 31- B. 31 C. 1 D. -13、若关于x 的方程m x 342=-的解满足方程m x =+2,则m 的值为( )A. 10B. 8C. 10-D. 8-4、下列根据等式的性质正确的是( )A. 由y x 3231=-,得y x 2=B. 由2223+=-x x ,得4=xC. 由x x 332=-,得3=xD. 由753=-x ,得573-=x5、解方程16110312=+-+x x 时,去分母后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x xC. 611024=--+x x C. 611024=+-+x x6、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( )A. 0.81a 元B. 1.21a 元C. 21.1a 元 D. 81.0a 元8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( )A.不赚不亏B.赚8元C.亏8元D. 赚8元9、下列方程中,是一元一次方程的是( )(A );342=-x x (B );0=x (C );12=+y x (D ).11xx =-10、方程212=-x 的解是( )(A );41-=x (B );4-=x (C );41=x (D ).4-=x11、已知等式523+=b a ,则下列等式中不一定...成立的是( ) (A );253b a =- (B );6213+=+b a(C );523+=bc ac (D ).3532+=b a12、方程042=-+a x 的解是2-=x ,则a 等于( )(A );8- (B );0 (C );2 (D ).813、解方程2631x x =+-,去分母,得( ) (A );331x x =-- (B );336x x =--(C );336x x =+- (D ).331x x =+-14、下列方程变形中,正确的是( )(A )方程1223+=-x x ,移项,得;2123+-=-x x(B )方程()1523--=-x x ,去括号,得;1523--=-x x(C )方程2332=t ,未知数系数化为1,得;1=x(D )方程15.02.01=--x x 化成.63=x 15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.(A )3年后; (B )3年前; (C )9年后; (D )不可能.16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为x ,则列出的方程正确的是( )(A );323x x -= (B )();3253x x -=(C )();3235x x -= (D ).326x x -=17、珊瑚中学修建综合楼后,剩有一块长比宽多5m 、周长为50m 的长方形空地. 为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是a 元,那么种植草皮至少需用( )(A )a 25元; (B )a 50元; (C )a 150元; (D )a 250元.18、赢行教育储蓄的年利率如右下表:小明现正读七年级,今年7月他父母为他在赢行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( )(A )直接存一个3年期;(B )先存一个1年期的,1年后将利息和自动转存一个2年期;(C )先存一个1年期的,1年后将利息和自动转存两个1年期;(D )先存一个2年期的,2年后将利息和自动转存一个1年期.二. 填空题:1、4|2|=x ,则=x ________.2、已知0)3(|4|2=-++-y y x ,则=+y x 2__________.3、关于x 的方程0)1(2=--a x 的解是3,则a 的值为________________.4、现有一个三位数,其个位数为a ,十位上的数字为b ,百位数上的数字为c ,则这个三位数表示为__________________.5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人.6、某数的3倍比它的一半大2,若设某数为y ,则列方程为____.7、当=x ___时,代数式24+x 与93-x 的值互为相反数.8、在公式()h b a s +=21中,已知4,3,16===h a s ,则=b ___.9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个数,请用一个等式表示d c b a ,,,之间的关系______________.10、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝.11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元.12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发__小时后两车相遇(沿途各车站的停留时间不计).13、都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟.14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元15、52辆车排成两队,每辆车长a 米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a =__________.三、解方程:1、4)1(2=-x2、11)121(21=--x 3、()()x x 2152831--=-- 4、23421=-++x x 5、1)23(2151=--x x 6、152+-=-x x 7、1835+=-x x 8、0262921=---x x 9、已知21=x 是方程32142m x m x -=--的根,求代数式()⎪⎭⎫ ⎝⎛---+-121824412m m m 的值. 四、列方程解应用题:1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果在7点追上.求敌军逃跑时的速度是多少?2、期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章. 已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴如果㈡班代表队最后得分142分,那么㈡班代表队回答对了多少道题?⑵㈠班代表队的最后得分能为145分吗?请简要说明理由.4、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢?6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?7、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?8、甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远?较高要求:1、已知431)119991(441=++x ,那么代数式19991999481872+⋅+x x 的值。
第三章《一元一次方程》测试卷(总分:120分 时间:120分钟)一、填空题(每题3分,共30分)1.关于x 的方程(k —1)x —3k=0是一元一次方程,则k_______. 2.方程6x+5=3x 的解是________.3.若x=3是方程2x —10=4a 的解,则a=______. 4.(1)—3x+2x=_______. (2)5m —m —8m=_______.5.一个两位数,十位数字是9,个位数比十位数字小a ,则该两位数为_______. 6.一个长方形周长为108cm ,长比宽2倍多6cm ,则长比宽大_______cm . 7.某服装成本为100元,定价比成本高20%,则利润为________元.8.某加工厂出米率为70%的稻谷加工大米,现要加工大米1000t ,设需要这种稻谷xt ,则列出的方程为______. 9.当m 值为______时,453m 的值为0. 10.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,•现我军以7千米/小时的速度追击______小时后可追上敌军. 二、选择题(每题3分,共30分) 11.下列说法中正确的是( )A .含有一个未知数的等式是一元一次方程B .未知数的次数都是1次的方程是一元一次方程C .含有一个未知数,并且未知数的次数都是一次的方程是一元一次方程D .2y —3=1是一元一次方程12.下列四组变形中,变形正确的是( )A .由5x+7=0得5x=—7B .由2x —3=0得2x —3+3=0C .由6x =2得x=13D .由5x=7得x=3513.下列各方程中,是一元一次方程的是( ) A .3x+2y=5 B .y 2-6y+5=0 C .13x-3=1xD .3x-2=4x-7 14.下列各组方程中,解相同的方程是( )A .x=3与4x+12=0B .x+1=2与(x+1)x=2xC .7x-6=25与715x -=6 D .x=9与x+9=0 15.一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲独做4小时,剩下的甲、乙合做,还需几小时?设剩下部分要x 小时完成,下列方程正确的是( )44.1.120201220201244.1.1202012202012x x x x A B x x x x C D =--=+-=++=-+16.(2006,江苏泰州)若关于x 的一元一次方程2332x k x k---=1的解为x=-1,则k 的值为( ) A .27 B .1 C .-1311D .0 17.一条公路甲队独修需24天,乙队需40天,若甲、•乙两队同时分别从两端开始修,( )天后可将全部修完.A .24B .40C .15D .16 18.解方程1432x x---=1去分母正确的是( ) A .2(x-1)—3(4x —1)=1 B .2x-1—12+x=1 C .2(x —1)—3(4—x )=6 D .2x-2—12—3x=619.某人从甲地到乙地,水路比公路近40千米,但乘轮船比汽车要多用3小时,•已知轮船速度为24千米/时,汽车速度为40千米/时,则水路和公路的长分别为( ) A .280千米,240千米 B .240千米,280千米 C .200千米,240千米 D .160千米,200千米20.一组学生去春游,预计共需用120元,后来又有2人参加进来,总费用降下来,•于是每人可少摊3元,设原来这组学生人数为x 人,则有方程为( ) A . 120x=(x+2)x B .1202x x =+ 120120120120.3.322C D x x x x-==+++ 三、解方程(共28分) 21.(1)53—6x=—72x+1; (5分) (2)y-12(y —1)=23(y-1); (5分) (3)34 [43(12x —14)-8]= 32x+1;(5分) (4)0.20.110.30.2x x -+-=。
人教版七年级上册数学第三章一元一次方程单元复习试卷一.选择题1.施大叔在一次买卖中均以120元卖出两件衣服,一件赚20%,一件赔20%,在这次交易中施大叔()A.赔了10元B.赚了10元C.不赔不赚D.赔了8元2.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为()元.A.110B.120C.130D.1403.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家()A.亏损8元B.赚了12元C.亏损了12元D.不亏不损4.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.5.“双十一”期间,某电商决定对网上销售的某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利21元,则这种服装每件的成本是()A.160元B.165元C.170元D.175元6.中国总理李克强2020年6月1日考察山东时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.市场、企业、个体工商户活起来,生存下去,再发展起来,国家才能更好!为了响应党中央、国务院的号召,各地有序开放了“地摊经济”、“马路经济”,长沙某地摊摊主将进价为10元的小商品提价100%后再6折销售,该小商品的利润率()A.40%B.20%C.60%D.30%7.某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如表:会员卡类型办卡费用/元有效期优惠方式A类401年每杯打九折B类801年每杯打八折C类1301年一次性购买2杯,第二杯半价例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A.购买A类会员卡B.购买B类会员卡C.购买C类会员卡D.不购买会员卡8.商店将进价2400元的彩电标价3600元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为()A.九折B.八五折C.八折D.七五折二.填空题9.如图所示,甲、乙两人沿着边长为10m的正方形,按A→B→C→D→A…的方向行走,甲从A点以5m/分钟的速度,乙从B点以8m/分钟的速度行走,两人同时出发,当甲、乙第20次相遇时,它们在边上.10.一件服装标价200元,以6折销售,可获利20%,这件服装的进价是元.11.一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是千米/时.12.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.13.如图,点A、O、B都在直线MN上,射线OA绕点O按顺时针方向以每秒4°的速度旋转,同时射线OB绕点O按逆时针方向以每秒6°的速度旋转(当其中一条射线与直线MN叠合时,两条射线停止旋转).经过秒,∠AOB的大小恰好是60°.14.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲,乙一起做,则需天完成.三.解答题15.以下是两张不同类型火车的车票(“DXXXX次”表示动车,“DXXXX次”表示高铁):(1)根据车票中的信息填空:该列动车和高铁是向而行(填“相”或“同”).(2)已知该动车和高铁的平均速度分别为200km/h,300km/h,两列火车的长度不计.经过测算,如果两列火车直达终点(即中途都不停靠任何站点),高铁比动车将早到2h.求A、B两地之间的距离.。
中考数学专题复习《一元一次方程》测试卷(附参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(每题3分,共18分)1. (2023·温州中考)解方程-2(2x +1)=x,以下去括号正确的是( )A.-4x +1=-xB.-4x +2=-xC.-4x -1=xD.-4x -2=x 2. (2023·河北唐山·三模)已知2×m=1,则m 表示数( ) A.12B.-12C.2D.-23. (2023·河北廊坊)已知2a=3b,且a ≠0,则ba=( ) A.23 B.32 C.-23 D.-324. (2023七上·盐都月考)在方程①3x+y =4,②2x-x1=5,③3y+2=2-y,④2x 2-5x+6=2(x 2+3x)中,是一元一次方程的个数为( ) A.1个 B.2个 C.3个 D.4个 5. (2023·南充)端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x 元,则可列方程为( )A.10x +5(x -1)=70B.10x +5(x +1)=70C.10(x -1)+5x =70D.10(x +1)+5x =70 6. (2023湖南长沙模拟)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A.2×1000(26﹣x)=800x;B.1000(13﹣x)=800x;C.1000(26﹣x)=2×800x;D.1000(26﹣x)=800x7. (2023•永康市模拟)明代程大位的《算法统宗》记载这样一首打油诗: 《李白沽酒》无事街上走,提壶去买酒.遇店加一倍,见花喝一斗. 三遇花和店,喝光壶中酒.就问此壶中,原有多少酒?李白出门遇到花和店各三次,且花、店交替遇到,则此打油诗答案为( ) A.34斗 B.78斗 C.98斗 D.118斗 8. (2023·杭州)某景点今年四月接待游客25万人次,五月接待游客60.5万人次.设该景点今年四月到五月接待游客人次的增长率为x(x >0),则( )A.60.5(1-x)=25B.25(1-x)=60.5C.60.5(1+x)=25D.25(1+x)=60.5 9. (2023七上·乐清)如图,在11月的日历表中用框数器框出3,5,11,17,19五个数,它们的和为55,若将在图中换个位置框出五个数,则它们的和可能是( )A.40B.88C.107D.11010. (2023七上·东莞)下列说法中,不正确的个数是( ) ①若a+b =0,则有a,b 互为相反数,且ba=-1;②若|a|>|b|,则有(a+b)(a-b)是正数;③三个五次多项式的和也是五次多项式;④a+b+c <0,abc >0,则|abc |abc|ac |ac |bc |bc |ab |ab -+-的结果有三个;⑤方程ax+b =0(a,b 为常数)是关于x 的一元一次方程. A.1个 B.2个 C.3个 D.4个 二、填空题(每题3分,共30分)11. (2023·重庆中考B 卷)方程2(x -3)=6的解是____. 12. (2023·贵州贵阳)已知方程2x-4=0,则x=______. 13. (2023·贵州铜仁)方程3x-6=-6的解是_______.14. (2023七上·温州)若|△-3|=1,则“△”所表示的数为 .15. (2023·枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为 . 16. (2023•绍兴)有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是 元.17. (2023·陕西)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价. 18. (2023•牡丹江)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打 折.三、解答题(第17—20题每题10分,第21题12分,共52分) 19. (2023秋•金安区校级期中)如果关于x 的方程8的解与方程4x ﹣(3a+1)=6x+2a ﹣1的解相同,求a 的值.20. (2023春•碑林区校级月考)已知关于y 的方程的解比关于x 的方程3a-x3的解小3,求a 的值.21. (2023·台州)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.22. (2023秋•九龙县期末)一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是60千米/小时,卡车的行驶速度是40千米/小时,客车比卡车早2小时经过B 地,A、B两地间的路程是多少千米?23. (2023•泸州)某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?24. (2023秋•吉林期末)《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?答案一、选择题(每题3分,共18分)1. D2. A3. A4. B5. A6. C【解析】题目已经设出安排x 名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.由题意得 1000(26﹣x)=2×800x,故C 答案正确。
七年级数学上册3.1.1一元一次方程一.选择1.下列各式中,不是方程的是 ( )A.2x+3y=1B.-x+y=4C.3π+4≠5D.x=82.下列各式中:①2x -1=5;②4+8= 12;③5y+8;④2x+3y=0;⑤2x ²+x=1;⑥2x ²- 5x -1;⑦lxl+1=2;⑧=6y -9.是方程的是 ( )A.①②④⑤⑧B.①②⑤⑦⑧C.①④⑤⑦⑧D.8个都是3.下列各式中,是一元一次方程的是( )A.3x -2y=5B.8x -5C.4x ²=9D.3x+8=24.已知关于x 的方程(m -2)x -3=0是一元一次方程,则m 的值是() A.2B.0C.1D .0或25.小邱解了一道方程,其解为x=2,他解的方程是 ( )A.x+2=0B.2+3x=8C.3x -1=2D.4-2x=16.小华想找一个解是x=2的方程,那么他会选择( )A .3x+6=0B .C .5-3x=1D.3(x -1)= x+17.若关于x 的方程2x -a =x -2的解为x=3,则字母a 的值为 ( )A .-5B .5C .-7D .78.若(m -1)x =6是关于x 的一元一次方程,则m 等于 ( ) y 61m -2x 32=3m 2-A.1B.2C.1或2D.任何数9.下列方程是一元一次方程的是 ( )A .2x+5=B .3x -2y=6C .=5 -xD.x ²+2x=010.下列方程的解是x=2的是 ( )A.4x+8 =0B .C.D.1-3x= 511.已知关于x 的一元一次方程2(x -1)+3a=3的解为4,则a 的值是 ( )A.-1B.1C.-2D.-312.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%,设把并公顷沙漠改造为绿洲,则可列方程为 ( )A.54+x= 80%×108B.54+x= 80%(108-x)C.54-x= 80%(108+x)D.108 -x= 80%(54+x)二.填空1.已知mx ²+( m+1)²=1是关于x 的一元一次方程,则m=____.2.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少.设到瑞金的人数为x ,请列出满足题意的一元一次方程:___________.3.3年前,父亲的年龄是儿子年龄的4倍,3年后,父亲的年龄是儿子年龄的3倍,求父亲和儿子今年各多少岁.设3年前,儿子的年龄为x 岁,则可列方程为___________.4.某次世界杯足球赛前,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5 800元,其中小组赛球票每张550元,淘汰赛球票每张700元,设小李预定了小组赛球票x 张,根据题意列方程为____________________________________________.5.已知关于x 的方程2x+a -5=0的解是x=2,则a 的值为_________________.x 12x032x 31=+-2x 32=6.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之?意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x 天可追上慢马,则由题意可列方程为____.三.按要求做题1.下列方程后面括号内的哪个数是方程的解?为什么?(1); (2).2.根据下列题干设未知数并列方程,然后判断它是不是一元一次方程.(1)从60 cm 长的木条上截去两段同样长的木条,还剩下10 cm 长的木条,截下的每段木条的长为多少厘米?(2)小红对小敏说:“我是6月份出生的,我的年龄的2倍加上10,正好是我出生的那个月的总天数,你猜我几岁?”3.若方程(lml -2)x ²-(m+2)x -6=0是关于x 的一元一次方程.(1)求m 的值:(2)判断x=3,,是不是方程的解.4.请你先阅读下面的对话,再解决后面的问题,小红说:“我手里有四张卡片,分别写有8,3x+2,,.”小丽说:“我用等号将这四张卡片中的任意两张卡片上的数或式子连接起来,就会得到等式.”(1)小丽一共能写出几个等式?(2)在她写的这些等式中,有几个一元一次方程?请写出这几个一元一次方程.5.某通讯公司推出两种手机付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元月租费,每通话1分钟付费0.10元.两种方式不足1分钟均按1分钟计算.(1)如果一个月通话x 分钟,那么用甲种方式应付话费多少元?用乙种方式应付话费多少元?(2)如果求一个月通话多少分钟时两种方式的费用相同,可以列出一个怎样的方程?它是一元一次方程吗?答案:一.1.C 含有未知数的等式是方程,C 选项中,可不是未知数,式子也不是等式.2.C 根据方程的概念判断,①④⑤⑦⑧是方程.3.D 选项A 中含有2个未知数,故选项A 不符合题意;选项B 不是等式,故选项B 不符合题意;选项C 巾未知数的最高次数是2次,故选项C 不符合题意.选D .23x -=23x =3x 21-x 14.B 根据一元一次方程的定义,得Im -1I =1且m -2≠0,解得m=0.故选B .5.B 把x=2代入各选项中的方程检验,可知只有B 选项中的方程符合题意,故选B .6.D 把x=2代入各方程中,只有选项D 中方程等号的左右两边相等,故选D7.B 将x=3代入方程2x -a=x -2,得2x3-a= 3-2,即6-a=1,解得a=5.8.B ∵(m -1)X =6是关于x 的一元一次方程.∴I2m -3I= l,m -1≠0.解得m=2.故选B .9.C 选项A ,分母中含有未知数,故A 小是一无一次方程;选项B 中含有两个未知数,故B 不是一元一次方程;选项D 中未知数的最高次数是2,故D 不是一元一次方程,故选C .10.B11.A 将x=4代入原方程,得2x (4-1)+3a=3,解得a= -1.故选A .12.B 根据题意,x 公顷的沙漠改造为绿洲后,沙漠面积是(108-x)公顷,绿洲面积是(54+x)公顷,再根据“绿洲面积占沙漠面积的80%”列方程为54+x= 80%(108-x ).二.1.答案0解析因为mx ²+(m+1)x=1是关于x 的一元一次方程,所以m=0且m+1≠0,所以m=0.2.答案x+2x+1= 34解析 根据“到井冈山的人数是到瑞金的人数的2倍多1人”可知到井山的人数是2x+1,根据“到井冈山的人数+到瑞金的人数= 34”可列方程为x+2x+1= 34.3.答案 4x+6=3(x+6)解析 ∵3年前父亲的年龄是儿子年龄的4倍,3年前儿子的年龄为x 岁,∴3年前父亲的年龄为4x 岁,又∵3年后父亲的年龄是儿子年龄的3倍.∴3年后父亲的年龄为3(x+6)岁,∴可列方程为4x+6=3(x+6).4.答案550x+700( 10-x)=5 800解析 因为小李预定了小组赛球票x 张,所以预定了淘汰赛球票(10-x )张,根据题意列方程为550x+700( 10-x)=5 800.5.答案1解析将x=2代入方程,得4+a -5=0,所以a=1.6.答案240x =150x+12x150解析 根据题意可列方程为240x= 150x+12x150.三.1.解析(1)x=-2是方程的解.理由:当x=-2时,2x -1= 2x (-2)-1=-5,×(-2)-4=-5,这时方程等号左右两边相等,(2)x=-12是方程的解,理由:当x= - 12时,,,这时方程等号左右两边相等.2.解析 (1)设截下的每段木条的长为x cm ,由题意得60- 2x=10,是一元一次方程.(2)设小红x 岁,由题意得2x+10= 30,是一元一次方程3.解析 (1)由题意可知Iml -2=0且m+2≠0,所以m=2.(2)由(1)可知方程为-4x -6=0,把一=3代人方程,因为左边=-4x3-6=-18,右边=0,所以左边≠右边,3m 2-211x 21=-6)12(21x 21-=-⨯=62)12(322x 32-=+-⨯=+所以x=3不是方程的解.把代入方程,因为左边,右边=0,所以左边:右边,所以足方程的解.把x=÷代人方程,因为左边,右边=0,所以左边≠右边,所以不是方程的解. 4.解析(1)6个.(2)有3个一元一次方程,分别是3x+2=8,-3=8,3x+2=-3. 5.解析(1)甲种方式应付话费0.15x 元,乙种方式应付话费(1 8+0. 10x )元.(2)0.15x=18+0.10x (x 代表所求通话分钟数),是一元一次方程.23x -=06234=--⨯-=)(23x -=126234-=-⨯-=23x =x 21x 21。
第4章一元一次方程(压轴必刷30题3种题型专项训练)一.一元一次方程的解(共2小题)1.(2022秋•启东市校级月考)我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上述规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.2.(2022秋•宿城区期中)我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上边规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程6x=m+2是差解方程,求m的值.二.解一元一次方程(共3小题)3.(2021秋•高新区期末)用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab+a.如:1*3=1×32+2×1×3+1=16(1)求2*(﹣2)的值;(2)若(其中x为有理数),试比较m,n的大小;(3)若=a+4,求a的值.4.(2022秋•工业园区校级月考)如图,小明在一张纸面上画了一条数轴,折叠纸面,使表示数﹣1的点与表示数5的点重合,请你回答以下问题:(1)表示数﹣2的点与表示数的点重合;表示数7的点与表示数的点重合.(2)若数轴上点A在点B的左侧,A,B两点之间的距离为12,且A,B两点按小明的方法折叠后重合,则点A表示的数是;点B表示的数是;(3)已知数轴上的点M分别到(2)中A,B两点的距离之和为2022,求点M表示的数是多少?5.(2021秋•溧阳市期末)阅读理解学:我们都应该知道,任何无限循环小数都应该属于有理数,那是因为所有无限循环小数都可以化成分数形式,而分数属于有理数.那么无限循环小数怎么化成分数呢?下面的学习材料会告诉我们原因和方法:问题:利用一元一次方程将0.化成分数.设0.=x.由0.=0.7777…,可知10×0.=7777…=7+0.7777…=7+0.,即10x=7+x.可解得,即0.=.(1)将0.直接写成分数形式为.(2)请仿照上述方法把下列小数化成分数,要求写出利用一元一次方程进行解答的过程.①0.;②0.1.三.一元一次方程的应用(共25小题)6.(2022秋•高新区期末)甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.(1)问甲、乙两个旅行团的人数各是多少?(2)若乙团中儿童人数恰为甲团中儿童人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?7.(2022秋•兴化市校级期末)甲、乙两班学生到集市上购买苹果,苹果的价格如表:50千克以上购买苹果数不超过30千克30千克以上但不超过50千克每千克价格3元 2.5元2元甲班分两次共购买苹果80千克(第二次多于第一次),共付出185元,乙班则一次购买苹果80千克.(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少千克?8.(2023秋•海门市校级月考)已知A、B、C三点在同一条数轴上,点A、B表示的数分别为﹣2,18,点C在原点右侧,且AC=AB.(1)A、B两点相距个单位;(2)求点C表示的数;(3)点P、Q是该数轴上的两个动点,点P从点A出发,沿数轴以每秒1个单位的速度向右运动,点Q 从点B出发,沿数轴以每秒2个单位的速度向左运动,它们同时出发,运动时间为t秒,求当t为何值时,P、Q两点到C点的距离相等?9.(2022秋•建邺区校级期末)扬子江药业集团生产的某种药品的长方体包装盒的侧面展开图如图所示.根据图中数据,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.10.(2023秋•滨海县月考)生活与数学日一二三四五六12345678910111213141516171819202122232425262728293031(1)山姆同学在某月的日历上圈出2×2个数,如图1,正方形的方框内的四个数的和是48,那么这四个数是.(2)小丽也在上面的日历上圈出2×2个数,如图2,斜框内的四个数的和是46,则它们分别是.(3)刘莉也在日历上圈出5个数,呈十字框形,如图3,它们的和是55,则中间的数是.(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号?11.(2022秋•兴化市校级月考)结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是.②数轴上表示﹣1和﹣5的两点之间的距离是.③数轴上表示﹣3和4的两点之间的距离是.(2)归纳:一般的,数轴上表示数a和数b的两点之间的距离等于.(3)应用:①若数轴上表示数a的点位于﹣4与3之间,则|a+4|+|a﹣3|的值=.②若a表示数轴上的一个有理数,且|a﹣1|=|a+3|,则a=.③若a表示数轴上的一个有理数,|a﹣1|+|a+2|的最小值是.④若a表示数轴上的一个有理数,且|a+3|+|a﹣5|>8,则有理数a的取值范围是.(4)拓展:已知,如图2,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.若当电子蚂蚁P 从A点出发,以4个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3单位/秒的速度向左运动,求经过多长时间两只电子蚂蚁在数轴上相距20个单位长度,并写出此时点P所表示的数.12.(2022秋•海安市月考)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|+(b﹣16)2=0.(1)求此时刻快车头A与慢车头C之间相距单位长度;(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD 为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.13.(2022秋•淮阴区期中)据电力部门统计,每天8:00至21:00是用电高峰期,简称“峰时”,21:00至次日8:00是用电低谷期,简称“谷时”.为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表: 时间换表前换表后峰时(8:00﹣21:00)谷时(21:00﹣8:00)电价每度0.52元每度0.55元每度0.30元小明家对换表后最初使用的95度电进行测算,经测算比换表前使用95度电节约了5.9元,问小明家使用“峰时”电和“谷时”电分别是多少度?14.(2022秋•姜堰区期中)阅读理解:M 、N 、P 为数轴上三点,若点P 到M 的距离是点P 到N 的距离的k (k >0)倍,即满足PM =k .PN 时,则称点P 关于M 、N 的“相对关系值”为k .例如,当点M 、N 、P 表示的数分别为0、2、3时,PM =3PN ,则称点P 关于M 、N 的“相对关系值”为3;PN =MN ,则称点N 关于P 、M 的“相对关系值”为.如图,点A 、B 、C 、D 在数轴上,它们所表示的数分别为﹣1、2、6、﹣6.(1)原点O 关于A 、B 的“相对关系值“为a ,原点O 关于B 、A 的“相对关系值”为b ,则a = ,b = .(2)点E 为数轴上一动点,点E 所表示的数为x ,若x 满足|x +3|+|x ﹣2|=5,且点E 关于C 、D 的“相对关系值”为k ,则k 的取值范围是 .(3)点F 从点B 出发,以每秒1个单位的速度向左运动,设运动时间为t (t >0)秒,当经过t 秒时,C 、D 、F 三点中恰有一个点关于另外两点的“相对关系值”为2,求t 的值.15.(2022秋•苏州期中)【问题背景】落实“双减”政策后,某校开展了丰富多彩的科技活动.如图1,电子蚂蚁P 、Q 在长18分米的赛道AB 上同时相向匀速运动,电子蚂蚁P 从A 出发,速度为4分米/分钟,电子蚂蚁Q从B出发,速度为2分米/分钟,当电子蚂蚁P到达B时,电子蚂蚁P,Q停止运动.经过几分钟P,Q之间相距6分米?【问题解决】小辰同学在学习《有理数》之后,发现运用数形结合的方法建立数轴可以较快地解决上述问题:如图2,将点A与数轴的原点O重合,点B落在正半轴上.设运动的时间为t(0≤t≤4.5).(1)t分钟后点P在数轴上对应的数是;点Q对应的数是;(用含t的代数式表示)(2)我们知道,如果数轴上M,N两点分别对应数m,n,则MN=|m﹣n|.试运用该方法求经过几分钟P,Q之间相距6分米?(3)在赛道AB上有一个标记位置C,AC=6.若电子蚂蚁P与标记位置C之间的距离为a,电子蚂蚁Q与B之间的距离为b.在运动过程中,是否存在某一时刻t,使得a+b=4?若存在,请求出运动的时间;若不存在,请说明理由.16.(2022秋•海陵区校级月考)阅读理解,完成下列各题:定义:已知A、B、C为数轴上任意三点,若点C到点A的距离是它到点B的距离的3倍,则称点C是[A,B]的3倍点,例如:如图1,点C是[A,B]的3倍点,点D不是[A,B]的3倍点,但点D是[B,A]的3倍点,根据这个定义解决下面问题:(1)在图1中,点A[C,D]的3倍点(填写“是”或“不是”);[D,C]的3倍点是点(填写A或B或C或D);(2)如图2,M、N为数轴上两点,点M表示的数是﹣3,点N表示的数是5,若点E是[M,N]的3倍点,则点E表示的数是;(3)若P、Q为数轴上两点,点P在点Q的左侧,PQ=a,一动点H从点P出发,以每秒3个单位长度的速度沿数轴向右运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的3倍点?(用含a的代数式表示)17.(2022秋•昆山市校级月考)如图所示,将连续的奇数1,3,5,7…排列成如下的数表,用十字形框框出5个数.探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为,这说明被十字框框中的五个奇数的和一定是正整数p(p>1)的倍数,这个正整数p是.探究规律二:落在十字框中间且位于第二列的一组奇数是15,27,39…,则这一组数可以用整式表示为12m+3 (m为正整数),同样,落在十字框中间且位于第三列的一组奇数可以表示为;(用含m的式子表示)运用规律(1)被十字框框中的五个奇数的和可能是625吗?若能,请求出这五个数,若不能,请说明理由.(2)请问(1)中的十字框中间的奇数落在第几行第几列?18.(2022秋•广陵区校级月考)从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?19.(2022秋•江都区月考)某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.20.(2023秋•锡山区期中)如图,数轴上有A、B、C、D四点,点D对应的数为x,已知OA=5,OB=3,CD=2,P、Q两点同时从原点O出发,沿着数轴正方向分别以每秒钟a和b个单位长度的速度运动,且a<b.点Q到点D后立即朝数轴的负方向运动,速度不变,在点C处与点P相遇,相遇后点P也立即朝着数轴的负方向运动,且P点的速度变为2a,Q点的速度不变.(1)P、Q两点相遇时,点P前进的路程为;Q、P两点相遇前的速度比=;(用含有x的式子表示)(2)若点B为线段AD的中点,①此时,点D表示的数x=;②相遇后,当点P到达点A处时,点Q在原点O的(填“左”或“右”)侧,并求出此时点Q在数轴上所表示的数字;(3)在(2)的条件下,当点P到达点A处时,立即掉头朝数轴的正方向运动,速度变为3a,点Q的速度始终不变,这两点在点M处第二次相遇,则点M在数轴上所表示的数字为.21.(2023秋•沭阳县校级月考)探索规律:将连续的偶2,4,6,8,…,排成如图:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.22.(2021秋•姑苏区校级期末)为增强公民节水意识,合理利用水资源,某市采用“阶梯收费”,标准如下表:用水量单价不超过6m3的部分2元/m3超过6m3不超过10m3的部分4元/m3超出10m3的部分8元/m3譬如:某用户2月份用水9m3,则应缴水费:2×6+4×(9﹣6)=24(元)(1)某用户3月用水15m3应缴水费多少元?(2)已知某用户4月份缴水费20元,求该用户4月份的用水量;(3)如果该用户5、6月份共用水20m3(6月份用水量超过5月份用水量),共交水费64元,则该户居民5、6月份各用水多少立方米?23.(2021秋•惠山区期末)【探索新知】如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;(填“=”或“≠”)【深入研究】如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.(4)在图2中,若点D在射线OC上,且线段CD与图中以O、C、D中某两点为端点的线段互为圆周率伴侣线段,直接写出D点所表示的数.24.(2022秋•江都区校级月考)元旦期间,某商场打出促销广告(如下表)优惠条件一次性购物不超过200元一次性购物超过200元但不超过一次性购物超过500元500元优惠办法无优惠全部按9折优惠其中500元仍按9折优惠,超过500元部分按8折优惠小明妈妈第一次购物用了134元,第二次购物用了490元.(1)小明妈妈第一次所购物品的原价是元;(2)小明妈妈第二次所购物品的原价是多少元?(写出解答过程)(3)若小明妈妈将两次购买的物品一次性买清,可比两次购买节省多少元?25.(2022秋•梁溪区校级月考)在数轴上A点表示数a,B点表示数b,且a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为;点B表示的数为;(2)如果M、N为数轴上两个动点,点M从点A出发,速度为每秒1个单位长度;点N从点B出发,速度为点A的3倍,它们同时向左运动,点O为原点.当运动2秒时,点M、N对应的数分别是、.当运动t秒时,点M、N对应的数分别是、.(用含t的式子表示)运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)26.(2022秋•兴化市校级月考)如图,已知A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为80.(1)请直接写出AB的中点M对应的数;(2)现在有一只电子蚂蚁P从A点出发,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C点相遇,请求出C点对应的数是多少;(3)若当电子蚂蚁P从A点出发时,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B 点出发,以3个单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距25个单位长度?27.(2022秋•昆山市校级月考)在购买足球赛门票时,设购买门票张数为x(张),现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位购买门票的价格为60元(总费用=广告赞助费+门票费).方案二:若购买的门票数不超过100张,每张100元,若所购门票超过100张,则超出部分按八折计算.解答下列问题:(1)方案一中,用含x的代数式来表示总费用为.方案二中,当购买的门票数x不超过100张时,用含x的代数式来表示总费用为.当所购门票数x超过100张时,用含x 的代数式来表示总费用为.(2)甲、乙两单位分别采用方案一、方案二购买本次足球赛门票,合计700张,花去的总费用计58000元,求甲、乙两单位各购买门票多少张?28.(2021秋•江都区期中)把2100个连续的正整数1、2、3、…、2100,按如图方式排成一个数表,如图用一个正方形框在表中任意框住4个数,设左上角的数为x.(1)另外三个数用含x的式子表示出来,从小到大排列是;(2)被框住4个数的和为416时,x值为多少?(3)能否框住四个数和为324?若能,求出x值,若不能,说明理由;(4)从左到右,第1至第7列各数之和分别为a1、a2、a3、a4、a5、a6、a7,求7个数中最大的数与最小的数之差.29.(2021秋•秦淮区期中)生活与数学:(1)吉姆同学在某月的日历上圈出2×2个数,正方形的方框内的四个数的和是32,那么第一个数是;(2)玛丽也在日历上圈出2×2个数,斜框内的四个数的和是42,则它们分别是;(3)莉莉也在日历上圈出5个数,呈十字框形,它们的和是50,则中间的数是;(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号;(5)若干个偶数按每行8个数排成图4:①图中方框内的9个数的和与中间的数有什么关系:;②汤姆所画的斜框内9个数的和为360,则斜框的中间一个数是;③托马斯也画了一个斜框,斜框内9个数的和为252,则斜框的中间一个数是.30.(2021秋•洪泽区校级月考)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.。
第一学期七年级数学期末复习专题一元一次方程姓名:_______________班级:_______________得分:_______________一选择题:1.若是一元一次方程,则m的值为 ( )A.±2B.-2C.2D.42.下列解方程过程中,变形正确的是()(A)由2x-1=3,得2x=3-1 (B)由2x-3(x+4) =5, 得2x-3x-4=5 (C)由-75x=76,得x=-(D)由2x-(x-1)=1,得2x-x=03.若x=-3是方程2(x-m)=6的解,则m的值为()A.6B.-6C.12D.-124.已知x=3是关于x的方程x+m=2x-1的解,则(m+1)2的值是( )A.1B.9C.0D.45.若|m|=3,|n|=7,且m﹣n>0,则m+n的值是()A.10B.4C.﹣10或﹣4D.4或﹣46.某企业 2015 年 1 月份生产产值为 a 万元,2 月份比 1 月份减少了 20%,3 月份比 2 月份增加了25%,则 3 月份的生产产值是()A.(a﹣20%)(a+25%)万元B.a(1﹣20%+25%)万元C.(a﹣20%+25%)万元D.a(1﹣20%)(1+25%)万元7.把方程3x+=3-去分母,正确的是( )A. B.C. D.8.把方程中的分母化为整数,正确的是()A. B.C. D.9.已知方程的解满足,则的值是()A. B. C.或 D.任何数10.关于 x 的方程 5x﹣a=0 的解比关于 y 的方程 3y+a=0 的解小 2,则 a 的值是()A. B.﹣ C. D.﹣11.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次打7折,现售价为b元,则原售价为()A. B. C. D.12.如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,……第2013次输出的结果为()A.3B.6C.4D.113.一列火车长m米,以每秒n米的速度通过一个长为p米的桥洞,用代数式表示它刚好全部通过桥洞所需的时间为()A.秒B.秒C.秒D.秒14.三个连续正整数的和不大于15,则符合条件的正整数有()A.2组B.4组C.8组D.12组15.方程|x+1|+|x-3|=4的整数解有( )(A)2个 (B)3个 (C)5个 (D)无穷多个16.足球比赛的积分规则为胜一场得3分,平一场得1分,负一场得0分.一个球队打了14场,负5场,共得19分,那么这个球队胜了()A.3场B.4场C.5场D.6场17.按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A.1种B.2种C.3种D.4种18.某商场卖出两个进价不同的手机,都卖了1200元,其中一个盈利50%,另一个亏本20%,在这次买卖中,这家商场()A.不赔不赚B.赔100元C.赚100元D.赚360元19.用绳子量井深:把绳子三折来量,井外余4尺;把绳子四折来量,井外余1尺,则井深和绳长分别是().(A)8尺,36尺(B)3尺,13尺(C)10尺,34尺(D)11尺,37尺20.如图,甲乙两人同时沿着边长为30米的等边三角形,按逆时针的方向行走,甲从A以65米/分的速度,乙从B以71米/分的速度行走,当乙第一次追上甲时在等边三角形的()A.AB边上B.点B处C.BC边上D.AC边上二填空题:21.如果x2m﹣1+8=0是一元一次方程,则m= .22.若(m-2)x=5是一元一次方程,则m的值为23.兰兰同学买了铅笔m支,每支0.8元,买了练习本n本每本2元,则她买铅笔和练习本一共花费了元.24.一件服装进价200元,按标价的8折销售,仍可获利10%,该服装的标价是元.25.若一个两位数的个位数字是x,十位数字比个位数字少1,则这个两位数是。
一元一次方程复习试卷
一、填空
1、下列方程中,是一元一次方程的是 A.
112x -= B.210x -= C.23x y -= D.132
x -= 2、若2-是关于x 的方程a x x -=+243的解,则._________1100100=-a
a 3、若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是 . 4、若关于x 的方程1(2)510k k x k --++=是一元一次方程,则k =___ , x =_____。
5、已知:()2
135m --有最大值,则方程5432m x -=+的解是 .
6、x = 3和x = -6中,_________________是方程x-3(x+2)=6的解。
7、若x=3是方程3(x –a )= 7的解,则a=_________ 。
8、代数式
3
2k --1的值是1,则k=_________。
9、当x= _____时,代数式 21x -与1—3
1+x 的值相等。
10、“5与x 的差的31比x 的2倍大1 ”可列方程为_____________________________________。
11、当x = 时,代数式
13x -比x +12的值大-3. 12、若关于x 的一元一次方程23132
x k x k ---=的解是x =-1,则k 的值为 . 13、.当k = 时,单项式3(41)22k x y -与213
xy 的和仍是单项式. 14、若4a - 9与3a - 9互为相反数,则a 2- 2a + 1的值为________________。
15、方程23(1)0x -+=的解与关于x 的方程
3222k x k x +--=的解互为倒数,则k 的值为 16、解方程20.250.1x 0.10.030.02
x -+=时,把分母化为整数,得 17、已知关于x 的方程x a x x 4)3(23=⎥⎦⎤⎢⎣
⎡--和1851123=--+x a x 有相同的解,那么这个解是 18、一项一程甲独做要m 天完成,乙独做比甲多3天才能完成,甲、乙二人合做需要________天完成。
19、解方程132
x -=,则x = __________. 20、甲水池有水31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,x 小时后,乙池有水________吨,甲池有水______吨,__________小时后,两水池的水一样多。
21、m 为正整数,关于x 的方程2x + 5m = 17的正整数解是_______________。
二、选择题。
1、下列等式变形正确的是( )
A 、如果S =21ab,那么b = a S 2.
B 、21x = 6,那么x = 3.
C 、x – 3 = y - 3,那么x – y = 0.
D 、如果mx = my,那么x = y.
2、以 -2 为根的方程是( )
A 、x – 2 = 43
(1 - x) B 、32
+x = x – 2
C 、0.5x + 1=2(x-1) + 6
D 、x 2 - 1 = x – 1
3、下列去括号正确的是( )
A 、-2(x - 3) = -2x + 3
B 、3 - 5(2x + 3) = 3 - 10x + 15
C 、-3(m - 2)-7 = -3m + 6 + 7
D 、5x - 6(x + 2) = 5x - 6x – 12
4、当x=-3时 ,二次三项式-3x 2+ax -7的值是-19,则当x=-1时,这个代数式的值是( )
A . 5
B . -5
C . -2
D . 2
5、若规定两数m 、n 通过*运算,得到m+2n ,例如3*5=3+2×5=13,则4*(2x+1)=x 中x 的值是(
) A . -2 B .2 C . 6
5- D .6
5-
6、下列去分母正确的是( )
A 、方程31+x +21
-x
= 1可化为2(x+1)+ 3(x -1) = 1
B 、方程31
+x - 21
-x = 1可化为3(x+1)- 2(x -1) = 1
C 、方程31
+x - 21
-x = 1可化为3(x+1)- 2(x -1) = 6
D 、方程31+x - 61
-
x = 21
-x 可化为2(x+1)-x + 1 = 3(x -1)
7、把方程0.2
0.31
10.30.5x x ---=中分子、分母中的小数化为整数,结果正确的是( )
A. 231135x x ---=
B. 2311035x x ---=
C. 102
310
135x x -
--= D. 1023101035x x ---=
8、关于x 的方程mx +3=2(x ﹣m )的解满足∣x ﹣2∣﹣3=0,则m 的值为( )
A.﹣5
B. 1
C. 5或﹣1
D. ﹣5或1
9、关于x 的方程ax +3=4x +1的解是正整数,则a 的值为( )
A.2
B. 3
C. 1或2
D. 2或3
10、关于x 的方程(2k - 1)x 2-(2k + 1)x + 3 = 0是一元一次方程,则k 的值是( )
A 、21
. B 、1. C 、0. D 、2.
11、与方程4x = 5x -2 的解相同的方程是( )
A 、2x = x + 2
B 、x + 2 = 0
C 、2x + 3 = 5
D 、x + 1 = 2
12、若2x -1=3与3x -a=-1的解相同,则a 的值是( )
A 、-7.
B 、+7.
C 、4.
D 、-4.
13、某件商品连续两次9折降价销售,降价后的售价为a 元,则该商品的原价为( )元。
A 、 21.1a
B 、29
.0a C 、0.81a D 、1.12a 14、甲、乙两人分别从A 、B 两地相向而行,已知A 、B 两地相距36千米,甲的速度为4千米/时,乙的速度为5千米/时,问甲、乙两人同时出发后几小时相遇?如设甲、乙两人同时出发后y 小时相遇,则下列方程错误的是( )
A 、4y + 5y =36
B 、(4+5)y = 36
C 、5y - 4y = 36
D 、 36-4y = 5y
15、A 、B 两地相距60千米,某人骑自行车从A 地到B (上坡路)平均每小时行驶12千米,从B 地返回A 地(下坡路)平均每小时行驶20千米。
那么他往返一次的平均速度是( )千米/时。
A 、12
B 、20
C 、 16
D 、7.5
三、解答题
1、解下列方程
(1)4(x+3)-1=3(X-2)+3 (2)
2x - 6115+x = 1 +342-x
(3)
1815612=+--x x (4)2.04-x - 2.5 = 05.03-x
(5)x x 532)21(223=⎥⎦⎤⎢⎣⎡+- (6) x x 532)21(223=⎥⎦
⎤⎢⎣⎡+-
2、当x 取何值时,代数式3(2-x )和2(3 + x )的值互为相反数?
3、已知()()081122=++--x m x m 是关于x 的一元一次方程,求代数式()()
m m x x m +-+2199的值。
4、王强参加了一场3000米的赛跑,他以6米/秒速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,那么王强以6米/秒速度跑了多少米?
5、苹果每千克8元,橘子每千克6元。
现在某人买苹果和橘子共8千克,用去人民币58元,请你算一下他买的苹果、橘子各多少千克。
6、已知某银行一年定期的年利率是2.2%,但国家要对个人的利息收入收取5%利息税。
小刚一年前存入该银行一笔钱,现在共取回10209元(已扣除利息税)问小刚存入多少钱?
7、五一节林老师驾车旅游,从甲地上高速途经A,B两座大桥到乙地下高速,其间用了4.5小时,返回时平均速度提高了10千米/小时,比去时少用了半小时回到甲地
(1)求A,B两地之间的高速公路路程;
(2)两座大桥的长度及过桥费见下表:
其中a(元/千米)为高速公路里程费,x为高速公路里程(不包括桥长),b为大桥过桥费,
若林老师从甲地到乙地的高速公路通行费为295.4元,求轿车的高速公路里程费。